
Parallelism and Concurrency

COS 326

David Walker

Princeton University

Parallelism

2

• What is it?

• Today's technology trends.

• How can we take advantage of it?

• Why is it so much harder to program?

• Some preliminary linguistic constructs

– thread creation

– thread coordination: futures and locks

PARALLELISM:
WHAT IS IT?

Parallelism

4

• What is it?

– doing many things at the same time instead of sequentially
(one-after-the-other).

Flavors of Parallelism

5

• Data Parallelism

– same computation being performed on a lot of data

– e.g., adding two vectors of numbers

• Task Parallelism

– different computations/programs running at the same time

– e.g., running web server and database

• Pipeline Parallelism

– assembly line:

sequential
map f

sequential
map g

Parallelism vs. Concurrency

6

Parallelism: performs many tasks simultaneously

• purpose: improves throughput

• mechanism:

– many independent computing devices

– decrease run time of program by utilizing multiple cores or computers

• eg: running your web crawler on a cluster versus one machine.

Concurrency: mediates multi-party access to shared resources

• purpose: decrease response time

• mechanism:

– switch between different threads of control

– work on one thread when it can make useful progress; when it can't,
suspend it and work on another thread

• eg: running your clock, editor, chat at the same time on a single CPU.

– OS gives each of these programs a small time-slice (~10msec)

– often slows throughput due to cost of switching contexts

• eg: don't block while waiting for I/O device to respond, but let another thread
do useful CPU computation

Parallelism vs. Concurrency

7

cpu cpu cpu

job

…

Parallelism:
perform several independent
tasks simultaneously

resource
(cpu, disk, server,

data structure)

job … Concurrency:
mediate/multiplex
access to shared
resource

job job

many efficient programs use some parallelism and some concurrency

UNDERSTANDING TECHNOLOGY
TRENDS

Moore's Law

• Moore's Law: The number of transistors you can put on a
computer chip doubles (approximately) every couple of years.

• Consequence for most of the history of computing: All
programs double in speed every couple of years.

– Why? Hardware designers are wicked smart.

– They have been able to use those extra transistors to (for
example) double the number of instructions executed per time
unit, thereby processing speed of programs

• Consequence for application writers:

– watch TV for a while and your programs optimize themselves!

– perhaps more importantly: new applications thought
impossible became possible because of increased
computational power

CPU Clock Speeds from 1993-2005

10

CPU Clock Speeds from 1993-2005

11

Next year’s machine
is twice as fast!

CPU Clock Speeds from 1993-2005

12

Oops!

CPU Power 1993-2005

13

CPU Power 1993-2005

14

But power
consumption is only

part of the
problem…cooling is

the other!

The Heat Problem

15

The Problem

16

1993
Pentium

Heat
Sink

2005
Cooler

Today: water cooled!

17

Cray-4: 1994

18

Up to 64 processors
Running at 1 GHz
8 Megabytes of RAM
Cost: roughly $10M

The CRAY 2,3, and 4 CPU and memory
boards were immersed in a bath of
electrically inert cooling fluid.

Power Dissipation

19

20

Darn!
Intel engineers no
longer optimize my
programs while
I watch TV!

Power to chip
peaking

Parallelism

21

Why is it particularly important (today)?

– Roughly every other year, a chip from Intel would:

• halve the feature size (size of transistors, wires, etc.)

• double the number of transistors

• double the clock speed

• this drove the economic engine of the IT industry (and the US!)

– No longer able to double clock or cut voltage: a processor won’t
get any faster!

• (so why should you buy a new laptop, desktop, etc.?)

• power and heat are limitations on the clock

• errors, variability (noise) are limitations on the voltage

• but we can still pack a lot of transistors on a chip… (at least for
another 10 to 15 years.)

Core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Core

Main memory

L1 cache L1 cache

ALU

ALU

ALU

ALU

22

Today… (actually 5 years ago!)

23

GPUs

• There's nothing like video
gaming to drive progress
in computation!

• GPUs can have hundreds
or even thousands of
cores

• Three of the 5 most
powerful supercomputers
in the world take
advantage of GPU
acceleration.

• Scientists use GPUs for
simulation and modelling

– eg: protein folding and
fluid dynamics

So…

25

Instead of trying to make your CPU go faster, Intel’s just going to
pack more CPUs onto a chip.

– last year: dual core (2 CPUs).

– this year: quad core (4 CPUs).

– Intel is testing 48-core chips with researchers now.

– Within 10 years, you’ll have ~1024 Intel CPUs on a chip.

In fact, that’s already happening with graphics chips (eg, Nvidia).

– really good at simple data parallelism (many deep pipes)

– but they are much dumber than an Intel core.

– and right now, chew up a lot of power.

– watch for GPUs to get “smarter” and more power efficient, while
CPUs become more like GPUs.

STILL MORE PROCESSORS:
THE DATA CENTER

Data Centers: Generation Z Super Computers

Data Centers: Lots of Connected Computers!

Data Centers

• 10s or 100s of thousands of computers

• All connected together

• Motivated by new applications and scalable web services:

– let's catalogue all N billion webpages in the world

– let's all allow any one in the world to search for the page he or
she needs

– let's process that search in less than a second

• It's Amazing!

• It's Magic!

Data Centers: Lots of Connected Computers

Computer containers for plug-and-play parallelism:

Sounds Great!

31

• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

Sounds Great!

32

• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

– no way!

Sounds Great!

33

• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

– no way!

– to upgrade from Intel 386 to 486, the app writer and compiler
writer did not have to do anything (much)

• IA 486 interpreted the same sequential stream of instructions; it
just did it faster

• this is why we could watch TV while Intel engineers optimized our
programs for us

– to upgrade from Intel 486 to dual core, we need to figure out
how to split a single stream of instructions in to two streams of
instructions that collaborate to complete the same task.

• without work & thought, our programs don't get any faster at all

• it takes ingenuity to generate efficient parallel algorithms from
sequential ones

END

