
LOGICAL FRAMEWORKS—A BRIEF INTRODUCTION

FRANK PFENNING (fp+@cs.cmu.edu)
Carnegie Mellon University

Abstract. A logical framework is a meta-language for the formalization of deductive
systems. We provide a brief introduction to logical frameworks and their methodology,
concentrating on LF. We use first-order logic as the running example to illustrate the
representations of syntax, natural deductions, and proof transformations.

We also sketch a recent formulation of LF centered on the notion of canonical form,
and show how it affects proofs of adequacy of encodings.

Key words: Logical frameworks, type theory

1. Introduction

Deductive systems, given via axioms and rules of inference, are a common
conceptual tool in mathematical logic and computer science. They are used
to specify many varieties of logics and logical theories as well as aspects
of programming languages such as type systems or operational semantics.
A logical framework is a meta-language for the specification of deductive
systems. A number of different frameworks have been proposed and imple-
mented for a variety of purposes. In this brief introduction we highlight
the major themes, concepts, and design choices for logical frameworks and
provide pointers to the literature for further reading. We concentrate specif-
ically on the LF type theory and we briefly mention other approaches below
and in Section 5.

Logical frameworks are subject to the same general design principles
as other specification and programming languages. They should be simple
and uniform, providing concise means to express the concepts and methods
of the intended application domains. Meaningless expressions should be
detected statically and it should be possible to structure large specifications
and verify that the components fit together. There are also concerns specific
to logical frameworks. Perhaps most importantly, an implementation must

0 This research was supported in part by the National Science Foundations under
grant CCR-9988281.

md01proc.tex; 24/01/2002; 22:25; p.1

2

be able to check deductions for validity with respect to the specification of a
deductive system. Secondly, it should be feasible to prove (informally) that
the representations of deductive systems in the framework are adequate so
that we can trust formal derivations. We return to each of these points
when we discuss different design choices for logical frameworks.

Historically, the first logical framework was Automath (de Bruijn, 1968)
and its various languages, developed during the late sixties and early sev-
enties. The goal of the Automath project was to provide a tool for the
formalization of mathematics without foundational prejudice. Therefore,
the logic underlying a particular mathematical development was an in-
tegral part of its formalization. Many of the ideas from the Automath
language family have found their way into modern systems. The main
experiment conducted within Automath was the formalization of Landau’s
Foundations of Analysis. In the early eighties the importance of constructive
type theories for computer science was recognized through the pioneering
work of Martin-Löf (Martin-Löf, 1980). On the one hand, this led to a
number of systems for constructive mathematics and the extraction of func-
tional programs from constructive proofs. On the other hand, it strongly
influenced the design of LF (Harper et al., 1993), sometimes called the
Edinburgh Logical Framework (ELF). Concurrent with the development of
LF, frameworks based on higher-order logic and resolution were designed in
the form of generic theorem provers (Paulson, 1986) and logic programming
languages (Nadathur and Miller, 1988). The type-theoretic and logic pro-
gramming approaches were later combined in the Elf language (Pfenning,
1991). At this point, there was a pause in the development of new frame-
works, while the potential and limitations of existing systems were explored
in numerous experiments (see Pfenning (1996)). The mid-nineties saw re-
newed activity with implementations of frameworks based on inductive
definitions such as FS0 (Feferman, 1988; Basin and Matthews, 1996) and
ALF (Altenkirch et al., 1994), partial inductive definitions (Eriksson, 1994),
substructural frameworks (Miller, 1994; Cervesato and Pfenning, 1996),
rewriting logic (Mart̀ı-Oliet and Meseguer, 1993), and labelled deductive
systems (Gabbay, 1994). A full discussion of these is beyond the scope of
this introduction—the reader can find some remarks in handbook articles
on the subject of logical frameworks (Basin and Matthews, 2001; Pfenning,
2001b).

Some researchers distinguish between logical frameworks and meta-
logical frameworks (Basin and Constable, 1993), where the latter is intended
as a meta-language for reasoning about deductive systems rather than
within them. Clearly, any meta-logical framework must also provide means
for specifying deductive systems, though with different goals. Space does

md01proc.tex; 24/01/2002; 22:25; p.2

3

not permit a discussion of meta-logical frameworks in this survey.
The remainder of this introduction is organized as follows: in Section 2

we discuss the representation of the syntax of a logic and in Section 3 the
representation of judgments and deductions. In Section 4 we provide a the
details of a formulation of the dependently typed λ-calculus as a point of
reference, before concluding in Section 5. As an example throughout we use
natural deduction for first-order logic.

2. Abstract syntax

The specification of a deductive system usually proceeds in two stages: first
we define the syntax of an object language and then the axioms and rules of
inference. In order to concentrate on the meanings of expressions we ignore
issues of concrete syntax and parsing and concentrate on specifying ab-
stract syntax. Different framework implementations provide different means
for customizing the parser in order to embed the desired object-language
syntax.

As an example throughout we consider formulations of intuitionistic
and classical first-order logic. In order to keep the length of this survey
manageable, we restrict ourselves to the fragment containing implication,
negation, and universal quantification. The reader is invited to test his
or her understanding by extending the development to include a more
complete set of connectives and quantifiers. Representations of first-order
intuitionistic and classical logic in various logical frameworks can be found
in the literature (see, for example, Harper et al. (1993), Pfenning (2001a)).

Our fragment of first-order logic is constructed from individual vari-
ables x, function symbols f , and predicate symbols p in the usual way. We
assume each function and predicate symbol has a unique arity, indicated
by a superscript, but generally omitted since it will be clear from the con-
text. Individual constants are function symbols of arity 0 and propositional
constants are predicate symbols of arity 0.

Terms t ::= x | fk(t1, . . . , tk)
Atoms P ::= pk(t1, . . . , tk)
Formulas A ::= P | A1 ⊃A2 | ¬A | ∀x. A

We assume that there is an infinite number of variables x. The set
of function and predicate symbols is left unspecified in the general de-
velopment of logic. We therefore view our specification as open-ended.
A commitment, say, to arithmetic would fix the available function and
predicate symbols. We write x and y for variables, t and s for terms, and

md01proc.tex; 24/01/2002; 22:25; p.3

4

A, B, and C for formulas. There are some important operations on terms
and formulas required for the presentation of inference rules. Specifically,
we need the notions of free and bound variable, the renaming of bound
variables, and the operations of substitution [t/x]s and [t/x]A, where the
latter may need to rename variables bound in A in order to avoid variable
capture. We assume that these operations are understood and do not define
them formally. An assumption generally made in connection with variable
names is the so-called variable convention (Barendregt, 1980) which states
that expressions differing only in the names of their bound variables are con-
sidered identical. We examine to which extent various frameworks support
this convention.

2.1. SIMPLY-TYPED REPRESENTATION

We would like to capture both the variable name convention and the va-
lidity of a framework object representing a term or formula internally. A
standard method to achieve this is to introduce representation types. We
begin with simple types. The idea is to introduce type constants i and o
for object-level terms and formulas, respectively. Implication, for example,
is then represented by a constant of type o → (o → o), that is, a formula
constructor taking two formulas as arguments employing the standard tech-
nique of Currying. We could now represent variables as strings or integers;
instead, we use meta-language variables to model object-language variables.
This requires that we enrich the representation language to include higher-
order terms, which leads us to the simply-typed λ-calculus, λ→. As we will
see from the adequacy theorem for our representation (Theorem 1), the
methodology of logical frameworks only requires canonical forms, which
are β-normal and η-long. We will capture this in the syntax of our repre-
sentation language by allowing only β-normal forms; the fact that they are
η-long is enforced in the typing rules (see Section 4).

