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Last Time 

Data type representations: 

Node 

0 

3 left right 

Leaf: Node(i, left, right): 

type tree = Leaf | Node of int * tree * tree 



This Time 

Understanding the space complexity of functional programs 

– At least two interesting components: 

• the amount of live space at any instant in time 

• the rate of allocation 

– a function call may not change the amount of live space by 
much but may allocate at a substantial rate 

– because functional programs act by generating new data 
structures and discarding old ones, they often allocate at a 
great rate 

» OCaml garbage collector is optimized with this in mind 

» interesting fact:  at the assembly level, the number of 
writes made by a function program is typically roughly the 
same as the number of writes by an imperative program 
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much but may allocate at a substantial rate 

– because functional programs act by generating new data 
structures and discarding old ones, they often allocate at a 
great rate 

» OCaml garbage collector is optimized with this in mind 

» interesting fact:  at the assembly level, the number of 
writes made by a function program is typically roughly the 
same as the number of writes by an imperative program 

– What takes up space? 

• conventional first-order data:  tuples, lists, strings, datatypes 

• function representations (closures) 

• the call stack 



CONVENTIONAL DATA 



Allocating space 

Whenever you use a constructor, space is allocated: 

let rec insert (t:tree) (i:int) = 

  match t with 

    Leaf -> Node (i, Leaf, Leaf) 

  | Node (j, left, right) ->  

      if i <= j then 

        Node (j, insert left i, right) 

      else 

        Node (j, left, insert right i) 
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proportional to the 
height of the tree. 
 
~ log n, if tree with n  
nodes is balanced 
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Compare 

let check_option (o:int option) : int option = 

  match o with 

    Some _ -> o 

  | None -> failwith “found none” 

;; 

       

let check_option (o:int option) : int option = 

  match o with 

    Some j -> Some j 

  | None -> failwith “found none” 

;; 

       



Compare 

let check_option (o:int option) : int option = 

  match o with 

    Some _ -> o 

  | None -> failwith “found none” 

;; 

       

let check_option (o:int option) : int option = 

  match o with 

    Some j -> Some j 

  | None -> failwith “found none” 

;; 

       

allocates nothing  
when arg is Some i 

allocates an option 
when arg is Some i 
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FUNCTION CLOSURES 



Closures 

Consider the following program: 

 

 

 

 

 

 

let choose (arg:bool * int * int) : int -> int = 

  let (b, x, y) = arg in 

  if b then 

    (fun n -> n + x) 

  else 

    (fun n -> n + y) 

;; 

 

choose (true, 1, 2);; 
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Substitution and Compiled Code 
let choose arg = 

  let (b, x, y) = arg in 

  if b then 

    (fun n -> n + x) 

  else 

    (fun n -> n + y) 

;; 

 

choose (true, 1, 2);; 

 



Substitution and Compiled Code 
choose: 

  mov rb r_arg[0] 

  mov rx r_arg[4] 

  mov ry r_arg[8] 

  compare rb 0 

  ... 

  jmp ret 

 

main:  

  ... 

  jmp choose 
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== 
generate new code block with 
parameters replaced by arguments 
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let choose arg = 

  let (b, x, y) = arg in 

  if b then 

    (fun n -> n + x) 

  else 

    (fun n -> n + y) 

;; 

 

choose (true, 1, 2);; 

 

compile 

execute with 
substitution 

execute with substitution  
== 
generate new code block with 
parameters replaced by arguments 

choose_subst: 

  mov rb 0xF8[0] 

  mov rx 0xF8[4] 

  mov ry 0xF8[8] 

  compare rb 0 

  ... 

  jmp ret 

0xF8: 0 

      1 

      2 
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let choose arg = 

  let (b, x, y) = arg in 

  if b then 
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;; 

 

choose (true, 1, 2);; 

 

compile 

execute with 
substitution 

execute with substitution  
== 
generate new code block with 
parameters replaced by arguments 

choose_subst: 

  mov rb 0xF8[0] 

  mov rx 0xFF44] 

  mov ry 0xFF84[8] 

  compare rb 0 

  ... 

  jmp ret 

if true then  

  (fun n -> n + 1) 

else  

  (fun n -> n + 2) 

       

execute with 
substitution 

0xF8: 0 

      1 

      2 choose_subst2: 

  compare 1 0 

  ... 

  jmp ret 



What we aren’t going to do 

The substitution model of evaluation is just a model.  It says that 
we generate new code at each step of a computation.  We don’t 
do that in reality.  Too expensive! 

