
Revisiting APL in the Modern Era
Aaron W. Hsu William J. Bowman

awhsu@indiana.edu wilbowma@indiana.edu
Indiana University

APL deserves another look. Most people think of APL only peripherally as a language with terse
syntax and strange symbols in its code. While programmers used to other programming languages
may encounter an initial barrier due to these symbols, we believe that APL is worth the learning
curve and that one quickly crests this particular hill. APL has a simple, consistent syntax and se-
mantics coupled with an very rich vocabulary of built in primitives for manipulating arrays. The
modern APL implementation encourages functional and points-free programming styles. APL's
minimal syntax and rich vocabulary suggest its suitability for representing domain specific compu-
tations as well as serving as an common language for other, less concise notations. Furthermore,
the features of APL encourage thinking about problems in implicitly parallel and aggregate ways,
making it a powerful tool for talking about and writing parallel programs.1

Parallel programming and APL. Ubiquitous multi-core and parallel hardware should be accom-
panied by the software tools that enable us to think about problems in ways conducive to efficient
execution on these platforms. A newwave of research on parallel programming has hit the program-
ming languages field with the advent of modern hardware, but we believe that there is still much
to be gleaned and learned from past research on parallel machines; APL is a real world, industrial
language that is built on implicit parallelism, especially data parallelism.

We believe that APL is still ripe as a research target. APL's rich vocabulary and concise notation
encourages a points-free and functional style where primitive operations are naturally and implicitly
parallel. Important parallel techniques such as map and reduce see first-class, primitive support in
APL's notation. Users are encouraged to use bulk, aggregate operations, and with the incorporation
of features from other languages into APL, such as dynamic functions, APL becomes that much
more friendly to the parallel programmer.2

APL to the modern PL researcher. New research into programming languages should be in-
formed by existing research. APL is one of the few active, production-class languages that has seen
as much research into its parallel potential. Leveraging this past research is important, but being
able to build directly upon it with a common language seems to us an obvious step. Why then does
APL not see more attention in the parallel programming languages fields?
APL as an IR and DSL. APL is useful as a language in its own right, but with a proliferation of
parallel domain specific languages, including things like ArBB3 and Copperhead,4 APL presents
a number of advantages to domain specific languages. Its simple syntax makes it easy to map
problems in one DSL to APL and back. APL's vocabulary can provide a core calculus by which
researchers may easily ground and relate their systems to others in the field. Moreover, APL can
itself serve as an effective parallel programming DSL.
Conclusion. Researchers may or may not find APL suitable for use directly, but the long history
of research on the language, its continued development and progress, and the different approach
that the language takes from other languages makes it worthwhile to learn and study. Companies
use APL to do real work in industry, and it makes sense to understand and evaluate APL before
embarking on yet another parallel language.

1 Willhoft, R. G. Parallel expression in the APL2 language. IBM Systems Journal 30, no. 4 (1991): 498--512.
2 Scholes, John. Introduction to D-Functions. Dyalog '09.
3 Newburn, C. J. et al. Intel's Array Building Blocks: A retargetable, dynamic compiler and embedded language. IEEE/ACM

Symposium on Code Generation and Optimization (April 2011): 224--235.
4 Catanzaro, Bryan, Michael Garland, and Kurt Keutzer. Copperhead: Compiling an Embedded Data Parallel Language. PPoPP

(February 2011).

1