Types A ::= a | A1 → A2

Atomic Objects R ::= c | x | R N
Normal Objects N ::= λx.N | R

We use a to range over type constants, c over object constants, and x
over object variables. We follow the usual syntactic conventions: → asso-
ciates to the right, and application to the left. Parentheses group subexpres-
sions, and the scope of a λ-abstraction extends to the innermost enclosing
parentheses or to the end of the expression. We allow tacit α-conversion
(renaming of bound variables) and write [M/x:A]N for the β-normal form
of the result of capture-avoiding substitution of M for x in N . Constants

md01proc.tex; 24/01/2002; 22:25; p.4

5

and variables are declared and assigned types in a signature Σ and context
Γ, respectively. Neither is permitted to declare constants or variables more
than once. The main judgments of the type theory are

Γ Σ̀ N ⇐ A N has type A, and

Γ Σ̀ R⇒ A R has type A.

Here N ⇐ A checks N against a given A, while R ⇒ A synthesizes
A from R or fails. In both cases we assume Σ and Γ are given. We have
omitted type labels from λ-abstractions, since they are inherited from the
type that a canonical object is checked against.

Returning to the representation of first-order logic, we introduce two
declarations

i : type
o : type

for the types of representations of terms and formulas, respectively. For
every function symbol f of arity k, we add a corresponding declaration

f : i→ · · · → i→︸ ︷︷ ︸
k

i.

One of the central ideas in using a λ-calculus for representation is to
represent object-language variables by meta-language variables. Through
λ-abstraction at the meta-level we can properly delineate the scopes of vari-
ables bound in the object language. For simplicity, we give corresponding
variables the same name in the two languages.

pxq = x
pf(t1, . . . , tk)q = f pt1q . . .ptkq

Predicate symbols are dealt with like function symbols. We add a declara-
tion

p : i→ · · · → i→︸ ︷︷ ︸
k

o

for every predicate symbol p of arity k. Here are the remaining cases of the
representation function.

pp(t1, . . . , tk)q = p pt1q . . .ptkq
pA1 ⊃ A2q = imp pA1q pA2q imp : o→ o→ o

p¬Aq = not pAq not : o→ o
p∀x. Aq = forall (λx. pAq) forall : (i→ o)→ o

md01proc.tex; 24/01/2002; 22:25; p.5

6

The last case in the definition introduces the concept of higher-order ab-
stract syntax. If we represent variables of the object language by variables
in the meta-language, then variables bound by a construct in the object
language must be bound in the representation as well. The simply-typed
λ-calculus has a single binding operator λ, so all variable binding is mapped
to binding by λ. This idea goes back to Church’s formulation of classical
type theory and Martin-Löf’s system of arities (Nordström et al., 1990).

This leads to the first important representation principle of logical
frameworks employing higher-order abstract syntax: Bound variable renam-
ing in the object language is modeled by α-conversion in the meta-language.
Since we follow the variable convention in the meta-language, the variable
convention in the object language is automatically supported in a frame-
work using the representation technique above. Consequently, it cannot be
used directly for binding operators for which renaming is not valid such as
occur, for example, in module systems of programming languages.

The variable binding constructor “∀” of the object language is translated
into a second-order constructor forall in the meta-language, since delineating
the scope of x introduces a function (λx. pAq) of type i → o. What does
it mean to apply this function to an argument ptq? This question leads to
the concept of compositionality, a crucial property of higher-order abstract
syntax. We can show by a simple induction that

[ptq/x:i]pAq = p[t/x]Aq.

Note that the substitution on the left-hand side is in the framework, on the
right in first-order logic. Both substitutions are defined to rename bound
variables as necessary in order to avoid the capturing of variables free in
t. Compositionality also plays a very important role in the representation
of deductions in Section 3; we summarize it as: Substitution in the object
language is modeled by substitution in the meta-language.

The declarations of the basic constants above are open-ended in the
sense that we can always add further constants without destroying the valid-
ity of earlier representations. However, the definition also has an inductive
character in the sense that the validity judgment of the meta-language (λ→,
in this case) is defined inductively by some axioms and rules of inference.
Therefore we can state and prove that there is a compositional bijection
between well-formed formulas and normal objects of type o. Since a term
or formula may have free individual variables, and they are represented by
corresponding variables in the meta-language, we must take care to declare
them with their proper types in the meta-language context. We refer to the
particular signature with the declarations for term and formula constructors
as F .

md01proc.tex; 24/01/2002; 22:25; p.6

7

THEOREM 1 (Adequacy).

1. We have

x1:i, . . . , xn:i F̀ M ⇐ i iff M = ptq for some t,

where the free variables of term t are among x1, . . . , xn.
2. We have

x1:i, . . . , xn:i F̀ M ⇐ o iff M = pAq for some A,

where the free variables of formula A are among x1, . . . , xn.
3. The representation function p·q is a compositional bijection in the

sense that

[ptq/x:i]psq = p[t/x]sq and [ptq/x:i]pAq = p[t/x]Aq

Proof: In one direction we proceed by an easy induction on the structure
of terms and formulas. Compositionality can also be established directly by
an induction on the structure of s and A, respectively.

In the other direction we carry out an induction over the structure of
the derivations of M ⇐ i and M ⇐ o. To prove that the representation
function is a bijection, we write down its inverse on canonical forms and
prove that both compositions are identity functions. 2

We summarize the main technique introduced in this section. The tech-
nique of higher-order abstract syntax represents object language variables
by meta-language variables. It requires λ-abstraction in the meta-language
in order to properly delineate the scope of bound variables, which suggests
the use of the simply-typed λ-calculus as a representation language. In
this approach, variable renaming is modeled by α-conversion, and capture-
avoiding substitution is modeled by meta-level substitution. Representa-
tions in LF are open-ended, rather than inductive.

3. Judgments and deductions

After designing the representation of terms and formulas, the next step is
to encode the axioms and inference rules of the logic under consideration.
There are several styles of deductive systems which can be found in the
literature, such as the axiomatic method, categorical definitions, natural
deduction, or sequent calculus.

Logical frameworks are typically designed to deal particularly well with
some of these systems, while being less appropriate for others. The Au-
tomath languages were designed to reflect and promote good informal

md01proc.tex; 24/01/2002; 22:25; p.7

8

mathematical practice. It should thus be no surprise that they were partic-
ularly well-suited to systems of natural deduction. The same is true for
the LF type theory, so we concentrate on the problem of representing
natural deduction first. Other systems, including sequent calculi, can also
be directly encoded (Pfenning, 2000).

3.1. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

First, we introduce some terminology used in the presentation of deductive
systems introduced with their modern meaning by Martin-Löf (1985). We
will generally interpret the notions as proof-theoretic rather than semantic,
since we would like to tie them closely to logical frameworks and their
implementations. A judgment is defined by inference rules. An inference
rule has zero or more premises and a conclusion; an axiom is an infer-
ence rule with no premises. A judgment is evident or derivable if it can
be deduced using the given rules of inference. Most inference rules are
schematic in that they contain meta-variables. We obtain instances of a
schematic rule by replacing meta-variables with concrete expressions of the
appropriate syntactic category. Each instance of an inference rule may be
used in derivations. We write D :: J or

D
J

when D is a derivation of judgment J. All derivations we consider must be
finite.