 

The substitution model is a faithful model for reasoning about 
program correctness but it doesn’t help us understand what is 
going on at the machine-code level 

– that’s a good thing!  abstraction!! 

– you should almost never think about machine code when writing 
a program.  We invented high-level programming languages so 
you don’t have to. 

 

Still, we need to have a more faithful space model in order to 
understand how to write efficient algorithms. 



Some functions are easy to implement 

 

 

 

 

 

 

 

 

 

If no functions in ML were nested then compiling ML would be 
just like compiling C.  (Take COS 320 to find out how to do that...) 

let add (x:int*int) : int = 

  let (y,z) = x in 

  y + z 

;; 

 

 

 

# argument in r1 

# return address in r0 

 

add: 

  ld r2, r1[0]     # y in r2  

  ld r3, r1[4]     # z in r3 

  add r4, r2, r3   # sum in r4 

  jmp r0 

   

 

 



How do we implement functions? 

Let’s remove the nesting and compile them like we compile C. 

let choose arg = 

  let (b, x, y) = arg in 

  if b then 

    (fun n -> n + x) 

  else 

    (fun n -> n + y) 

;; 

 

let choose arg = 

  let (b, x, y) = arg in 

  if b then 

    f1 

  else 

    f2 

;; 

 

let f1 n = n + x;; 

let f2 n = n + y;; 

? 

? 

? 



How do we implement functions? 

Let’s remove the nesting and compile them like we compile C. 

let choose arg = 

  let (b, x, y) = arg in 

  if b then 

    (fun n -> n + x) 

  else 

    (fun n -> n + y) 

;; 

 

let choose arg = 

  let (b, x, y) = arg in 

  if b then 

    f1 

  else 

    f2 

;; 

 

let f1 n = n + x;; 

let f2 n = n + y;; 

? 

? 

? 

Darn!  Doesn’t work naively. Nested functions contain free variables.   
Simple unnesting leaves them undefined. 



How do we implement functions? 

We can’t define a function like the following using code alone: 

 

 

 

A closure is a pair of some code and an environment: 

let f2 n = n + y;; 

let f2 (n,env) =  

  n + env.y 

;; 

{y = 1} 

environment code 

closure 



Closure Conversion 

Closure conversion (also called lambda lifting) converts open, 

nested functions in to closed, top-level functions. 
let choose arg = 

  let (b, x, y) = arg in 

  if b then 

    (fun n -> n + x + y) 

  else 

    (fun n -> n + y) 

;; 

 



Closure Conversion 

Closure conversion (also called lambda lifting) converts open, 

nested functions in to closed, top-level functions. 
let choose arg = 

  let (b, x, y) = arg in 

  if b then 
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;; 
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  let (b, x, y) = arg in 

  if b then 

    (f1, {xe=x; ye=y}) 

  else 

    (f2, {ye=y}) 

;; 

 

let f1 (n,env) =   

  n + env.xe + env.ye 

;; 

let f2 (n,env) =  

  n + env.ye 

;; 

create 
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environment 
variables 
instead of  
free variables 

add environment 
parameter 
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(choose (true,1,2)) 3 

create 
closures 

use 
environment 
variables 
instead of  
free variables 

add environment 
parameter 

let c_closure        = (choose, ())               in (* create closure *) 

let (c_code, c_cenv) = c_closure                  in (* extract code, env *) 
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  f_code (3, f_env)                                  (* call f code *) 

;; 
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One Extra Note:  Typing 

Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the 
environments are different 

let choose (arg,env) = 

  let (b, x, y) = arg in 

  if b then 

    (f1, F1 {xe=x; ye=y}) 

  else 

    (f2, F2 {ye=y}) 

;; 

 

let f1 (n,env) =   

  n + env.xe + env.ye 

;; 

let f2 (n,env) =  

  n + env.ye 

;; 

type f1_env = {x1:int; y1:int}  type f1_clos = (int * f1_env -> int) * f1_env 

 

type f2_env = {y2:int}  type f2_clos = (int * f2_env -> int) * f2_env 



One Extra Note:  Typing 

Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the 
environments are different 

let choose (arg,env) = 

  let (b, x, y) = arg in 

  if b then 

    (f1, F1 {x1=x; y2=y}) 

  else 

    (f2, F2 {y2=y}) 

;; 

 

let f1 (n,env) =  

  match env with  

    F1 e -> n + e.x1 + e.y2 

  | F2 _ -> failwith "bad env!" 

