
A Functional Space Model

COS 326

David Walker

Princeton University

Last Time

Data type representations:

Node

0

3 left right

Leaf: Node(i, left, right):

type tree = Leaf | Node of int * tree * tree

This Time

Understanding the space complexity of functional programs

– At least two interesting components:

• the amount of live space at any instant in time

• the rate of allocation

– a function call may not change the amount of live space by
much but may allocate at a substantial rate

– because functional programs act by generating new data
structures and discarding old ones, they often allocate at a
great rate

» OCaml garbage collector is optimized with this in mind

» interesting fact: at the assembly level, the number of
writes made by a function program is typically roughly the
same as the number of writes by an imperative program

This Time

Understanding the space complexity of functional programs

– At least two interesting components:

• the amount of live space at any instant in time

• the rate of allocation

– a function call may not change the amount of live space by
much but may allocate at a substantial rate

– because functional programs act by generating new data
structures and discarding old ones, they often allocate at a
great rate

» OCaml garbage collector is optimized with this in mind

» interesting fact: at the assembly level, the number of
writes made by a function program is typically roughly the
same as the number of writes by an imperative program

– What takes up space?

• conventional first-order data: tuples, lists, strings, datatypes

• function representations (closures)

• the call stack

CONVENTIONAL DATA

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =

 match t with

 Leaf -> Node (i, Leaf, Leaf)

 | Node (j, left, right) ->

 if i <= j then

 Node (j, insert left i, right)

 else

 Node (j, left, insert right i)

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =

 match t with

 Leaf -> Node (i, Leaf, Leaf)

 | Node (j, left, right) ->

 if i <= j then

 Node (j, insert left i, right)

 else

 Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =

 match t with

 Leaf -> Node (i, Leaf, Leaf)

 | Node (j, left, right) ->

 if i <= j then

 Node (j, insert left i, right)

 else

 Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =

 match t with

 Leaf -> Node (i, Leaf, Leaf)

 | Node (j, left, right) ->

 if i <= j then

 Node (j, insert left i, right)

 else

 Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =

 match t with

 Leaf -> Node (i, Leaf, Leaf)

 | Node (j, left, right) ->

 if i <= j then

 Node (j, insert left i, right)

 else

 Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =

 match t with

 Leaf -> Node (i, Leaf, Leaf)

 | Node (j, left, right) ->

 if i <= j then

 Node (j, insert left i, right)

 else

 Node (j, left, insert right i)

3

9

15

21

Consider:

insert t 21

t

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =

 match t with

 Leaf -> Node (i, Leaf, Leaf)

 | Node (j, left, right) ->

 if i <= j then

 Node (j, insert left i, right)

 else

 Node (j, left, insert right i)

3

9

15

15

21

Consider:

insert t 21

t

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =

 match t with

 Leaf -> Node (i, Leaf, Leaf)

 | Node (j, left, right) ->

 if i <= j then

 Node (j, insert left i, right)

 else

 Node (j, left, insert right i)

3

9

15

9

15

21

Consider:

insert t 21

t

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =

 match t with

 Leaf -> Node (i, Leaf, Leaf)

 | Node (j, left, right) ->

 if i <= j then

 Node (j, insert left i, right)

 else

 Node (j, left, insert right i)

3

9

15

3

9

15

21

Consider:

insert t 21

t

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =

 match t with

 Leaf -> Node (i, Leaf, Leaf)

 | Node (j, left, right) ->

 if i <= j then

 Node (j, insert left i, right)

 else

 Node (j, left, insert right i)

3

9

15

3

9

15

21

Total space allocated is
proportional to the
height of the tree.

