1 What can type systems do?

1.1 Express invariance about values

- $v: \text{bool}$ then $v = \text{true}$ or $v = \text{false}$
- $v: \text{char}$ then $v = 'a'$ or $v = 'b'$ or...
- $v: \text{list}$ then $v = []$ or $v = \text{hd}::\text{tail}$ and $\text{hd}: T$ and $\text{tail}: T$ list
- $v: T_1 * T_2$ then $v = (v_1, v_2)$ and $v_1 : T_1$ and $v_2 : T_2$
- $v: T_1 \rightarrow T_2$ then v is a function and if you assume its input v_1 satisfies the invariants of T_1 and $v_1 \rightarrow v_2$ then $v_2 : T_2$

1.2 Enable abstraction

Actually a series of bits, not "true". But actually actually wires and signals and such. Quarks and "what’s that boson thing they just discovered."

1.2.1 Relationship

Abstraction is a relationship between two worlds, imaginary and concrete.

2 Boolean module

```ocaml
module B : BOOL = struct
  type b = int
  let tru = 1
  let fal = 0
  let not b =
    match b with
    | 0 -> 1
    | 1-> 0
    | _ -> raise BrokenRepInv
```

let and bs =
 match bs with
 | (0, 0) | (0, 1) | (1, 0) -> 0
 | (1, 1) -> 1
 | (_, _) -> raise BrokenRepInv
end

2.1 Invariant
v: B.b then v = 1 or v = 1
defining a type b that will always be 1 or 0. claiming it’s true; must check that everything satisfies it

2.2 Proof
tru according to signature has type b; has to be either 1 or 0; is 1, so ok.
fal as above
not : b -> b. pick input v_1. Assume v_1:b. Show v v_1 -> v_2 and v_2 satisfies the invariants of b.

2.3 Moral of the story
To check that your module satisfies a representation invariant, for all operations assume the rep inv holds for all inpurs. Prove it holds for all outputs.

3 Sets
3.1 Representation 1: Duplicates
list. represents particular set if members of the list are the same as members of the set.

3.2 Representation 2: No Duplicates
Lists, but only those without duplicates. e.g. [1,1] is not a set.

3.3 Implementation 1: Duplicates
module Set1 : SET = struct
 type 'a set = 'a list
 let empty = []
let add x l = x::l
let size l =
 match l with
 | [] -> 0
 | hd:: tl -> size tl + (if List.mem hd tl then 0 else 1)
...

3.4 Implementation 2: No Duplicates

module Set1 : SET = struct
 type 'a set = 'a list
 let empty = []
 let add x l =
 if List.mem x l then l
 else x::l
 let size l = List.length l \ exploiting representation invariant
 ...
end

3.5 Proving stuff

The stronger the representation invariant, the more stuff you have to prove.

4 Protect from Client

module SET client
 type 'a set = set, set, set...
v: 'a set
 sets are abstract
 no way to inject bad code

5 Back to Bool

module S: BOOL = struct
 type b = bool
 let tru = true
 let fal = false
 let not b =
 match b with
 | true -> false
 | false -> true
let and bs =
 match bs with
 | true, true -> true
 | _, _ -> false
end

5.1 Mapping

Some concrete things represent imaginary ones. \texttt{not} maps an imaginary object to another imaginary object. We must make sure our implementation maps a related input to a related output.

5.2 Proof on our abstract types

Show that the abstraction function is correctly implemented. \texttt{C \rightsquigarrow a:b f \rightsquigarrow f : t1 \rightarrow t2}

Assume a pair of inputs \(c, a\) such that \(c \rightsquigarrow a : t1\).

Must prove \(f \ c \rightsquigarrow g \ a : t2\)

5.3 What?

To prove a module \(M1\) faithfully implements a spec \(S\), show that every element of the module is related like that (above).

5.4 Let's do it?

5.4.1 Step 1

\(1 \rightsquigarrow \text{true :b}\)
\(0 \rightsquigarrow \text{false:b}\)
\(\text{tru} \rightsquigarrow \text{tru:b}\)
\(\text{iff } 1 \rightsquigarrow \text{tru : b}\)
\(\text{iff } 1 \rightsquigarrow \text{true : b}\)
\(\text{iff valid}\)

5.4.2 Step 2

Show: \(f \rightsquigarrow \text{fal: b}\)
\(\text{iff } 0 \rightsquigarrow \text{false :b}\)
\(\text{iff valid}\)
5.4.3 Step 3

Show: not \(\sqsubseteq \) not : b \(\rightarrow \) b
Asume on inputs such that
\(c \sqsubseteq a : b \)
Must prove not \(c \sqsubseteq \) not a : b

case a = true
Assumption looks like:
\(c \sqsubseteq \) true :b
By definition of \(\sqsubseteq \)
Therefore \(c = 1 \)
Must prove not 1 \(\sqsubseteq \) not true: b
iff 0 \(\sqsubseteq \) not true : b
iff 0 \(\sqsubseteq \) false : b
iff valid!

case a = false
Assumption looks like:
\(c \sqsubseteq \) false
therefore \(c = 0 \)
must prove:
not 0 \(\sqsubseteq \) not false
1 \(\sqsubseteq \) true
valid

5.4.4 Step 4

and \(\sqsubseteq \) and : b * b \(\rightarrow \) b
Assume we have an input
\(c \sqsubseteq a : b \)
That means
\(c = (c1, c2) \)
\(a (a1, a2) \)
and
\(c1 \sqsubseteq a1 : b \)
and
\(c2 \sqsubseteq a2 : b \)
Must prove:
and \((c1, c2) \sqsubseteq (a1, a2) : b \)
Cases \(\rightarrow \) and applied to any combination gives a result related to the result that and
produces.

6 Final morals

Reasoning about representation invariants and abstraction relations based on types.

6.1
c : Abs then we show RI(v) (module writer gets to pick) (representation invariant of v holds)

6.2
c ⇝ a : Abs (module writer gets to pick the abstraction function)

6.3
f : Assume RI(inputs), Show RI(outputs)

6.4
f: Assume inputs are related, Show outputs are related

6.5 Logical Relations
From relation to implication. Assume input, show output.

6.6 Module Comments
In module comments, say what the abstraction relation is and what the representation invariant is.