;; 

let f2 (n,env) = 

  match env with  

    F1 _ -> failwith "bad env!" 

  | F2 e -> n + e.y2 

;; 

type f1_env = {x1:int; y1:int}  type f1_clos = (int * f1_env -> int) * f1_env 

 

type f2_env = {y2:int}  type f2_clos = (int * f2_env -> int) * f2_env 

type env = F1 of f1_env | F2 of f2_env 

type f1_clos = (int * env -> int) * env 

type f2_clos = (int * env -> int) * env 
fix I: 



One Extra Note:  Typing 

Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the 
environments are different 

let choose (arg,env) = 

  let (b, x, y) = arg in 

  if b then 

    (f1, {xe=x; ye=y}) 

  else 

    (f2, {ye=y}) 

;; 

 

let f1 (n,env) =   

  n + env.xe + env.ye 

;; 

let f2 (n,env) =  

  n + env.ye 

;; 

type f1_env = {xe:int; ye:int}  type f1_clos = (int * f1_env -> int) * f1_env 

 

type f2_env = {xe:int}  type f2_clos = (int * f2_env -> int) * f2_env 

type f1_env = {xe:int; ye:int}      

type f2_env = {xe:int} 

type f1_clos = exists env.(int * env -> int) * env 

type f2_clos = exists env.(int * env -> int) * env 

fix II: 



One Extra Note:  Typing 

Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the 
environments are different 

let choose (arg,env) = 

  let (b, x, y) = arg in 

  if b then 

    (f1, {xe=x; ye=y}) 

  else 

    (f2, {ye=y}) 

;; 

 

let f1 (n,env) =   

  n + env.xe + env.ye 

;; 

let f2 (n,env) =  

  n + env.ye 

;; 

type f1_env = {xe:int; ye:int}  type f1_clos = (int * f1_env -> int) * f1_env 

 

type f2_env = {xe:int}  type f2_clos = (int * f2_env -> int) * f2_env 

type f1_env = {xe:int; ye:int}      

type f2_env = {xe:int} 

type f1_clos = exists env.(int * env -> int) * env 

type f2_clos = exists env.(int * env -> int) * env 

fix II: 

“From System F to Typed Assembly Language,” 
 -- Morrisett, Walker et al. 



Aside:  Existential Types 

map has a universal polymorphic type: 

 

  

 

when we closure-convert a function that has type int -> int, we get a function 
with existential polymorphic type: 

 

        exists 'a. ((int * 'a) -> int) * 'a 

 

In OCaml, we can approximate existential types using datatypes (a data type 
allows you to say "there exists a type 'a drawn from one of the following finite 
number of options."  In Haskell, you've got the real thing.   

map : ('a -> 'b) -> 'a list -> 'b list "for all types 'a and for all types 'b, …"  

"there exists some type 'a such that, …"  



Closure Conversion: Summary 

All function definitions equipped with extra env parameter: 

 

 

All free variables obtained from environment: 

 

 

All functions values paired with environment:  

 

 

All function calls extract code and environment and call code: 

let f_code (arg, env) = ... 

x 

let f arg = ... 

env.cx 

f (f_code, {ve1=v1; ...; ven=vn})  

f e let (f_code, f_env) = f in 

f_code (e, f_env) 

(after) (before) 



The Space Cost of Closures 

The space cost of a closure 

= the cost of the pair of code and environment pointers 

+ the cost of the data referred to by function free variables 



TAIL CALLS AND CONTINUATIONS 



Some Innocuous Code 

 

 

 

 

 

 

 

 

 

Let’s try it.  

 

(Go to tail.ml) 

(* sum of 0..n *) 

 

let rec sum_to (n:int) : int = 

  if n > 0 then 

    n + sum_to (n-1) 

  else 0 

;; 

 

let big_int = 1000000;; 

 

sum big_int;; 



Some Other Code 

Four functions:  Green works on big inputs; Red doesn’t. 

 

 

 

 

 

 

 

 

 

 

let rec sum_to (n:int) : int = 

  if n > 0 then 

    n + sum_to (n-1) 

  else 0 

;; 

 

 

let sum_to2 (n: int) : int = 

  let rec aux (n:int) (a:int) : int = 

    if n > 0 then 

      aux (n-1) (a+n) 

    else a 

  in 

  aux n 0 

;; 

 

let sum (l:int list) : int = 

  let rec aux (l:int list) (a:int) : int = 

    match l with  

 [] -> a 

      | hd::tail -> aux tail (a+hd) 

  in 

  aux l 0  

;; 

 

 

 

let rec sum2 (l:int list) : int = 

  match l with  

      [] -> 0 

    | hd::tail -> hd + sum2 tail 

;; 

 

 



Some Other Code 

Four functions:  Green works on big inputs; Red doesn’t. 