~ log n, if tree with n
nodes is balanced

t

Compare

let check_option (o:int option) : int option =

 match o with

 Some _ -> o

 | None -> failwith “found none”

;;

let check_option (o:int option) : int option =

 match o with

 Some j -> Some j

 | None -> failwith “found none”

;;

Compare

let check_option (o:int option) : int option =

 match o with

 Some _ -> o

 | None -> failwith “found none”

;;

let check_option (o:int option) : int option =

 match o with

 Some j -> Some j

 | None -> failwith “found none”

;;

allocates nothing
when arg is Some i

allocates an option
when arg is Some i

Compare

let double (c1:int*int) : int*int =

 let c2 = c1 in

 cadd c1 c2

;;

let cadd (c1:int*int) (c2:int*int) : int*int =

 let (x1,y1) = c1 in

 let (x2,y2) = c2 in

 (x1+x2, y1+y2)

;;

let double (c1:int*int) : int*int =

 cadd c1 c1

;;

let double (c1:int*int) : int*int =

 let (x1,y1) = c1 in

 cadd (x1,y1) (x1,y1)

;;

Compare

let double (c1:int*int) : int*int =

 let c2 = c1 in

 cadd c1 c2

;;

let cadd (c1:int*int) (c2:int*int) : int*int =

 let (x1,y1) = c1 in

 let (x2,y2) = c2 in

 (x1+x2, y1+y2)

;;

let double (c1:int*int) : int*int =

 cadd c1 c1

;;

let double (c1:int*int) : int*int =

 let (x1,y1) = c1 in

 cadd (x1,y1) (x1,y1)

;;

1 2

c1 c2

Compare

let double (c1:int*int) : int*int =

 let c2 = c1 in

 cadd c1 c2

;;

let cadd (c1:int*int) (c2:int*int) : int*int =

 let (x1,y1) = c1 in

 let (x2,y2) = c2 in

 (x1+x2, y1+y2)

;;

let double (c1:int*int) : int*int =

 cadd c1 c1

;;

let double (c1:int*int) : int*int =

 let (x1,y1) = c1 in

 cadd (x1,y1) (x1,y1)

;;

1 2

c1

Compare

let double (c1:int*int) : int*int =

 let c2 = c1 in

 cadd c1 c2

;;

let cadd (c1:int*int) (c2:int*int) : int*int =

 let (x1,y1) = c1 in

 let (x2,y2) = c2 in

 (x1+x2, y1+y2)

;;

let double (c1:int*int) : int*int =

 cadd c1 c1

;;

let double (c1:int*int) : int*int =

 let (x1,y1) = c1 in

 cadd (x1,y1) (x1,y1)

;;

1 2

c1

1 2

arg1

1 2

arg2

Compare

let double (c1:int*int) : int*int =

 let c2 = c1 in

 cadd c1 c2

;;

cadd allocates
double does not

let cadd (c1:int*int) (c2:int*int) : int*int =

 let (x1,y1) = c1 in

 let (x2,y2) = c2 in

 (x1+x2, y1+y2)

;;

let double (c1:int*int) : int*int =

 cadd c1 c1

;;

let double (c1:int*int) : int*int =

 let (x1,y1) = c1 in

 cadd (x1,y1) (x1,y1)

;;

cadd allocates
double does not

cadd allocates
double allocates 2 pairs

Compare

let double (c1:int*int) : int*int =

 let (x1,y1) = c1 in

 cadd c1 c1

;;

cadd allocates
double does not

let cadd (c1:int*int) (c2:int*int) : int*int =

 let (x1,y1) = c1 in

 let (x2,y2) = c2 in

 (x1+x2, y1+y2)

;;

extracts components; does not allocate

FUNCTION CLOSURES

Closures

Consider the following program:

let choose (arg:bool * int * int) : int -> int =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

choose (true, 1, 2);;

Closures

Consider the following program:

It’s execution behavior according to the substitution model:

let choose (arg:bool * int * int) : int -> int =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

choose (true, 1, 2);;

 choose (true, 1, 2)

Closures

Consider the following program:

It’s execution behavior according to the substitution model:

let choose (arg:bool * int * int) : int -> int =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

choose (true, 1, 2);;

 choose (true, 1, 2)

-->

 let (b, x, y) = (true, 1, 2) in

 if b then (fun n -> n + x)

 else (fun n -> n + y)

Closures

Consider the following program:

It’s execution behavior according to the substitution model:

let choose (arg:bool * int * int) : int -> int =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

choose (true, 1, 2);;

 choose (true, 1, 2)

