
Precept 4:  Proofs about Fuctional Programs 

This precept will help familiarize you with material on proving things about programs.  As part of your 

homework this week, you must read the online notes about proving things about programs.  Refer to 

these notes to help you through this week’s precept materials. 

 

http://www.cs.princeton.edu/~dpw/courses/cos326-12/notes/reasoning.php 

 

http://www.cs.princeton.edu/~dpw/courses/cos326-12/notes/reasoning-data.php 

 

Part I 

 

1.  Consider the function tail: 

 

let tail (xs: ‘a list) : ‘a list = 

  match xs with hd :: tail -> tail 

;; 

 

Is tail a total function?  No 

 

Is tail [] a valuable expression?  No 

 

Is tail [3] a valuable expression?  Yes 

 

2. Consider safediv: 

 

let safediv (nums : int * int) : int option = 

  let (x,y) = nums in 

  if y == 0 then None 

  else Some (x/y) 

;; 

 

Is safediv a total function?  Yes 

 

Is safediv (1, 0) valuable?  Yes 

  



3. Consider the following type and function declarations 

 

type form =  

  Var of string 

| And of form list 

 

let rec free_var (f : form) = 

  match f with 

    Var s -> [s] 

  | And fs -> free_vars fs 

 

and free_vars (fs: form list) = 

  match fs with 

    [] -> [] 

  | f :: rest -> free_var f @ free_vars rest 

;; 

 

Is free_var total?  Yes 

 

Is free_vars total?  Yes 

 

4.   

 

let rec f (x:int) = 

  if x > 50 then 1 + f (x-1) else g x 

 

and g (y: int) = 

  if y > 0 then 1 else f (x-1) 

;; 

 

Is f total?  No 

 

Is g total?  No 

 

5. 

 

let f x = … ;; 

 

let g x =  

  if f x then 1 else 0 

;; 

 

What do we need to know about f to know that g is total?  f must be total. 



Part II 

Give justifications for each of the following equations using the equational rules given in the online 

notes.  Whenever you need to use reflexivity, transitivity, symmetry, congruence, etc., say so. 

 

let inc x = x + 1;; 

(1) inc 3 == 4   eval, math, transitivity ________________________ 

(2) inc 4 == 5   eval, math, transitivity ________________________ 

(3) inc (inc 3) == 5   (2), congruence, (3), transitivity_________________ 

(4) fun x -> x + 1 == inc  syntactic sugar, substitution, transitivity__________ 

(5) for all values v, v + 1 == inc v      eval _______________________________________ 

(6) for all valuable expressions e, e + 1 == inc e      eval (since e valuable)_____________ 

Part III 

Consider the following code: 

let multo (x:int option) (y:int option) = 

  match (x,y) with 

    (Some m, Some n) -> Some ((m + m)*n) 

  | (_, _) -> None 

;; 

 

Prove the following equation holds, step by step, for all o : int option 

multo o o == (match o with Some i -> Some (2*(i*i)) | None -> None) 

Proof:  (Note: You can start top down, or you can start bottom up, or go from both ends to the middle) 

Proof is by cases on the structure of o. 

case o = None: 

   multo None None 

== match (None, None) with (... | (_, _) -> None)            (eval) 

== None                                                      (eval) 

== match None with Some i -> Some (2*(i*i)) | None -> None   (eval, reverse) 

 

case o = Some j 

   multo (Some j) (Some j) 

== match (Some j, Some j) with (Some m, Some n) -> Some (m+m)*n | None -> None) (eval) 

== Some (j+j)*j                                                                 (eval) 

== Some (2*(j*j))                                                               (math) 

== match Some j with Some i -> Some (2*(i*i)) | None -> None)          (eval, reverse) 

 

QED! 

 

 

 



Part IV 

Consider the following function. 

let compose (f:’a -> ‘b) (g:’b -> ‘c) (x:’a) = g (f x);; 

Prove using equational reasoning that for all n : int 

   compose (fun x -> x * 2) (fun y -> y * 8) n 

== compose (fun z -> z * 4) (fun w -> w * 4) n 

Proof (put one reasoning step on each line with a justification): 

(again, recall you can start from the left-hand side and prove to the right; or start on the right-hand side 

and prove to the left or go from both sides and try to meet in the middle) 

   compose (fun x -> x * 2) (fun y -> y * 8) n 

== (fun y -> y*8) ((fun x -> x*2) n)   (eval) 

== (fun y -> y*8) (n*2)          (eval) 

== (n*2)*8            (eval,  

  since n*2 valuable) 

== (n*4)*4                                       (math) 

== (fun w -> w*4) (n*4)                          (eval, reverse) 

== (fun w -> w*4) ((fun z -> z*4) n)             (eval, reverse) 

== compose (fun z -> z * 4) (fun w -> w * 4) n   (eval, reverse) 

  



Part V 

 

Consider the functions double and half: 

 

let rec double (xs: int list) : int list = 

  match xs with 

    [] -> [] 

  | hd :: rest -> hd::hd::double rest 

;; 

 

let rec half (xs: int list) : int list = 

  match xs with 

    [] -> [] 

  | [x] -> [] 

  | x::y::rest -> y::half rest 

;; 

 

(a) Disprove this conjecture: for all l, double(half l) == l.   

    (Rhetorical question:  How does one disprove such a conjecture?) 

A counter-example to the conjecture is l == [3] since: 

double(half [3]) == double [] == [] 

and:  

[] =/= [3] 

 

(b) Prove that for all integer lists l. half (double l) == l. 
Proof:  By induction on the structure of the list l: 

 

case l = []              

To show:  half (double []) == [] 

 

Proof: 

   half (double []) 

== half []                (eval 2 steps) 

== []                     (eval 2 steps) 

 

case l = hd::tail             

To show:  half (double (hd::tail)) == hd::tail 

IH:  half (double tail) == tail 

 

Proof: 

   half (double (hd::tail)) 

== half (hd::hd::double tail)  (eval 2 steps) 

== hd::(half(double tail))     (eval 2 step, since hd::hd::double tail valuable) 

== hd::tail                    (IH)  



Part VI 

 

Ask in precept about solutions to this problem.  (Do not post solutions to this problem online.) 