Natural deduction further employs hypothetical judgments. We write

u
J1
...
J2

to express that judgment J2 is derivable under hypothesis J1 labelled u,
where the vertical dots may be filled by a hypothetical derivation. Hypothe-
ses have scope, that is, they may be discharged so that they are not available
outside a given subderivation. We annotate the discharging inference with
the label of the hypothesis. The meaning of a hypothetical judgment can be
explained by substitution: We can substitute an arbitrary deduction E :: J1

for each occurrence of a hypothesis J1 labelled u in D :: J2 and obtain a
derivation of J2 that no longer depends on u. We write this substitution as
[E/u]D :: J2 or two-dimensionally by writing E above the hypothesis justi-
fied by u. For this to be meaningful we assume that multiple occurrences

md01proc.tex; 24/01/2002; 22:25; p.8

9

of a label annotate the same hypothesis, and that hypotheses satisfy the
structural properties of exchange (the order in which hypotheses are made
is irrelevant), weakening (a hypothesis need not be used) and contraction
(a hypothesis may be used more than once).

An important related concept is that of a parametric judgment. Evidence
for a judgment J that is parametric in a variable a is given by a derivation
D :: J that may contain free occurrences of a. We refer to the variable a as a
parameter and use a and b to range over parameters. We can substitute an
arbitrary object O of the appropriate syntactic category for a throughout
D to obtain a deduction [O/a]D :: [O/a]J. Parameters also have scope and
their discharge is indicated by a superscript as for hypothesis labels.

3.2. NATURAL DEDUCTION

Natural deduction is defined via a single judgment

`N A formula A is true

and the mechanisms of hypothetical and parametric deductions explained
in the previous section.

In natural deduction each logical symbol is characterized by its intro-
duction rule or rules which specify how to infer a conjunction, disjunction,
implication, universal quantification, etc. The elimination rule or rules for
the connective then specify how we can use a conjunction, disjunction, etc.
Underlying the formulation of the introduction and elimination rules is the
principle of orthogonality: each connective should be characterized purely
by its rules, and the rules should only use judgmental notions and not
other logical connectives. Furthermore, the introduction and elimination
rules for a logical connective cannot be chosen freely—as explained below,
they should match up in order to form a coherent system. We call these
conditions local soundness and local completeness.

Local soundness expresses that we should not be able to gain infor-
mation by introducing a connective and immediately eliminating it. That
is, if we introduce and then eliminate a connective we should be able to
reach the same judgment without this detour. We show that this is possible
by exhibiting a local reduction on derivations. The existence of a local
reduction shows that the elimination rules are not too strong—they are
locally sound.

Local completeness expresses that we should not lose information by
introducing a connective. That is, given a judgment there is some way
to eliminate its principal connective and then re-introduce it to arrive at
the original judgment. We show that this is possible by exhibiting a local

md01proc.tex; 24/01/2002; 22:25; p.9

10

expansion on derivations. The existence of a local expansion shows that the
elimination rules are not too weak—they are locally complete.

Under the Curry-Howard isomorphism between proofs and programs
(Howard, 1980), local reduction corresponds to β-reduction and local ex-
pansion corresponds to η-expansion. We express local reductions and ex-
pansions via judgments which relate derivations of the same judgment.

D
`N A =⇒R

D′
`N A D locally reduces to D′

D
`N A =⇒E

D′
`N A D locally expands to D′

In the spirit of orthogonal definitions, we proceed connective by connec-
tive, discussing introduction and elimination rules and local reductions and
expansions.

Implication. To derive `N A⊃B we assume `N A to derive `N B. Written
as a hypothetical judgment:

u
`N A

...
`N B

⊃Iu
`N A⊃ B

The hypothetical derivation describes a construction by which we can trans-
form a derivation of `N A into a derivation of `N B. This is accomplished
by substituting the derivation of `N A for every use of the hypothesis `N A
labelled u in the derivation of `N B. The elimination rule expresses just
that: if we have a derivation of `N A ⊃ B and also a derivation of `N A,
then we can obtain a derivation of `N B.

`N A⊃ B `N A
⊃E

`N B

The local reduction carries out the substitution of derivations explained
above.

u
`N A
D
`N B

⊃Iu
`N A⊃B

E
`N A

⊃E
`N B

=⇒R

E
u

`N A
D
`N B

md01proc.tex; 24/01/2002; 22:25; p.10

11

The derivation on the right depends on all the hypotheses of E and D except
u, for which we have substituted E . The reduction described above may
significantly increase the overall size of the derivation, since the deduction
E is substituted for each occurrence of the assumption labeled u in D and
may therefore be replicated.

Local expansion is specified in a similar manner.

D
`N A ⊃B =⇒E

D
`N A⊃B

u
`N A

⊃E
`N B

⊃Iu
`N A ⊃B

Here, u must be a new label, that is, it cannot already be used in D.

Negation. In order to derive `N ¬A we assume `N A and try to derive
a contradiction. This is the usual formulation, but has the disadvantage
that it requires falsehood (⊥) as a logical symbol, thereby violating the
orthogonality principle. Thus, in intuitionistic logic, one ordinarily thinks
of ¬A as an abbreviation for A ⊃ ⊥. An alternative rule sometimes pro-
posed assumes `N A and tries to derive `N B and `N ¬B for some B.
This also breaks the usual pattern by requiring the logical symbol we are
trying to define (¬) in a premise of the introduction rule. However, there is
another possibility to explain the meaning of negation without recourse to
implication or falsehood. We specify that `N ¬A should be derivable if we
can conclude `N p for any formula p from the assumption `N A. In other
words, the deduction of the premise is hypothetical in the assumption `N A
and parametric in the formula p.

u
`N A

...
`N p

¬Ip,u
`N ¬A

`N ¬A `N A ¬E
`N C

According to our intuition, the parametric judgment should be derivable
if we can substitute an arbitrary concrete formula C for the parameter
p and obtain a valid derivation. Thus, p may not already occur in the
conclusion ¬A, or in any undischarged hypothesis. The reduction rule for
negation follows from this interpretation and is analogous to the reduction

md01proc.tex; 24/01/2002; 22:25; p.11

12

for implication.

u
`N A
D
`N p

¬Ip,u
`N ¬A

E
`N A

¬E
`N C

=⇒R

E
u

`N A
[C/p]D
`N C

The local expansion is also similar to that for implication.

D
`N ¬A =⇒E

D
`N ¬A

u
`N A

¬E
`N p

¬Ip,u
`N ¬A

Universal quantification. Under which circumstances should we be able
to derive `N ∀x. A? This clearly depends on the domain of quantification.
For example, if we know that x ranges over the natural numbers, then we
can conclude `N ∀x. A if we can derive `N [0/x]A, `N [1/x]A, etc. Such a
rule is not effective, since it has infinitely many premises. Thus one usually
uses induction principles as inference rules. However, in a general treatment
of predicate logic we would like to prove statements which are true for all
domains of quantification. Thus we can only say that `N ∀x. A should
be derivable if `N [a/x]A is derivable for an arbitrary new parameter a.
Conversely, if we know `N ∀x. A, we know that `N [t/x]A for any term t.

`N [a/x]A
∀Ia

`N ∀x. A
`N ∀x. A

∀E
`N [t/x]A

The superscript a is a reminder about the proviso for the introduction
rule: the parameter a must be “new”, that is, it may not occur in any
undischarged hypothesis in the derivation of [a/x]A or in ∀x. A itself. In
other words, the derivation of the premise is parametric in a. If we know that
`N [a/x]A is derivable for an arbitrary a, we can conclude that `N [t/x]A

should be derivable for any term t. Thus we have the reduction

D
`N [a/x]A

∀Ia
`N ∀x. A

∀E
`N [t/x]A

=⇒R
[t/a]D
`N [t/x]A

md01proc.tex; 24/01/2002; 22:25; p.12

13

Here, [t/a]D is our notation for the result of substituting t for the parameter
a throughout the deduction D. For this to be sensible, we must know that
a does not already occur in A, because otherwise the conclusion of [t/a]D
would be [t/a][t/x]A. The local expansion just introduces and immediately
discharges the parameter.