-->

 let (b, x, y) = (true, 1, 2) in

 if b then (fun n -> n + x)

 else (fun n -> n + y)

-->

 if true then (fun n -> n + 1)

 else (fun n -> n + 2)

Closures

Consider the following program:

It’s execution behavior according to the substitution model:

let choose (arg:bool * int * int) : int -> int =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

choose (true, 1, 2);;

 choose (true, 1, 2)

-->

 let (b, x, y) = (true, 1, 2) in

 if b then (fun n -> n + x)

 else (fun n -> n + y)

-->

 if true then (fun n -> n + 1)

 else (fun n -> n + 2)

-->

 (fun n -> n + 1)

Substitution and Compiled Code
let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

choose (true, 1, 2);;

Substitution and Compiled Code
choose:

 mov rb r_arg[0]

 mov rx r_arg[4]

 mov ry r_arg[8]

 compare rb 0

 ...

 jmp ret

main:

 ...

 jmp choose

let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

choose (true, 1, 2);;

compile

Substitution and Compiled Code

let (b, x, y) = (true, 1, 2) in

if b then

 (fun n -> n + x)

else

 (fun n -> n + y)

choose:

 mov rb r_arg[0]

 mov rx r_arg[4]

 mov ry r_arg[8]

 compare rb 0

 ...

 jmp ret

main:

 ...

 jmp choose

let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

choose (true, 1, 2);;

compile

execute with
substitution

Substitution and Compiled Code

let (b, x, y) = (true, 1, 2) in

if b then

 (fun n -> n + x)

else

 (fun n -> n + y)

choose:

 mov rb r_arg[0]

 mov rx r_arg[4]

 mov ry r_arg[8]

 compare rb 0

 ...

 jmp ret

main:

 ...

 jmp choose

let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

choose (true, 1, 2);;

compile

execute with
substitution

execute with substitution
==
generate new code block with
parameters replaced by arguments

choose:

 mov rb r_arg[0]

 mov rx r_arg[4]

 mov ry r_arg[8]

 ...

 jmp ret

main:

 ...

 jmp choose

Substitution and Compiled Code

let (b, x, y) = (true, 1, 2) in

if b then

 (fun n -> n + x)

else

 (fun n -> n + y)

choose:

 mov rb r_arg[0]

 mov rx r_arg[4]

 mov ry r_arg[8]

 compare rb 0

 ...

 jmp ret

main:

 ...

 jmp choose

let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

choose (true, 1, 2);;

compile

execute with
substitution

execute with substitution
==
generate new code block with
parameters replaced by arguments

choose_subst:

 mov rb 0xF8[0]

 mov rx 0xF8[4]

 mov ry 0xF8[8]

 compare rb 0

 ...

 jmp ret

0xF8: 0

 1

 2

choose:

 mov rb r_arg[0]

 mov rx r_arg[4]

 mov ry r_arg[8]

 ...

 jmp ret

main:

 ...

 jmp choose

Substitution and Compiled Code

let (b, x, y) = (true, 1, 2) in

if b then

 (fun n -> n + x)

else

 (fun n -> n + y)

choose:

 mov rb r_arg[0]

 mov rx r_arg[4]

 mov ry r_arg[8]

 compare rb 0

 ...

 jmp ret

main:

 ...

 jmp choose

let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

choose (true, 1, 2);;

compile

execute with
substitution

execute with substitution
==
generate new code block with
parameters replaced by arguments

choose_subst:

 mov rb 0xF8[0]

 mov rx 0xFF44]

 mov ry 0xFF84[8]

 compare rb 0

 ...

 jmp ret

if true then

 (fun n -> n + 1)

else

 (fun n -> n + 2)

execute with
substitution

0xF8: 0

 1

 2 choose_subst2:

 compare 1 0

 ...

 jmp ret

What we aren’t going to do

The substitution model of evaluation is just a model. It says that
we generate new code at each step of a computation. We don’t
do that in reality. Too expensive!

The substitution model is a faithful model for reasoning about
program correctness but it doesn’t help us understand what is
going on at the machine-code level

– that’s a good thing! abstraction!!

