
Efficient Probabilistic Programming Languages

Robert Zinkov

University of Southern California

zinkov@usc.edu

Abstract
In recent years, declarative programming languages special-
ized for probabilistic modeling has emerged as distinct class
of languages. These languages are predominantly written by
researchers in the machine learning field and concentrate on
generalized MCMC inference algorithm. Unfortunately, all
these languages are too slow for practical adoption. In my
talk, I will outline several places where compiler optimiza-
tions could improve these languages and make them more
usable in an industrial setting.

1. Introduction
Probabilistic programming languages are a domain-specific
language for probabilistic modeling. They enable fitting
models to data using a generative model. A generative
model[5] is a probabilistic story for how the observed data
was generated from unobserved variables. As an example,
consider Latent Dirchilet Allocation[3]. In BUGS[7], this
program is a dozen lines long. As a standalone implemen-
tation, LDA is hundreds of lines of code. Probabilistic pro-
gramming languages are a powerful abstraction tool.

2. The Problem
As the size of datasets in machine learning grow larger[1],
we have the desire to use more complex models to explain
the subtleties of the data. These subtlties are hard to capture
with simple linear models. These languages if they can be
improved exist in the perfect space for doing this modeling
and being very readable.

With the exception of HANSEI[6], most of these lan-
guages were not developed by programming languages re-
searchers. They were created to aid in prototyping complex
models[7][4].

The majority of the effort has been spent on optimizing
the sampling procedure. This ignores that even using a so-

[Copyright notice will appear here once ’preprint’ option is removed.]

phisticated MCMC mechanism, these languages take longer
to train on hand-written samplers using naive methods.

3. Relevance
This is important as languages significantly slower than
hand-written models will not be used. As the models can’t
be tested with a dataset of realistic size, it isn’t even possible
to use them for prototyping. This has the nasty and invisible
side-effect that artificially simple models are favored as they
are the only ones that are testable.

4. Possible Solution
A large degree of the ineffiencies come from lack of com-
piler optimizations. Only recently was BLOG[2] to use data
structures and inference directly from C. Church is written
in an interpretted implementation of Scheme.

References
[1] A. Agarwal, O. Chapelle, M. Dud́ık, and J. Langford. A

reliable effective terascale linear learning system.CoRR,
abs/1110.4198, 2011.

[2] N. Arora, S. Russell, and E. Sudderth. Automatic inference in
blog. InWorkshops at the Twenty-Fourth AAAI Conference on
Artificial Intelligence, 2010.

[3] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation.The
Journal of Machine Learning Research, 3:993–1022, 2003.

[4] N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and
J. Tenenbaum. Church: a language for generative models.
In Uncertainty in Artificial Intelligence, volume 22, page 23,
2008.

[5] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An intro-
duction to variational methods for graphical models.Machine
learning, 37(2):183–233, 1999.

[6] O. Kiselyov and C. Shan. Embedded probabilistic pro-
gramming. InDomain-Specific Languages, pages 360–384.
Springer, 2009.

[7] A. Thomas, D. Spiegelhalter, and W. Gilks. Bugs: A program
to perform bayesian inference using gibbs sampling.Bayesian
statistics, 4:837–842, 1992.

1 2011/11/14