D
`N ∀x. A =⇒E

D
`N ∀x. A

∀E
`N [a/x]A

∀Ia
`N ∀x. A

Classical logic. The inference rules so far only model intuitionistic logic,
and some classically true formulas such as Peirce’s law ((A⊃B) ⊃A)⊃A
(for arbitrary A and B) or double negation (¬¬A) ⊃ A (for arbitrary A)
are not derivable. There are a number of equivalent ways to extend the
system to full classical logic, typically using negation (for example, the law
of excluded middle, proof by contradiction, or double negation elimination).
In the fragment without disjunction or falsehood, we might choose either a
rule of double negation or proof by contradiction.

`N ¬¬A
dbneg

`N A

u
`N ¬A

...
`N A

contru
`N A

The rule for classical logic (whichever we choose to adopt) breaks the pat-
tern of introduction and elimination rules. One can still formulate some
reductions for classical derivations, but natural deduction is at heart an
intuitionistic calculus. The symmetries of classical logic are better exhibited
in sequent calculi.

3.3. DEDUCTIONS AS OBJECTS

In the representation of deductions we have a basic choice between simply
representing derivable judgments, or giving an explicit representation of de-
ductions as objects. There are many circumstances where we are interested
in deductions as explicit objects. For example, we may want to extract
functional programs from constructive (or even classical) derivations. Or
we may want to implement proof transformation and presentation tools

md01proc.tex; 24/01/2002; 22:25; p.13

14

in a theorem proving environment. If we do not trust a complex theorem
prover, we may construct it so that it generates proof objects which can be
independently verified. In the architecture of proof-carrying code (Necula,
1997), deductions represented in LF are attached to mobile code to certify
safety (Necula, 2002). Another class of applications is the implementation
of the meta-theory of the deductive systems under consideration. For ex-
ample, we may want to show that natural deductions and derivations in the
sequent calculus define the same theorems and exhibit translations between
them. Here, we are interested in formally specifying the local reductions and
expansions.

The simply-typed λ-calculus, which we used to represent the terms and
formulas of first-order logic, is also a good starting point for the repre-
sentation of natural deductions. As we will see below we need to refine it
further in order to allow an internal validity condition for deductions. This
leads us to λΠ, the dependently typed λ-calculus underlying the LF logical
framework (Harper et al., 1993).

We begin by introducing a new type nd of natural deductions. An in-
ference rule is a constant function from deductions of the premises to a
deduction of the conclusion. For example,

impe : nd→ nd→ nd

might be used to represent implication elimination. A hypothetical deduc-
tion is represented as a function from a derivation of the hypothesis to a
derivation of the conclusion.

impi : (nd→ nd)→ nd

One can clearly see that this representation requires an external validity
condition since it does not carry the information about which instance of
the judgment is shown by the derivation. For example, we have

` impi (λu. impeu u)⇐ nd

but this term does not represent a valid natural deduction. An external
validity predicate can be specified using hereditary Harrop formulas and is
executable in λProlog (Felty and Miller, 1988). However, it is not prima
facie decidable.

Fortunately, it is possible to refine the simply-typed λ-calculus so that
validity of the representation of derivations becomes an internal property,
without destroying the decidability of the type system. This is achieved by
introducing indexed types. Consider the following encoding of the elimina-
tion rule for implication.

md01proc.tex; 24/01/2002; 22:25; p.14

15

impe : nd (impAB)→ ndA→ ndB

In this specification, nd (impAB) is a type, the type representing derivations
of `N A ⊃ B. Thus we speak of the judgments-as-types principle. The type
family nd is indexed by objects of type o.

nd : o→ type

We call o→ type a kind. Secondly, we have to consider the status of the free
variables A and B in the declaration. Intuitively, impe represents a whole
family of constants, one for each choice of A and B. Schematic declarations
like the one given above are desirable in practice, but they lead to an unde-
cidable type checking problem (Dowek, 1993). We can recover decidability
by viewing A and B as additional arguments in the representation of ⊃E.
Thus impe has four arguments representing A, B, a derivation of A ⊃ B
and a derivation of A. It returns a derivation of B. With the usual function
type constructor we could only write

impe : o→ o→ nd (impAB)→ ndA→ ndB.

This does not express the dependencies between the first two arguments
and the types of the remaining arguments. Thus we name the first two
arguments A and B, respectively, and write

impe : ΠA:o.ΠB:o. nd (impAB)→ ndA→ ndB.

This is a closed type, since the dependent function type constructor Π binds
the following variable. From the consideration above we can see that the
typing rule for application of a function with dependent type should be

Γ Σ̀ R⇒ Πx:A.B Γ Σ̀ N ⇐ A
app

Γ Σ̀ R N : [N/x:A−]B

Here, A− is the simple type that arises by erasing all dependencies and
indices from A (see Section 4). For example, given a variable p:o we have

p:o Σ̀ impe (not p) p⇒ nd (imp (not p) p)→ nd (not p)→ nd p

where the signature Σ contains the declarations for formulas and inferences
rules developed above. The counterexample impi (λu. impeu u) from above
is now no longer well-typed: the instance of A would have to be of the form
A1 ⊃ A2 (first occurrence of u) and simultaneously be equal to A1 (second
occurrence of u). This is clearly impossible. The rule for λ-abstraction does
not change much from the simply-typed calculus.

Γ, x:A Σ̀ N ⇐ B
lam

Γ Σ̀ λx.N ⇐ Πx:A.B

md01proc.tex; 24/01/2002; 22:25; p.15

16

The variable x may now appear free in B, whereas without dependencies
it could only occur free in N . Note that no type label on λ-abstractions is
needed, since the given type Πx:A.B supplies it. From these two rules it
can be seen that the rules for Πx:A.B specialize to the rules for A → B
if x does not occur in B. Thus A → B is generally considered a derived
notation that stands for Πx:A.B for a variable x not free in B.

A full complement of rules for the canonical λΠ type theory is given
in Section 4. With dependent function types, we can now give a represen-
tation for natural deductions with an internal validity condition. This is
summarized in Theorem 2 below.

Implication. The introduction rule for implication employs a hypothetical
judgment. The derivation of the hypothetical judgment in the premise is
represented as a function which, when applied to a derivation of A, yields
a derivation of B.

p
u

`N A
D
`N B

⊃Iu
`N A⊃ B

q

= impi pAq pBq (λu. pDq)

The assumption A labeled by u which may be used in the derivation D is
represented by the LF variable u:nd pAq which ranges over derivations of
A.

p
u

`N A

q
= u

From this we can deduce the type of the impi constant.

impi : ΠA:o.ΠB:o. (ndA→ ndB)→ nd (impAB)

The elimination rule is simpler, since it does not involve a hypothetical
judgment. The representation of a derivation ending in the elimination rule
is defined by

p
D

`N A⊃B
E
`N A

⊃E
`N B

q

= impe pAq pBq pDq pEq

where

md01proc.tex; 24/01/2002; 22:25; p.16

17

impe : ΠA:o.ΠB:o. nd (imp A B)→ nd A→ nd B.