– you should almost never think about machine code when writing
a program. We invented high-level programming languages so
you don’t have to.

Still, we need to have a more faithful space model in order to
understand how to write efficient algorithms.

Some functions are easy to implement

If no functions in ML were nested then compiling ML would be
just like compiling C. (Take COS 320 to find out how to do that...)

let add (x:int*int) : int =

 let (y,z) = x in

 y + z

;;

argument in r1

return address in r0

add:

 ld r2, r1[0] # y in r2

 ld r3, r1[4] # z in r3

 add r4, r2, r3 # sum in r4

 jmp r0

How do we implement functions?

Let’s remove the nesting and compile them like we compile C.

let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

let choose arg =

 let (b, x, y) = arg in

 if b then

 f1

 else

 f2

;;

let f1 n = n + x;;

let f2 n = n + y;;

?

?

?

How do we implement functions?

Let’s remove the nesting and compile them like we compile C.

let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x)

 else

 (fun n -> n + y)

;;

let choose arg =

 let (b, x, y) = arg in

 if b then

 f1

 else

 f2

;;

let f1 n = n + x;;

let f2 n = n + y;;

?

?

?

Darn! Doesn’t work naively. Nested functions contain free variables.
Simple unnesting leaves them undefined.

How do we implement functions?

We can’t define a function like the following using code alone:

A closure is a pair of some code and an environment:

let f2 n = n + y;;

let f2 (n,env) =

 n + env.y

;;

{y = 1}

environment code

closure

Closure Conversion

Closure conversion (also called lambda lifting) converts open,

nested functions in to closed, top-level functions.
let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x + y)

 else

 (fun n -> n + y)

;;

Closure Conversion

Closure conversion (also called lambda lifting) converts open,

nested functions in to closed, top-level functions.
let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x + y)

 else

 (fun n -> n + y)

;;

let choose (arg,env) =

 let (b, x, y) = arg in

 if b then

 (f1, {xe=x; ye=y})

 else

 (f2, {ye=y})

;;

let f1 (n,env) =

 n + env.xe + env.ye

;;

let f2 (n,env) =

 n + env.ye

;;

create
closures

use
environment
variables
instead of
free variables

add environment
parameter

Closure Conversion

Closure conversion (also called lambda lifting) converts open,

nested functions in to closed, top-level functions.
let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x + y)

 else

 (fun n -> n + y)

;;

let choose (arg,env) =

 let (b, x, y) = arg in

 if b then

 (f1, {xe=x; ye=y})

 else

 (f2, {ye=y})

;;

let f1 (n,env) =

 n + env.xe + env.ye

;;

let f2 (n,env) =

 n + env.ye

;;

(choose (true,1,2)) 3

create
closures

use
environment
variables
instead of
free variables

add environment
parameter

let c_closure = (choose, ()) in (* create closure *)

let (c_code, c_cenv) = c_closure in (* extract code, env *)

let (f_code, f_env) = c_code ((true,1,2), c_env) in (* call choose code, extract f code, env *)

 f_code (3, f_env) (* call f code *)

;;

Closure Conversion

Closure conversion (also called lambda lifting) converts open,

nested functions in to closed, top-level functions.
let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x + y)

 else

 (fun n -> n + y)

;;

let choose (arg,env) =

 let (b, x, y) = arg in

 if b then

 (f1, {xe=x; ye=y})

 else

 (f2, {ye=y})

;;

let f1 (n,env) =

 n + env.xe + env.ye

;;

let f2 (n,env) =

 n + env.ye

;;

(choose (true,1,2)) 3

create
closures

use
environment
variables
instead of
free variables

add environment
parameter

let c_closure = (choose, ()) in (* create closure *)

let (c_code, c_cenv) = c_closure in (* extract code, env *)

let (f_code, f_env) = c_code ((true,1,2), c_env) in (* call choose code, extract f code, env *)

 f_code (3, f_env) (* call f code *)

;;

Closure Conversion

Closure conversion (also called lambda lifting) converts open,

nested functions in to closed, top-level functions.
let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x + y)

 else

 (fun n -> n + y)

