MapReduce: Programming in the Very Large

Ari Rabkin: asrabkin@gmail.com
for David Walker's FP class
December 2012
"The datacenter is the computer"
Google versus Hadoop vs MR

• Google published the MapReduce paper in 2004.

• Doug Cutting had been working on an Open Source MapReduce. Linked up with Yahoo! to scale it up.

• Has taken off and become very popular.

• Other MapReduce implementations also exist
Indexing

- 1: Some Words
- 2: Some other words
- 3: Other words
- Other: 2,3
 - Some: 1, 2
 - Words: 1,2,3

Note that Index is **sorted** by key. Helpful for quick lookup of approximate matches
Generalizing

Inputs

• Doc 1
• Doc 2
• Doc 3

Outputs

• Term 1
• Term 2
• Term 3

Map → Shuffle/Sort → Reduce
Performance Numbers

• Biggest production Hadoop clusters are ~4000 nodes
• Facebook has 100 PB in Hadoop
• Best MapReduce-like system (TritonSort from UCSD) can sort 900 GB/minute on a 52-node, 800-disk cluster.
Distributed Implementation

Input Data

Mapper
Local Storage

Reducer

Mapper
Local Storage

Mapper
Local Storage

Output Data

Map
Shuffle/Sort
Reduce
A modern software stack

Workload Manager

High-level scripting language

Cluster Node

Cluster Node

Cluster Node

Cluster Node
The control plane

User Program

Controller

Worker

Input Data

Worker

Input Data

Worker

Input Data
The flow of information

Worker
- Heartbeats
- Tasks to start
- Completed

Controller

User Program
- Job config.
- OK
Slots, Tasks, and Attempts

• A **job** is split into **tasks**. Each **task** includes many calls to map() or reduce()

• Workers are long-running processes that are assigned tasks

• Multiple workers can be assigned the same task; these are termed separate **attempts**.
Size and Failures

• Suppose you have a cluster of a thousand servers. How long between failures?

• How long for one machine to fail?
 – Intuition: machines fail once a year or two?
 – Depending on model, perhaps 5% of high-end hard disks fail each year (Schroder, FAST ’07). A server might have ten hard disks.

• So for a thousand machines, we would expect failures more than once a day
Handling Failures

Input Data

Mapper → Reducer
Mapper → Reducer
Mapper → Reducer

Shuffle/Sort

Reducer
Reducer

Output Data

Map
Shuffle/Sort
Reduce
Failures aren’t absolute

- Some failures make nodes slow
- Reduces can’t start until ALL maps finish
Fix: speculation

- Multiple tries at same task; pick first to finish
- Subtlety in deciding which tasks to try to speculatively execute

- Map Task 1 – a1
- Map Task 2 – a1
- Map Task 3 – a1
- Map Task 2 – a2

Reduces
Types for Map + Reduce functions

• Map:
 (‘K1 * ‘V1 \rightarrow (‘K2 * ‘V2) bag) \rightarrow (‘K1 * ‘V1) bag \rightarrow (‘K2 * ‘V2) bag

• Reduce:
 (‘K2 * (‘V2 list) \rightarrow (‘K3 * ‘V3) bag) \rightarrow ‘K2 * (‘V2 list) bag \rightarrow (‘K3 * ‘V3) bag

Indexing

Map: (Doc\text{ID} * word bag) \rightarrow (word * Doc\text{ID}) bag

Reduce: (word * Doc\text{ID} list) \rightarrow (word * Doc\text{ID}) bags
The Java versions

interface Mapper<K1,V1,K2,V2> {
 public void map (K1 key, V1 val, OutputCollector<K2, V2> output);
 ...
}

The Java versions

```java
interface Reducer<K2, V2, K3, V3> {
    public void reduce(K2 key, 
                      Iterator<V2> values, 
                      OutputCollector<K3, V3> output);

    ...
}
```
Image to Text

• Can use MapReduce for simple parallelization.
• Imagine we have code to convert an image to text. How do we convert a million scanned images of book pages?
• Can just wrap the conversion routine in our Map() method; reduce is identity
• The embarrassingly parallel becomes trivial; real power of framework is in harder parallel problems.
True story!

- New York Times has an archive going back to 1850.
- In 2007, they decided to put together PDFs of everything from 1850 to 1922.
- Total input size: 4 TB
- Took about a day for a 100-node Hadoop cluster, on hardware rented from Amazon for the day.
Word count?

• Similar to indexing except we only want counts, not locations

• Map:
 (DocID, String list) -> ?

• Reduce:
 -> (String, int)
Word count?

• Similar to indexing except we only want counts, not locations
• Map:
 (DocID, String list) -> (String, _) bag

• Reduce:
 (String, _ list) -> (String, int)
Word count?