As an example we consider a derivation of A⊃ (B ⊃A).

u
`N A

⊃Iw
`N B ⊃A

⊃Iu
`N A ⊃ (B ⊃A)

Note that the assumption `N B labelled w is not used and therefore does
not appear in the derivation. This derivation is represented by the LF object

impi pAq (imp pBq pAq) (λu. impi pBq pAq (λw. u))

which has type

nd (imp pAq (imp pBq pAq)).

This example shows clearly some redundancies in the representation of
the deduction (there are many occurrences of pAq and pBq). Fortunately,
it is possible to analyze the types of constructors and eliminate much of this
redundancy through term reconstruction (Pfenning, 1991; Necula, 2002).

Negation. The introduction and elimination rules for negation and their
representation follow the pattern of the rules for implication.

p
u

`N A
D
`N p

¬Ip,u
`N ¬A

q

= noti pAq (λp. λu. pDq)

The judgment of the premise is parametric in p:o and hypothetical in
u:nd pAq. It is thus represented as a function of two arguments, accepting
both a formula p and a deduction of A.

noti : ΠA:o. (Πp:o. nd A→ nd p)→ nd (not A)

The representation of negation elimination

p
D
`N ¬A

E
`N A

¬E
`N C

q

= note pAq pDq pCq pEq

md01proc.tex; 24/01/2002; 22:25; p.17

18

leads to the following declaration

note : ΠA:o. nd (not A)→ ΠC:o. nd A→ nd C

This type just inverts the second argument and result of the noti constant,
which is the reason for the chosen argument order. Clearly,

note′ : ΠA:o.ΠC:o. nd (not A)→ nd A→ nd C

is an alternative declaration that would work just as well.

Universal quantification. Recall that p∀x. Aq = forall (λx. pAq) and that
the premise of the introduction rule is parametric in a.

p
D

`N [a/x]A
∀Ia

`N ∀x. A

q

= foralli (λx. pAq) (λa. pDq)

Note that pAq, the representation of A, has a free variable x which must be
bound in the meta-language, so that the representing object does not have
a free variable x. Similarly, the parameter a is bound at this inference and
must be correspondingly bound in the meta-language. The representation
determines the type of the constant foralli.

foralli : ΠA:i→ o. (Πa:i. nd (A a))→ nd (forall (λx. A x))

In an application of this constant, the argument labelled A will be λx:i. pAq
and (A a) will become [paq/x:i]pAq which in turn is equal to p[a/x]Aq by
the compositionality of the representation.

The elimination rule does not employ a hypothetical judgment.

p
D

`N ∀x. A
∀E

`N [t/x]A

q

= foralle (λx. pAq) pDq ptq

The substitution of t for x in A is representation by the application of the
function (λx. pAq) (the first argument to foralle) to ptq.

foralle : ΠA:i→ o. nd (forallA)→ Πt:i. nd (A t)

We now check that

p
D

`N ∀x. A
∀E

`N [t/x]A

q

⇐ nd p[t/x]Aq,

md01proc.tex; 24/01/2002; 22:25; p.18

19

assuming that pDq ⇐ nd p∀x. Aq. This is a part in the proof of adequacy
of this representation of natural deductions. At each step we verify that the
arguments have the expected type and compute the type of the application.

foralle⇒ ΠA:i→ o. nd (forall (λx. A x))→ Πt:i. nd (A t)
foralle (λx. pAq)⇒ nd (forall (λx. pAq))→ Πt:i. nd ([t/x:i]pAq)
foralle (λx. pAq) pDq⇒ Πt:i. nd ([t/x:i]pAq)
foralle (λx. pAq) pDq ptq⇒ nd ([ptq/x:i]pAq))
foralle (λx. pAq) pDq ptq⇐ nd ([ptq/x:i]pAq)

The first step follows by the nature of canonical substitution,

[(λx. pAq)/A:i→ o](A t) = [t/x:i]pAq.

The last step uses the rule that an atomic object of atomic type P is
also canonical at type P . Furthermore, by the compositionality of the
representation we have

[ptq/x:i]pAq = p[t/x]Aq

which, together with the last line above, yields the desired

foralle (λx. pAq) pDq ptq⇐ nd (p[t/x]Aq).

The representation theorem relates canonical objects constructed in
certain contexts to natural deductions. The restriction to canonical objects
is once again crucial, as are the restrictions on the form of the context.
We call the signature consisting of the declarations for first-order terms,
formulas, and natural deductions ND.

THEOREM 2 (Adequacy).

1. If D is a derivation of A from hypotheses `N A1, . . . , `N An la-
belled u1, . . . , un, respectively, with all free individual parameters among
a1, . . . , am and propositional parameters among p1, . . . , pk then

Γ ǸD pDq⇐ nd pAq

for Γ = a1:i, . . . , am:i, p1:o, . . . , pk:o, u1:nd pA1q, . . . , un:nd pAnq.
2. If Γ = a1:i, . . . , am:i, p1:o, . . . , pk:o, u1:nd pA1q, . . . , un:nd pAnq and

Γ ǸD M ⇐ nd pAq

then M = pDq for a derivation D as in part 1.

md01proc.tex; 24/01/2002; 22:25; p.19

20

3. The representation function is a bijection, and is compositional in the
sense that the following equalities hold (where E :: `N A):

p[t/a]Dq = [ptq/a:i]pDq
p[C/p]Dq = [pCq/p:o]pDq
p[E/u]Dq = [pEq/u:nd]pDq

Proof: The proof proceeds by induction on the structure of natural deduc-
tions one direction and on the definition of canonical forms in the other
direction. 2

Each of the rules that may be added to obtain classical logic can be
easily represented with the techniques from above. They are left as an
exercise to the reader.

We summarize the LF encoding of natural deductions. First, the syntax.

i : type
o : type

imp : o→ o→ o
not : o→ o
forall : (i→ o)→ o

The second simplification in the concrete presentation is to omit some
Π-quantifiers. Free variables in a declaration are then interpreted as a
schematic variables whose quantifiers remain implicit. The types of such
free variables must be determined from the context in which they appear. In
practical implementations such as Twelf (Pfenning and Schürmann, 1999),
type reconstruction will issue an error message if the type of free variables
is ambiguous.

nd : o→ type

impi : (ndA→ ndB)→ nd (impAB).
impe : nd (imp A B)→ nd A→ nd B.
noti : (Πp:o. nd A→ nd p)→ nd (not A).
note : nd (not A)→ ΠC:o. nd A→ nd C.
foralli : (Πa:i. nd (A a))→ nd (forall (λx. A x)).
foralle : nd (forall A)→ Πt:i. nd (A t)

When constants with implicitly quantified types are used, arguments
corresponding to the omitted quantifiers are also left implicit. Again, in
practical implementations these arguments are inferred from context. For
example, the constant impi now appears to take only two arguments (of

md01proc.tex; 24/01/2002; 22:25; p.20

21

type ndA and ndB for some A and B) rather than four, like the fully
explicit declaration

impi : ΠA:o.ΠB:o. (ndA→ ndB)→ nd (impAB).

The derivation of A ⊃ (B ⊃ A) from above has this very concise represen-
tation:

impi (λu. impi (λw. u))⇐ nd(impA (impBA))

To recover classical logic, we can add either of the following declarations
to the signature, modeling the two rules previously introduced.

dbneg : nd (not (notA))→ ndA.
contr : (nd (notA)→ ndA)→ nd A.

