
My Types Depend on My Robots
My Robots Depend on My Types

Anthony Cowley Camillo J. Taylor
GRASP Laboratory, University of Pennsylvania

{acowley,cjtaylor}@seas.upenn.edu

Abstract
Robotics programmers stand to gain a great deal from ex-
pressive type systems. The types that help traditional soft-
ware developers design systems and catch bugs at compile
time may be extended to encode operational constraints of
physical systems. Statically checking these constraints pro-
vides verification that actuation plans adhere to electrome-
chanical system limitations, as well as mandated standard
operating procedures. Rejecting programs that can’t possibly
work, or may violate important constraints, can save roboti-
cists from experiencing costly bugs, and mitigate the dangers
of risky autonomous behaviors.

Categories and Subject Descriptors I.2.9 [Autonomous
vehicles]

Keywords Linear Logic, Dependent Types, Robotics

1. Logically Safe
Current work applying rich types has targeted platforms such
as that shown in Figure 1. This mobile robot is driven by sev-
eral low-level, closed-loop controllers regulating robot po-
sition, and a high-level scripting interface used to specify
construction plans. The scripting interface is implicitly im-
perative in that the core premise is that each action mutates
the work space.

Linear logic provides a language to make the finitude of
resources explicit [1]. In order to provide proof as a plat-
form, we fully automate discharge of the proof obligations
associated with each primitive action via Coq tactics [2]. An
example commanding the robot to place one block atop an-
other demonstrates the minimal Coq accessorizing needed to
adapt an imperative syntax to a platform that verifies conser-
vation of gripper resources and collision freedom of placed
blocks.

Example two_stack_test :

[env ∅, empty] ` (table X ⊗ on Y X) ⊗ >.
Proof.

get_from_cache.

put_on_table X.

get_from_cache.

stack Y on X.

Figure 1. Mobile manipulator platform stacking blocks.

isolate [table X, on Y X].

Qed.

2. Current Work: Trustworthy Intelligence
Deductive verification of scalable protocols [3] and reactive
behaviors [4] suggest a future where roboticists may more
confidently implement reactive behaviors that carry risk.
Beyond the familiar military and disaster rescue scenarios,
“risky” operations for robots may be as mundane as handling
an open container of liquid. In order to protect sensitive
electronics, engineers can enforce that a safety protocol is
followed by high-level behaviors. We are currently engaged
in exploring the mechanisms by which formal verification
may be integrated into experimental robotics.

References
[1] J. Power and C. Webster. Working with linear logic in coq.

In The 12th International Conference on Theorem Proving in
Higher Order Logics, 1999.

[2] A. Cowley and C. J. Taylor. Towards language-based
verification of robot behaviors. In Proceedings of the IEEE/RJS
International Conference on Intelligent Robots and Systems
(IROS), 2011.

[3] M. Bozzano and G. Delzanno. Automated protocol verification
in linear logic. In Proceedings of the 4th ACM SIGPLAN inter-
national conference on Principles and practice of declarative
programming, PPDP 2002.

[4] A. Jeffrey. Ltl types frp. In The Sixth ACM SIGPLAN Workshop
Programming Languages Meets Program Verification (PLPV
2012), 2012.