 

 

 

 

 

 

 

 

 

 

let rec sum_to (n:int) : int = 

  if n > 0 then 

    n + sum_to (n-1) 

  else 0 

;; 

 

 

let sum_to2 (n: int) : int = 

  let rec aux (n:int) (a:int) : int = 

    if n > 0 then 

      aux (n-1) (a+n) 

    else a 

  in 

  aux n 0 

;; 

 

let sum (l:int list) : int = 

  let rec aux (l:int list) (a:int) : int = 

    match l with  

 [] -> a 

      | hd::tail -> aux tail (a+hd) 

  in 

  aux l 0  

;; 

 

 

 

let rec sum2 (l:int list) : int = 

  match l with  

      [] -> 0 

    | hd::tail -> hd + sum2 tail 

;; 

 

 

code that works: 
no computation after 
recursive function call 



Tail Recursion 

A tail-recursive function is a function that does no work after it 
calls itself recursively. 

 

(* sum of 0..n *) 

 

let sum_to2 (n: int) : int = 

  let rec aux (n:int)(a:int)  

               : int = 

    if n > 0 then 

      aux (n-1) (a+n) 

    else a 

  in 

  aux n 0 

;; 



Tail Recursion 

A tail-recursive function is a function that does no work after it 
calls itself recursively. 

 

Tail-recursive: 
(* sum of 0..n *) 

 

let sum_to2 (n: int) : int = 

  let rec aux (n:int)(a:int)  

               : int = 

    if n > 0 then 

      aux (n-1) (a+n) 

    else a 

  in 

  aux n 0 

;; 

    sum_to2 1000000 

--> 

    aux 1000000 0 

--> 

    aux 99999 1000000 

-->  

    aux 99998 1999999 

--> 

    ... 

-->  

    aux 0 (-363189984) 

--> 

    -363189984 

(addition overflow occurred 
at some point) 

constant size expression 



Tail Recursion 

A tail-recursive function is a function that does no work after it 
calls itself recursively. 

 

Not tail-recursive: 
(* sum of 0..n *) 

 

let rec sum_to (n:int) : int = 

  if n > 0 then 

    n + sum_to (n-1) 

  else 0 

;; 

 

let big_int = 1000000;; 

 

sum big_int;; 

    sum_to 1000000 

--> 

    1000000 + sum_to 99999 

--> 

    1000000 + 99999 + sum_to 99998 

-->  

    ... 

--> 

    1000000 + 99999 + 99998 + ... + sum_to 0 

-->  

    1000000 + 99999 + 99998 + ... + 0 

--> 

    ... add it all back up ... 

expression grows 
at every recursive call 



Memory is partitioned: Stack and Heap 

heap space (big!) 

stack space 
(small!) 



Data Needed on Return Saved on Stack 

    sum_to 1000000 

-->  

    ... 

--> 

    1000000 + 99999 + 99998 + 99997 + ... + 

-->  

    ... 

--> 

    ... 

1000000 
999999 
999998 
999997 
999996 
999995 
 

every non-tail call puts 
the data from 
the calling context 
on the stack 

not much space left! 
will run out soon! 

the stack 



Question   

Can any non-tail-recursive function be transformed in to a tail-
recursive one? 

 

let sum_to2 (n: int) : int = 

  let rec aux (n:int)(a:int) : int = 

    if n > 0 then 

      aux (n-1) (a+n) 

    else a 

  in 

  aux n 0 

;; 

 

 

 

let rec sum_to (n: int) : int = 

  if n > 0 then  

    n + sum_to (n-1) 

  else 

    0 

;; 

 

 

human 
ingenuity 

not only is sum2 
tail-recursive 
but it reimplements 
an algorithm that 
took linear space 
(on the stack) 
using an algorithm 
that executes in 
constant space! 



Question   

Can any non-tail-recursive function be transformed in to a tail-
recursive one? Yes, if we can capture the differential between a 
tail-recursive function and a non-tail-recursive one. 

 

 

 

 

Idea:  Focus on what happens after the recursive call.   