In summary, the basic representation principle underlying LF is the
representation of judgments as types. A deduction of a judgment J is
represented as a canonical object N whose type is the representation of
J. This basic scheme is extended to represent hypothetical judgments as
simple function types and parametric judgments as dependent function
types. This encoding reduces the question of validity for a derivation to the
question of well-typedness for its representation. Since type-checking in the
LF type theory is decidable, the validity of derivations has been internalized
as a decidable property in the logical framework.

3.4. HIGHER-LEVEL JUDGMENTS

Next we turn to the local reduction judgment for natural deductions intro-
duced in Section 3.2.

D
`N A =⇒R

D′
`N A

Recall that this judgment witnesses the local soundness of the elimination
rules with respect to the introduction rules. We refer to this as a higher-
level judgment since it relates derivations. The representation techniques
underlying LF support this directly, since deductions are represented as
objects which can in turn index type families representing higher-level
judgments.

In this particular example, reduction is defined only by axioms, one each
for implication, negation, and universal quantification. The representing
type family in LF must be indexed by the representation of two deductions
D and D′, and consequently also by the representation of A. This shows

md01proc.tex; 24/01/2002; 22:25; p.21

22

that there may be dependencies between indices to a type family so that we
need a dependent constructor Π for kinds in order to represent judgments
relating derivations.

redl : ΠA:o. nd A→ nd A→ type.

As in the representation of inference rules in Section 3.3, we omit the explicit
quantifier on A and determine A from context.

redl : nd A→ nd A→ type.

We show the representation of the reduction rules for each connective in
turn.

Implication. This reduction involves a substitution of a derivation for an
assumption.

u
`N A
D
`N B

⊃Iu
`N A⊃B

E
`N A

⊃E
`N B

=⇒R

E
u

`N A
D
`N B

The representation of the left-hand side is

impe (impi (λu.D u)) E

where E = pEq ⇐ ndA and D = (λu. pDq) ⇐ ndA → ndB. The
derivation on the right-hand side can be written more succinctly as [E/u]D.
Compositionality of the representation (Theorem 2, part 3) yields

p[E/u]Dq = [pEq/u:nd]pDq.
Thus we can formulate the rule concisely as

redl imp : redl (impe (impi (λu.D u)) E) (D E)

Negation. This is similar to implication. The required substitution of C
for p in D is implemented by application and β-reduction at the meta-level.

u
`N A
D
`N p

¬Ip,u
`N ¬A

E
`N A

¬E
`N C

=⇒R

E
u

`N A
[C/p]D
`N C

md01proc.tex; 24/01/2002; 22:25; p.22

23

redl not : redl (note (noti (λp. λu.D p u)) C E) (D C E).

Universal quantification. The universal introduction rule involves a para-
metric judgment. Consequently, the substitution to be carried out during
reduction replaces a parameter by a term.

D
`N [a/x]A

∀Ia
`N ∀x. A

∀E
`N [t/x]A

=⇒R
[t/a]D
`N [t/x]A

In the representation we once again exploit the compositionality.

p[t/a]Dq = [ptq/a:i]pDq.

This gives rise to the declaration

redl forall : redl (foralle (foralli (λa.D a)) T) (D T).

The adequacy theorem for this encoding states that canonical LF ob-
jects of type redl pDq pD′q constructed over the appropriate signature and
in an appropriate parameter context are in bijective correspondence with
derivations of D =⇒R D′. We leave the precise formulation and simple
proof to the diligent reader.

The encoding of the local expansions employs the same techniques. We
summarize it below without going into further detail.

expl : ΠA:o. nd A→ nd A→ type.
expl imp : expl (imp A B) D (impi (λu. impe D u)).
expl not : expl (not A) D (noti (λp. λu. note D p u)).
expl forall : expl (forall (λx. A x)) D (foralli (λa. foralleD a)).

In summary, the representation of higher-level judgments continues to
follow the judgments-as-types technique. The expressions related by higher-
level judgments are now deductions and therefore dependently typed in the
representation. Substitution at the level of deductions is implemented by
substitution at the meta-level, taking advantage of the compositionality of
the representation.

4. A dependently typed λ-calculus

In this section we summarize a recent formulation of the dependently λ-
calculus λΠ allowing only canonical forms (Watkins et al., 2002). This

md01proc.tex; 24/01/2002; 22:25; p.23

24

avoids an explicit notion of definitional equality (Harper et al., 1993),
which is not required for applications of λΠ as a logical framework. Related
systems have been advocated by de Bruijn (1993) and Felty (1991). See
Watkins et al. (2002) for further details and properties of this formulation.

λΠ is predicative calculus with three levels: kinds, families, and objects.
We also define signatures and contexts as they are needed for the judgments.

Normal Kinds K ::= type | Πx:A.K

Atomic Types P ::= a | P N
Normal Types A ::= P | Πx:A1. A2

Atomic Objects R ::= c | x | R N
Normal Objects N ::= λx.N | R
Signatures Σ ::= · | Σ, a:K | Σ, c:A
Contexts Γ ::= · | Γ, x:A

We write a for type family constants and c for object constants, both
declared in signatures Σ with their kind and type, respectively. Variables x
are declared in contexts with their type. We make the uniform assumption
that no constant or variable may be declared more than once in a signature
or context, respectively. We also allow tacit renaming of variables bound by
Πx:A . . . and λx As usual, we avoid an explicit non-dependent function
type by thinking of A → B as an abbreviation for Πx:A.B where x does
not occur in B, and similarly for A→ K.

From the point of view of natural deduction, atomic objects are com-
posed of destructors corresponding to elimination rules, while normal ob-
jects are built from constructors corresponding to introduction rules. The
typing rules are bi-directional which mirrors the syntactic structure of nor-
mal forms: we check a normal object against a type, and we synthesize a
type for an atomic object. We write U ⇐ V to indicate that U is checked
against a given V (which we assume is valid), and U ⇒ V to indicate that
U synthesizes a V (which we prove is valid).

Γ Σ̀ K ⇐ kind K is a valid kind

Γ Σ̀ A⇐ type A is a valid type

Γ Σ̀ P ⇒ K P is atomic of kind K

Γ Σ̀ N ⇐ A N is normal of type A

Γ Σ̀ R⇒ A R is atomic of type A

` Σ Sig Σ is a valid signature

Σ̀ Γ Ctx Γ is a valid context

md01proc.tex; 24/01/2002; 22:25; p.24

25

In one rule, we write A ≡ A′ for syntactic equality of normal types
modulo α-conversion. This is to emphasize the flow of information during
type-checking.

` · Sig

` Σ Sig · Σ̀ K ⇐ kind

` Σ, a:K Sig

` Σ Sig · Σ̀ A⇐ type

` Σ, c:A Sig

` · Ctx

Σ̀ Γ Ctx Γ Σ̀ A⇐ type

Σ̀ Γ, x:A Ctx

Γ Σ̀ type⇐ kind

Γ Σ̀ A⇐ type Γ, x:A Σ̀ K ⇐ kind

Γ Σ̀ Πx:A.K ⇐ kind

Γ Σ̀ a⇒ Σ(a)

Γ Σ̀ P ⇒ Πx:A.K Γ Σ̀ N ⇐ A

Γ Σ̀ P N ⇒ [N/u:A−]K

Γ Σ̀ P ⇒ type

Γ Σ̀ P ⇐ type

Γ Σ̀ A⇐ type Γ, x:A Σ̀ B ⇐ type

Γ Σ̀ Πx:A.B ⇐ type

Γ Σ̀ c⇒ Σ(c) Γ Σ̀ x⇒ Γ(x)

Γ Σ̀ R⇒ Πx:A.B Γ Σ̀ N ⇐ A

Γ Σ̀ R N ⇒ [N/x:A−]B

Γ Σ̀ N ⇒ A′ A′ ≡ A
Γ Σ̀ N ⇐ A

Γ, x:A Σ̀ N ⇐ B

Γ Σ̀ λx.N ⇐ Πx:A.B

In order to define canonical substitution inductively, we erase all depen-
dences and indices from a type to obtain a simple type τ .