• Similar to indexing except we only want counts, not locations

• Map:
 \[(\text{DocID}, \text{string list}) \rightarrow (\text{string}, \text{unit}) \text{ bag}\]
 \[\text{emit } (w, ()) \text{ for each word } w \text{ in list}\]

• Reduce:
 \[(\text{string, unit list}) \rightarrow (\text{string, int})\]
 \[\text{emit length of list}\]
Map in Java

class WordCountMapMap implements Map {
 public void map (DocID key, List<String> val,
 OutputCollector<String, Integer> output) {

 for (String s: val)
 output.collect(s, 1)
 }
}
class WordCountReduce {
 public void reduce(String key,
 Iterator<Integer> vals,
 OutputCollector<String, Integer> output) {

 int count = 0;
 for (int v: vals)
 count += 1;
 output.collect(key, count)
 }
}
Map + Reduce, and Combine functions

- **Map:**
 \[(K_1 \times V_1) \rightarrow (K_2 \times V_2) \text{ bag}\]

- **Reduce:**
 \[(K_2 \times V_2 \text{ list}) \rightarrow (K_3 \times V_3) \text{ bag}\]

- **Combine**
 \[(K_2 \times V_2 \text{ list}) \rightarrow (K_2 \times V_2) \text{ bag}\]
Reduce / Combine in Java

class WordCountReduce {
 public void reduce(String key, Iterator<Integer> vals, OutputCollector<String, Integer> output) {

 int count = 0;
 for (int v : vals) {
 count += v;
 output.collect(key, count);
 }
 }
}
Word Count with Combine

• Almost the same functional code, different configuration

```java
conf.setOutputKeyClass(String.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(WordCountMap.class);
conf.setReducerClass(WordCountReduce.class);

conf.setCombinerClass(WordCountReduce.class);
```
A hypothetical....

HashMap<String, Integer> counts = new HashMap<String, Integer>();

public void map (DocID key,
 List<String> val,
 OutputCollector<String, Integer> output) {

 for (String s: val) {
 count = 1;
 if (counts.contains(s))
 count += counts.get(s);
 counts.put(s, count);
 }
}
PageRank: measuring how much a webpage matters

- Model: user is clicking around randomly.
- With probability k, will start over at random; else follows a [random] link off current page.
- Matrix M encodes probabilities of transition from page p to page q

\[\text{Pr[on page]} = M \cdot e_p \]
PageRank: The link matrix
The Stable State

• Distribution has a stationary point where \(\mathbf{v} = \mathbf{M} \cdot \mathbf{v} \) (\(\mathbf{v} \) is an eigenvector)

• Can solve by iteration: \(\mathbf{v}_{k+1} = \mathbf{M} \cdot \mathbf{v}_k \)

• We can compute this as a MapReduce job
Defining the types

- Class PageInfo;
- Class LinksInfo extends PageInfo {
 List<DocID> links;
}
- Class Increment extends PageInfo {
 double inWeight;
}
The logic

Reduce(DocID key, Iterator<PageInfo> vals,
OutputCollector<DocID, PageInfo> output {
 double total_score = 0;
 LinksInfo info;
 for (PageInfo i: vals) {
 if (i instanceof LinksInfo) {
 info = (LinksInfo) vals.next();
 output.collect(key, info)
 } else
 total_score += ((Increment) i).inWeight;
 }
 double s = total_score / info.links.size();
 for (DocID out: links.links)
 output.collect(key, Increment(s))
}
Iterative Jobs are common...

Working Set

Input Data

Mapper

Reducer

Mapper

Reducer

Mapper

Reducer

Input Data

Output Data

Mapper

Reducer

Mapper

Reducer

Input Data

Output Data

Worker

Worker
Joins

<table>
<thead>
<tr>
<th>Name</th>
<th>ZIP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Doe</td>
<td>08540</td>
</tr>
<tr>
<td>Richard Roe</td>
<td>20037</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZIP code</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>08540</td>
<td>NJ</td>
</tr>
<tr>
<td>14850</td>
<td>NY</td>
</tr>
<tr>
<td>20037</td>
<td>DC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>ZIP Code</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Doe</td>
<td>08540</td>
<td>NJ</td>
</tr>
<tr>
<td>Richard Roe</td>
<td>20037</td>
<td>DC</td>
</tr>
</tbody>
</table>
If one table is small, just keep it in memory at every location and join in the Map method.

Can also join on Reduce side:
- Can emit whole contents of both tables in Map.
- Use “join column” as sort key, then join in reduce().

Higher-level languages help. (Pig, Hive, etc)
Joins with MR, continued

- **Class TableCell** [could be int, string, etc]
- **Class RowWithSource**

```java
map(NullWritable inKey, TableRow val ...) {
    int fileId = getInputFileNumber();
    int joinCol = config.get("join_column_" + fileId);
    TableCell c = val.get(joinCol);
    RowWithSource v2 = new RowWithSource(val, fileId);
    output.collect(c, v2);
}
```
Initialize joinCol1 and joinCol2 [class members] somewhere

reduce(TableCell key, Iterator <RowWithSource> values ...) {
 List<RowWithSource> src1 = new List<RowWithSource> ();
 List<RowWithSource> src2 = new List<RowWithSource> ();
 for (RowWithSource r: values)
 if (r.src == "1")
 src1.append(r);
 else
 src2.append(r);
 for (RowWithSource r1: src1)
 for (RowWithSource r2: src2) {
 TableRow res = join(r1, r2, joinCol1, joinCol2);
 output.collect(null, res);
 }
}
Observations

• Code is basically doing nested-loops over all pairs of rows which match on the join key.
• This doesn’t require materializing the whole set of results, but does materialize the sets of inputs on each side.
• This code would be a lot easier with product types (e.g. Pair<A,B>)
MapReduce is the Wrong Thing if the data is spread out: need more optimization to reduce wide-area transfer costs
Deeper pipes for more locality
Take-aways

• Big data needs specialized tools to process.
• Higher-order functions help manage complexity.
• Determinism and the absence of side-effects make parallelism and failure recovery simpler.
• If you have complicated functionality, consider building a language.
For more information

- Hadoop is public and open source.
- Amazon’s EC2 will let you run stuff at large scale for low (and incremental) costs.