 

let rec sum (l:int list) : int = 

  match l with 

    [] -> 0 

  | hd::tail -> hd + sum tail 

;; 

 

 



Question   

Can any non-tail-recursive function be transformed in to a tail-
recursive one? Yes, if we can capture the differential between a 
tail-recursive function and a non-tail-recursive one. 

 

 

 

 

Idea:  Focus on what happens after the recursive call.   

Extracting that piece: 

 

 

 

How do we capture it? 

 

let rec sum (l:int list) : int = 

  match l with 

    [] -> 0 

  | hd::tail -> hd + sum tail 

;; 

 

 

  

hd +  

 

 

 

what happens 
next 



Question   

How do we capture that computation? 

   

hd +  

 

 

 

  

fun s -> hd + s 

 

 

 



Question   

How do we capture that computation? 

 

let rec sum (l:int list) : int = 

  match l with 

    [] -> 0 

  | hd::tail -> hd + sum tail 

;; 

 

 

  

hd +  

 

 

 

  

fun s -> hd + s 

 

 

 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> ???) ;; 

 

 

 



Question   

How do we capture that computation? 

 

let rec sum (l:int list) : int = 

  match l with 

    [] -> 0 

  | hd::tail -> hd + sum tail 

;; 

 

 

  

hd +  

 

 

 

  

fun s -> hd + s 

 

 

 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

 

 



Question   

How do we capture that computation? 

 

let rec sum (l:int list) : int = 

  match l with 

    [] -> 0 

  | hd::tail -> hd + sum tail 

;; 

 

 

  

hd +  

 

 

 

  

fun s -> hd + s 

 

 

 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

let sum (l:int list) : int = ?? 

 



Question   

How do we capture that computation? 

 

let rec sum (l:int list) : int = 

  match l with 

    [] -> 0 

  | hd::tail -> hd + sum tail 

;; 

 

 

  

hd +  

 

 

 

  

fun s -> hd + s 

 

 

 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

let sum (l:int list) : int = sum_cont l (fun s -> s) 

 

 



Execution 

    sum [1;2] 

 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

let sum (l:int list) : int = sum_cont l (fun s -> s) 

 

 



Execution 

    sum [1;2] 

--> 

    sum_cont [1;2] (fun s -> s) 

 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

let sum (l:int list) : int = sum_cont l (fun s -> s) 

 

 



Execution 

    sum [1;2] 

--> 

    sum_cont [1;2] (fun s -> s) 

--> 

    sum_cont [2] (fun s -> (fun s -> s) (1 + s));; 

 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

let sum (l:int list) : int = sum_cont l (fun s -> s) 

 

 



Execution 

    sum [1;2] 

--> 

    sum_cont [1;2] (fun s -> s) 

--> 

    sum_cont [2] (fun s -> (fun s -> s) (1 + s));; 

--> 

    sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 

 

 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

let sum (l:int list) : int = sum_cont l (fun s -> s) 

 

 



Execution 

    sum [1;2] 

--> 

    sum_cont [1;2] (fun s -> s) 

--> 

    sum_cont [2] (fun s -> (fun s -> s) (1 + s));; 

--> 

    sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 

--> 

    (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0 

 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

let sum (l:int list) : int = sum_cont l (fun s -> s) 

 

 



Execution 

    sum [1;2] 

--> 

    sum_cont [1;2] (fun s -> s) 

--> 

    sum_cont [2] (fun s -> (fun s -> s) (1 + s));; 

--> 

    sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 

--> 

    (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0 

--> 

    (fun s -> (fun s -> s) (1 + s)) (2 + 0)) 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

let sum (l:int list) : int = sum_cont l (fun s -> s) 

 

 



Execution 

    sum [1;2] 

--> 

    sum_cont [1;2] (fun s -> s) 

--> 

    sum_cont [2] (fun s -> (fun s -> s) (1 + s));; 

--> 

    sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 

--> 

    (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0 

--> 

    (fun s -> (fun s -> s) (1 + s)) (2 + 0)) 

--> 

    (fun s -> s) (1 + (2 + 0)) 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

let sum (l:int list) : int = sum_cont l (fun s -> s) 

 

 



Execution 

    sum [1;2] 

--> 

    sum_cont [1;2] (fun s -> s) 

--> 

    sum_cont [2] (fun s -> (fun s -> s) (1 + s));; 

--> 

    sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 

--> 

    (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0 

--> 

    (fun s -> (fun s -> s) (1 + s)) (2 + 0)) 

--> 

    (fun s -> s) (1 + (2 + 0)) 

--> 

    1 + (2 + 0) 

-->  

    3 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

let sum (l:int list) : int = sum_cont l (fun s -> s) 

 

 



Question 

    sum [1;2] 

--> 

    sum_cont [1;2] (fun s -> s) 

--> 

    sum_cont [2] (fun s -> (fun s -> s) (1 + s));; 

--> 

    sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 

--> 

    ... 