(a)− = a
(P N)− = P−

(Πx:A.B)− = A− → B−

The canonical substitution [N/x:τ]B and [N/x:τ]K returns a normal
type or kind, respectively. It is defined inductively, first on the structure
of the simply-typed erasure A− of A and then the structure of B and K,
respectively. Modulo the proof of termination, we can also think of it as the

md01proc.tex; 24/01/2002; 22:25; p.25

26

β-normal form of [N/x]B and [N/x]K, respectively. For details of the two
approaches, the reader may consult Watkins et al. (2002) and Felty (1991).

[N0/x:τ](type) = type
[N0/x:τ](Πy:A.K) = Πy:[N0/x:τ]A. [N0/x:τ]K

[N0/x:τ](a) = a
[N0/x:τ](P N) = ([N0/x:τ]P) ([N0/x:τ]N)
[N0/x:τ](Πy:A.B) = Πy:[N0/x:τ]A. [N0/x:τ]B

[N0/x:τ](λy. N) = λy. [N0/x:τ]N
[N0/x:τ](R) = [N0/x:τ]r(R) or [N0/x:τ]β(R)

[N0/x:τ]r(c) = c
[N0/x:τ]r(x) undefined
[N0/x:τ]r(y) = y provided x 6= y
[N0/x:τ]r(R N) = ([N0/x:τ]rR) ([N0/x:τ]N)

[N0/x:τ]β(c) undefined
[N0/x:τ]β(x) = (N0 : τ)
[N0/x:τ]β(y) undefined provided x 6= y

[N0/x:τ]β(R N) = ([[N0/x:τ]N/y:τ1]N ′ : τ2)
where [N0/x:τ]β(R) = (λy. N ′ : τ1 → τ2)

Note that for all atomic terms R, either a case for [N/x:τ]r(R) or
[N/x:τ]β(R) applies, depending on whether the head of R is x or not.
Furthermore, if [N/x:τ]β(R) = (N : τ ′) then τ ′ is a subexpression of τ .
Hence canonical substitution is a terminating function. Decidability of the
LF type theory is then a straightforward consequence. Furthermore, cut is
admissible in the sense that if Γ Σ̀ N0 ⇐ A and Γ, x:A Σ̀ N ⇐ C then
Γ Σ̀ [N0/x:A−]N ⇐ [N0/x:A−]C (Watkins et al., 2002).

5. Conclusion

We have provided an introduction to the techniques of logical frameworks
with an emphasis on LF which is based on the dependently typed λ-calculus
λΠ. We now summarize the basic choices that arise in the design of logical
frameworks.

Strong vs. weak frameworks. De Bruijn, the founder of the field of logical
frameworks, argues (de Bruijn, 1991) that logical frameworks should be
foundationally uncommitted and as weak as possible. This allows simple
proofs of adequacy for encodings, efficient checking of the correctness of
derivations, and allows effective algorithms for unification and proof search

md01proc.tex; 24/01/2002; 22:25; p.26

27

in the framework which are otherwise difficult to design (for example, in
the presence of iterated inductive definitions). This is also important if we
use explicit proofs as a means to increase confidence in the results of a
theorem prover: the simpler the logical framework, the more trusted its
implementation is likely to be.

Inductive representations vs. higher-order abstract syntax. This is related
to the previous question. Inductive representations of logics are supported
in various frameworks and type theories not explicitly designed as logical
frameworks. They allow a formal development of the meta-theory of the
deductive system in question, but the encodings are less direct than for
frameworks employing higher-order abstract syntax and functional repre-
sentations of hypothetical derivations. Present work on combining advan-
tages of both either employ reflection or formal meta-reasoning about the
logical framework itself (McDowell and Miller, 1997; Schürmann, 2000).

Logical vs. type-theoretic meta-languages. A logical meta-language such
as one based on hereditary Harrop formulas encodes judgments as propo-
sitions. Search for a derivation in an object logic is reduced to proof search
in the meta-logic. In addition, type-theoretical meta-languages such as LF
offer a representation for derivations as objects. Checking the correctness
of a derivation is reduced to type-checking in the meta-language. This
is a decidable property that enables the use of a logical framework for
applications such as proof-carrying code, where an explicit representation
for deductions is required (Necula, 2002).

Framework extensions. Logical framework languages can be assessed along
many dimensions, as the discussions above indicate. Three of the most
important concerns are how directly object languages may be encoded,
how easy it is to prove the adequacies of these encodings, and how simple
the proof checker for a logical framework can be. A great deal of prac-
tical experience has been accumulated, for example, through the use of
λProlog, Isabelle, and Elf. These experiments have also identified certain
shortcomings in the logical frameworks. Perhaps the most important one is
the treatment of substructural logics, or languages with an inherent notion
of store or concurrency. Representation of such object languages is possible,
but not as direct as one might wish. The logical frameworks Forum (Miller,
1994), linear LF (Cervesato and Pfenning, 1997) and CLF (Watkins et al.,
2002) have been designed to overcome these shortcomings by providing
linearity intrinsically. Other extensions by subtyping, module constructs,
constraints, etc. have also been designed, but their discussion is beyond the
scope of this introduction.

md01proc.tex; 24/01/2002; 22:25; p.27

28

Further reading. There have been numerous case studies and applications
carried out with the aid of logical frameworks or generic theorem provers,
too many to survey them here. The principal application areas lie in the
theory of programming languages and logics, reasoning about specifications,
programs, and protocols, and the formalization of mathematics. We refer
the interested reader to (Pfenning, 1996) for some further information on
applications of logical frameworks. The handbook article (Pfenning, 2001b)
provides more detailed development of LF and includes some material on
meta-logical frameworks. A survey with deeper coverage of modal logics
and inductive definitions can be found in (Basin and Matthews, 2001).
The textbook (Pfenning, 2001a) provides a gentler and more thorough
introduction to the pragmatics of the LF logical framework and its use
for the study of programming languages.

References

Altenkirch, T., V. Gaspes, B. Nordström, and B. von Sydow: 1994, ‘A User’s Guide to
ALF’. Chalmers University of Technology, Sweden.

Barendregt, H. P.: 1980, The Lambda-Calculus: Its Syntax and Semantics. North-Holland.
Basin, D. and S. Matthews: 1996, ‘Structuring Metatheory on Inductive Definitions’. In:

M. McRobbie and J. Slaney (eds.): Proceedings of the 13th International Conference on
Automated Deduction (CADE-13). New Brunswick, New Jersey, pp. 171–185, Springer-
Verlag LNAI 1104.

Basin, D. and S. Matthews: 2001, ‘Logical Frameworks’. In: D. Gabbay and F. Guenthner
(eds.): Handbook of Philosophical Logic. Kluwer Academic Publishers, 2nd edition. In
preparation.

Basin, D. A. and R. L. Constable: 1993, ‘Metalogical Frameworks’. In: G. Huet and G.
Plotkin (eds.): Logical Environments. Cambridge University Press, pp. 1–29.