-->  

    3 

 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

let sum (l:int list) : int = sum_cont l (fun s -> s) 

 

 

Where did the stack space go? 



CPS 

CPS: 

– short for Continuation-Passing Style 

– Every function takes a continuation as an argument that 
expresses "what to do next" 

– CPS functions only call other functions as the last thing they do 



CORRECTNESS OF A CPS 
TRANSFORM 



Are the two functions the same? 

Here, it is really pretty tricky to be sure you've done it right if you 
don't prove it.  Let's try to prove this theorem and see what 
happens: 

 

let rec sum (l:int list) : int = 

  match l with 

    [] -> 0 

  | hd::tail -> hd + sum tail 

;; 

 

 

type cont = int -> int;; 

 

let rec sum_cont (l:int list) (k:cont): int = 

  match l with 

    [] -> k 0 

  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;; 

 

let sum2 (l:int list) : int = sum_cont l (fun s -> s) 

 

 

for all l:int list,  

  sum_cont l (fun x => x) == sum l 



Attempting a Proof 

for all l:int list, sum_cont l (fun s -> s) == sum l 

 

Proof: By induction on the structure of the list l. 

 

case l = [] 

  ... 

 

case: hd::tail 

  IH: sum_cont tail (fun s -> s) == sum tail 

 



Attempting a Proof 

for all l:int list, sum_cont l (fun s -> s) == sum l 

 

Proof: By induction on the structure of the list l. 

 

case l = [] 

  ... 

 

case: hd::tail 

  IH: sum_cont tail (fun s -> s) == sum tail 

 

   sum_cont (hd::tail) (fun s -> s)                 

== 



Attempting a Proof 

for all l:int list, sum_cont l (fun s -> s) == sum l 

 

Proof: By induction on the structure of the list l. 

 

case l = [] 

  ... 

 

case: hd::tail 

  IH: sum_cont tail (fun s -> s) == sum tail 

 

   sum_cont (hd::tail) (fun s -> s)                 

== sum_cont tail (fn s' -> (fn s -> s) (hd + s'))  (eval) 

 



Attempting a Proof 

for all l:int list, sum_cont l (fun s -> s) == sum l 

 

Proof: By induction on the structure of the list l. 

 

case l = [] 

  ... 

 

case: hd::tail 

  IH: sum_cont tail (fun s -> s) == sum tail 

 

   sum_cont (hd::tail) (fun s -> s)                 

== sum_cont tail (fn s' -> (fn s -> s) (hd + s'))  (eval) 

== sum_cont tail (fn s' -> hd + s')                (eval -- hd + s' valuable) 

 



Need to Generalize the Theorem and IH 

for all l:int list, sum_cont l (fun s -> s) == sum l 

 

Proof: By induction on the structure of the list l. 

 

case l = [] 

  ... 

 

case: hd::tail 

  IH: sum_cont tail (fun s -> s) == sum tail 

 

   sum_cont (hd::tail) (fun s -> s)                 

== sum_cont tail (fn s' -> (fn s -> s) (hd + s'))  (eval) 

== sum_cont tail (fn s' -> hd + s')                (eval -- hd + s' valuable) 

 

== darn! 

we'd like to use the IH, but we can't! 
we might like: 
 
sum_cont tail (fn s' -> hd + s') == sum tail 
 
... but that's not even true 

not the identity continuation 
(fun s -> s) like the IH requires 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

Proof: By induction on the structure of the list l. 

 

case l = [] 

 

  must prove:  for all k:int->int, sum_cont [] k == k (sum []) 

 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

Proof: By induction on the structure of the list l. 

 

case l = [] 

 

  must prove:  for all k:int->int, sum_cont [] k == k (sum []) 

 

  pick an arbitrary k: 

 

 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

Proof: By induction on the structure of the list l. 

 

case l = [] 

 

  must prove:  for all k:int->int, sum_cont [] k == k (sum []) 

 

  pick an arbitrary k: 

 

     sum_cont [] k  

 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

Proof: By induction on the structure of the list l. 

 

case l = [] 

 

  must prove:  for all k:int->int, sum_cont [] k == k (sum []) 

 

  pick an arbitrary k: 

 

     sum_cont [] k  

  == match [] with [] -> k 0 | hd::tail -> ...     (eval) 

  == k 0      (eval) 

 

 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

Proof: By induction on the structure of the list l. 

 

case l = [] 

 

  must prove:  for all k:int->int, sum_cont [] k == k (sum []) 

 

  pick an arbitrary k: 

 

     sum_cont [] k  

  == match [] with [] -> k 0 | hd::tail -> ... (eval) 

  == k 0      (eval) 

 

 

 

  == k (sum []) 

 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

Proof: By induction on the structure of the list l. 

 

case l = [] 

 

  must prove:  for all k:int->int, sum_cont [] k == k (sum []) 

 

  pick an arbitrary k: 

 

     sum_cont [] k      

  == match [] with [] -> k 0 | hd::tail -> ... (eval) 

  == k 0      (eval) 

 

  == k (0)     (eval, reverse) 

  == k (match [] with [] -> 0 | hd::tail -> ...) (eval, reverse) 

  == k (sum [])      

 

case done! 

 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

Proof: By induction on the structure of the list l. 

 

case l = [] ===> done! 

 

case l = hd::tail 

 

  IH:   for all k':int->int, sum_cont tail k' == k' (sum tail) 

 

  Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail)) 

 

 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

Proof: By induction on the structure of the list l. 

 

case l = [] ===> done! 

 

case l = hd::tail 

 

  IH:   for all k':int->int, sum_cont tail k' == k' (sum tail) 

 

  Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail)) 

 

  Pick an arbitrary k, 

 

     sum_cont (hd::tail) k 

 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

Proof: By induction on the structure of the list l. 

 

case l = [] ===> done! 

 

case l = hd::tail 

 

  IH:   for all k':int->int, sum_cont tail k' == k' (sum tail) 

 

  Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail)) 

 

  Pick an arbitrary k, 

 

     sum_cont (hd::tail) k 

  == sum_cont tail (fun s -> k (hd + x))     (eval) 

 

 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

Proof: By induction on the structure of the list l. 

 

case l = [] ===> done! 

 

case l = hd::tail 

 

  IH:   for all k':int->int, sum_cont tail k' == k' (sum tail) 

 

  Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail)) 

 

  Pick an arbitrary k, 

 

     sum_cont (hd::tail) k 

  == sum_cont tail (fun s -> k (hd + x))     (eval) 

 

  == (fun s -> k (hd + s)) (sum tail)        (IH with IH quantifier k' 

                                              replaced with (fun x -> k (hd+x)) 

 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

Proof: By induction on the structure of the list l. 

 

case l = [] ===> done! 

 

case l = hd::tail 

 

  IH:   for all k':int->int, sum_cont tail k' == k' (sum tail) 

 

  Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail)) 

 

  Pick an arbitrary k, 

 

     sum_cont (hd::tail) k 

  == sum_cont tail (fun s -> k (hd + x))     (eval) 

 

  == (fun s -> k (hd + s)) (sum tail)        (IH with IH quantifier k' 

                                              replaced with (fun x -> k (hd+x)) 

  == k (hd + (sum tail))                     (eval, since sum total and 

                                                    and sum tail valuable) 

 



Need to Generalize the Theorem and IH 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

 

Proof: By induction on the structure of the list l. 

 

case l = [] ===> done! 

 

case l = hd::tail 

 

  IH:   for all k':int->int, sum_cont tail k' == k' (sum tail) 

 

  Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail)) 

 

  Pick an arbitrary k, 

 

     sum_cont (hd::tail) k 

  == sum_cont tail (fun s -> k (hd + x))     (eval) 

 

  == (fun s -> k (hd + s)) (sum tail)        (IH with IH quantifier k' 

                                              replaced with (fun x -> k (hd+x)) 

  == k (hd + (sum tail))                     (eval, since sum total and 

                                                    and sum tail valuable) 

  == k (sum (hd:tail))                       (eval sum, reverse) 

 

case done! 

QED!  

 



Finishing Up 

Ok, now what we have is a proof of this theorem: 

 

 

 

We can use that general theorem to get what we really want: 

 

 

 

 

So, we've show that the function sum2, which is tail-recursive, is 
functionally equivalent to  the non-tail-recursive function sum.  