Cervesato, I. and F. Pfenning: 1996, ‘A Linear Logical Framework’. In: E. Clarke (ed.):
Proceedings of the Eleventh Annual Symposium on Logic in Computer Science. New
Brunswick, New Jersey, pp. 264–275, IEEE Computer Society Press.

Cervesato, I. and F. Pfenning: 1997, ‘Linear Higher-Order Pre-Unification’. In: G.
Winskel (ed.): Proceedings of the Twelfth Annual Sumposium on Logic in Computer
Science (LICS’97). Warsaw, Poland, pp. 422–433, IEEE Computer Society Press.

de Bruijn, N.: 1968, ‘The Mathematical Language AUTOMATH, Its Usage, and Some
of Its Extensions’. In: M. Laudet (ed.): Proceedings of the Symposium on Automatic
Demonstration. Versailles, France, pp. 29–61, Springer-Verlag LNM 125.

de Bruijn, N.: 1991, ‘A Plea for Weaker Frameworks’. In: G. Huet and G. Plotkin (eds.):
Logical Frameworks. pp. 40–67, Cambridge University Press.

de Bruijn, N.: 1993, ‘Algorithmic Definition of Lambda-Typed Lambda Calculus’. In:
G. Huet and G. Plotkin (eds.): Logical Environment. Cambridge University Press, pp.
131–145.

Dowek, G.: 1993, ‘The Undecidability of Typability in the Lambda-Pi-Calculus’. In:
M. Bezem and J. Groote (eds.): Proceedings of the International Conference on Typed
Lambda Calculi and Applications. Utrecht, The Netherlands, pp. 139–145, Springer-
Verlag LNCS 664.

md01proc.tex; 24/01/2002; 22:25; p.28

29

Eriksson, L.-H.: 1994, ‘Pi: An Interactive Derivation Editor for the Calculus of Partial
Inductive Definitions’. In: A. Bundy (ed.): Proceedings of the 12th International Con-
ference on Automated Deduction. Nancy, France, pp. 821–825, Springer Verlag LNAI
814.

Feferman, S.: 1988, ‘Finitary Inductive Systems’. In: R. Ferro (ed.): Proceedings of Logic
Colloquium ’88. Padova, Italy, pp. 191–220, North-Holland.

Felty, A.: 1991, ‘Encoding Dependent Types in an Intuitionistic Logic’. In: G. Huet and
G. D. Plotkin (eds.): Logical Frameworks. pp. 214–251, Cambridge University Press.

Felty, A. and D. Miller: 1988, ‘Specifying Theorem Provers in a Higher-Order Logic
Programming Language’. In: E. Lusk and R. Overbeek (eds.): Proceedings of the
Ninth International Conference on Automated Deduction. Argonne, Illinois, pp. 61–80,
Springer-Verlag LNCS 310.

Gabbay, D. M.: 1994, ‘Classical vs Non-Classical Logic’. In: D. Gabbay, C. Hogger, and
J. Robinson (eds.): Handbook of Logic in Artificial Intelligence and Logic Programming,
Vol. 2. Oxford University Press, Chapt. 2.6.

Harper, R., F. Honsell, and G. Plotkin: 1993, ‘A Framework for Defining Logics’. Journal
of the Association for Computing Machinery 40(1), 143–184.

Howard, W. A.: 1980, ‘The formulae-as-types notion of construction’. In: J. P. Seldin and
J. R. Hindley (eds.): To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism. Academic Press, pp. 479–490. Hitherto unpublished note of 1969.

Mart̀ı-Oliet, N. and J. Meseguer: 1993, ‘Rewriting Logic as a Logical and Semantical
Framework’. Technical Report SRI-CSL-93-05, SRI International.

Martin-Löf, P.: 1980, ‘Constructive Mathematics and Computer Programming’. In: Logic,
Methodology and Philosophy of Science VI. pp. 153–175, North-Holland.

Martin-Löf, P.: 1985, ‘On the Meanings of the Logical Constants and the Justifications of
the Logical Laws’. Technical Report 2, Scuola di Specializzazione in Logica Matematica,
Dipartimento di Matematica, Università di Siena. Reprinted in the Nordic Journal of
Philosophical Logic, 1(1), 11-60, 1996.

McDowell, R. and D. Miller: 1997, ‘A Logic for Reasoning with Higher-Order Abstract
Syntax’. In: G. Winskel (ed.): Proceedings of the Twelfth Annual Symposium on Logic
in Computer Science. Warsaw, Poland, pp. 434–445, IEEE Computer Society Press.

Miller, D.: 1994, ‘A Multiple-Conclusion Meta-Logic’. In: S. Abramsky (ed.): Ninth
Annual Symposium on Logic in Computer Science. Paris, France, pp. 272–281, IEEE
Computer Society Press.

Nadathur, G. and D. Miller: 1988, ‘An Overview of λProlog’. In: K. A. Bowen and
R. A. Kowalski (eds.): Fifth International Logic Programming Conference. Seattle,
Washington, pp. 810–827, MIT Press.

Necula, G. C.: 1997, ‘Proof-Carrying Code’. In: N. D. Jones (ed.): Conference Record
of the 24th Symposium on Principles of Programming Languages (POPL’97). Paris,
France, pp. 106–119, ACM Press.

Necula, G. C.: 2002, ‘Proof-Carrying Code: Design and Implementation’. This volume.
Kluwer Academic Publishers.

Nordström, B., K. Petersson, and J. M. Smith: 1990, Programming in Martin-Löf ’s Type
Theory: An Introduction. Oxford University Press.

Paulson, L. C.: 1986, ‘Natural Deduction as Higher-order Resolution’. Journal of Logic
Programming 3, 237–258.

Pfenning, F.: 1991, ‘Logic Programming in the LF Logical Framework’. In: G. Huet and
G. Plotkin (eds.): Logical Frameworks. pp. 149–181, Cambridge University Press.

Pfenning, F.: 1996, ‘The Practice of Logical Frameworks’. In: H. Kirchner (ed.): Proceed-

md01proc.tex; 24/01/2002; 22:25; p.29

30

ings of the Colloquium on Trees in Algebra and Programming. Linköping, Sweden, pp.
119–134, Springer-Verlag LNCS 1059. Invited talk.

Pfenning, F.: 2000, ‘Structural Cut Elimination I. Intuitionistic and Classical Logic’.
Information and Computation 157(1/2), 84–141.

Pfenning, F.: 2001a, Computation and Deduction. Cambridge University Press. In
preparation. Draft from April 1997 available electronically.

Pfenning, F.: 2001b, ‘Logical Frameworks’. In: A. Robinson and A. Voronkov (eds.):
Handbook of Automated Reasoning. Elsevier Science and MIT Press, Chapt. 16, pp.
977–1061. In press.

Pfenning, F. and C. Schürmann: 1999, ‘System Description: Twelf — A Meta-Logical
Framework for Deductive Systems’. In: H. Ganzinger (ed.): Proceedings of the 16th
International Conference on Automated Deduction (CADE-16). Trento, Italy, pp. 202–
206, Springer-Verlag LNAI 1632.

Schürmann, C.: 2000, ‘Automating the Meta Theory of Deductive Systems’. Ph.D. thesis,
Department of Computer Science, Carnegie Mellon University. Available as Technical
Report CMU-CS-00-146.

Watkins, K., I. Cervesato, F. Pfenning, and D. Walker: 2002, ‘A Concurrent Logi-
cal Framework I: Judgments and Properties’. Technical Report CMU-CS-02-101,
Department of Computer Science, Carnegie Mellon University. Forthcoming.

md01proc.tex; 24/01/2002; 22:25; p.30