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 

for all l:int list,  

   sum2 l  

== sum_cont l (fun s -> s)     (by eval sum2) 

== (fun s -> s) (sum l)        (by theorem, instantiating k with (fun s -> s) 

== sum l  



SUMMARY 



Summary of the CPS Proof 
We tried to prove the specific theorem we wanted: 

 

 

But it didn't work because in the middle of the proof, the IH didn't 
apply -- inside our function we had the wrong kind of continuation 
-- not (fun s -> s) like our IH required.  So we had to prove a more 
general theorem about all continuations. 

 

 

 

This is a common occurrence -- generalizing the induction 
hypothesis -- and it requires human ingenuity.  It's why proving 
theorems is hard.  It's also why writing programs is hard -- you have 
to make the proofs and programs work more generally, around 
every iteration of a loop. 

for all l:int list, sum_cont l (fun s -> s) == sum l 

for all l:int list,  

  for all k:int->int, sum_cont l k == k (sum l) 



Overall Summary 
We developed techniques for reasoning about the space costs of 
functional programs 

– the cost of manipulating data types like tuples and trees 

– the cost of allocating and using function closures 

– the cost of tail-recursive and non-tail-recursive functions 

 

We also talked about some important program transformations: 

– closure conversion makes nested functions with free variables in to 
pairs of closed code and environment 

– the continuation-passing style (CPS) transformation turns non-tail-
recursive functions in to tail-recursive ones that use no stack space 

• the stack gets moved in to the function closure 

– since stack space is often small compared with heap space, it is 
often necessary to use continuations and tail recursion 

• but full CPS-converted programs are unreadable: use judgement 



Challenge:  CPS Convert the incr function 

type tree = Leaf | Node of int * tree * tree ;; 

 

let rec incr (t:tree) (i:int) : tree = 

  match t with 

    Leaf -> Leaf 

  | Node (j,left,right) -> Node (i+j, incr left i, incr right i) 

;;  

(see solution after the next slide) 



END 



CPS Convert the incr function 

type tree = Leaf | Node of int * tree * tree ;; 

 

let rec incr (t:tree) (i:int) : tree = 

  match t with 

    Leaf -> Leaf 

  | Node (j,left,right) -> Node (i+j, incr left i, incr right i) 

;;  

type cont = tree -> tree ;; 

 

let rec incr_cps (t:tree) (i:int) (k:cont) : tree = 

  match t with 

    Leaf -> k Leaf 

  | Node (j,left,right) -> ... 

;;  



type tree = Leaf | Node of int * tree * tree ;; 

 

let rec incr (t:tree) (i:int) : tree = 

  match t with 

    Leaf -> Leaf 

  | Node (j,left,right) -> Node (i+j, incr left i, incr right i) 

;;  

Node (i+j, ___________ , incr right i) 

Node (i+j, left_done, ______________ ) 

first continuation: 

second continuation: 



type tree = Leaf | Node of int * tree * tree ;; 

 

let rec incr (t:tree) (i:int) : tree = 

  match t with 

    Leaf -> Leaf 

  | Node (j,left,right) -> Node (i+j, incr i left, incr i right) 

;;  

fun left_done -> Node (i+j, left_done , incr right i) 

fun right_done -> k (Node (i+j, left_done, right_done)) 

first continuation: 

second continuation: 



type tree = Leaf | Node of int * tree * tree ;; 

 

let rec incr (t:tree) (i:int) : tree = 

  match t with 

    Leaf -> Leaf 

  | Node (j,left,right) -> Node (i+j, incr left i, incr right i) 

;;  

fun left_done ->  

  let k2 =  

    (fun right_done ->  

       k (Node (i+j, left_done, right_done)) 

     ) 

  in 

  incr right i k2 

second continuation 
inside 

first continuation: 



type tree = Leaf | Node of int * tree * tree ;; 

 

let rec incr (t:tree) (i:int) : tree = 

  match t with 

    Leaf -> Leaf 

  | Node (j,left,right) -> Node (i+j, incr left i, incr right i) 

;;  

type cont = tree -> tree ;; 

 

let rec incr_cps (t:tree) (i:int) (k:cont) : tree = 

  match t with 

    Leaf -> k Leaf 

  | Node (j,left,right) -> 

      let k1 = (fun left_done ->  

                  let k2 = (fun right_done ->  

                              k (Node (i+j, left_done, right_done)))  

                  in 

                  incr_cps right i k2 

                ) 

      in 

      incr_cps left i k1 

;;  

 

 

let incr_tail (t:tree) (i:int) : tree = incr_cps t i (fun t -> t);; 