;;

let choose (arg,env) =

 let (b, x, y) = arg in

 if b then

 (f1, {xe=x; ye=y})

 else

 (f2, {ye=y})

;;

let f1 (n,env) =

 n + env.xe + env.ye

;;

let f2 (n,env) =

 n + env.ye

;;

(choose (true,1,2)) 3

create
closures

use
environment
variables
instead of
free variables

add environment
parameter

let c_closure = (choose, ()) in (* create closure *)

let (c_code, c_cenv) = c_closure in (* extract code, env *)

let (f_code, f_env) = c_code ((true,1,2), c_env) in (* call choose code, extract f code, env *)

 f_code (3, f_env) (* call f code *)

;;

Closure Conversion

Closure conversion (also called lambda lifting) converts open,

nested functions in to closed, top-level functions.
let choose arg =

 let (b, x, y) = arg in

 if b then

 (fun n -> n + x + y)

 else

 (fun n -> n + y)

;;

let choose (arg,env) =

 let (b, x, y) = arg in

 if b then

 (f1, {xe=x; ye=y})

 else

 (f2, {ye=y})

;;

let f1 (n,env) =

 n + env.xe + env.ye

;;

let f2 (n,env) =

 n + env.ye

;;

(choose (true,1,2)) 3

create
closures

use
environment
variables
instead of
free variables

add environment
parameter

let c_closure = (choose, ()) in (* create closure *)

let (c_code, c_cenv) = c_closure in (* extract code, env *)

let (f_code, f_env) = c_code ((true,1,2), c_env) in (* call choose code, extract f code, env *)

 f_code (3, f_env) (* call f code *)

;;

One Extra Note: Typing

Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the
environments are different

let choose (arg,env) =

 let (b, x, y) = arg in

 if b then

 (f1, F1 {xe=x; ye=y})

 else

 (f2, F2 {ye=y})

;;

let f1 (n,env) =

 n + env.xe + env.ye

;;

let f2 (n,env) =

 n + env.ye

;;

type f1_env = {x1:int; y1:int} type f1_clos = (int * f1_env -> int) * f1_env

type f2_env = {y2:int} type f2_clos = (int * f2_env -> int) * f2_env

One Extra Note: Typing

Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the
environments are different

let choose (arg,env) =

 let (b, x, y) = arg in

 if b then

 (f1, F1 {x1=x; y2=y})

 else

 (f2, F2 {y2=y})

;;

let f1 (n,env) =

 match env with

 F1 e -> n + e.x1 + e.y2

 | F2 _ -> failwith "bad env!"

;;

let f2 (n,env) =

 match env with

 F1 _ -> failwith "bad env!"

 | F2 e -> n + e.y2

;;

type f1_env = {x1:int; y1:int} type f1_clos = (int * f1_env -> int) * f1_env

type f2_env = {y2:int} type f2_clos = (int * f2_env -> int) * f2_env

type env = F1 of f1_env | F2 of f2_env

type f1_clos = (int * env -> int) * env

type f2_clos = (int * env -> int) * env
fix I:

One Extra Note: Typing

Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the
environments are different

let choose (arg,env) =

 let (b, x, y) = arg in

 if b then

 (f1, {xe=x; ye=y})

 else

 (f2, {ye=y})

;;

let f1 (n,env) =

 n + env.xe + env.ye

;;

let f2 (n,env) =

 n + env.ye

;;

type f1_env = {xe:int; ye:int} type f1_clos = (int * f1_env -> int) * f1_env

type f2_env = {xe:int} type f2_clos = (int * f2_env -> int) * f2_env

type f1_env = {xe:int; ye:int}

type f2_env = {xe:int}

type f1_clos = exists env.(int * env -> int) * env

type f2_clos = exists env.(int * env -> int) * env

fix II:

One Extra Note: Typing

Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the
environments are different

let choose (arg,env) =

 let (b, x, y) = arg in

 if b then

 (f1, {xe=x; ye=y})

 else

 (f2, {ye=y})

;;

let f1 (n,env) =

 n + env.xe + env.ye

;;

let f2 (n,env) =

 n + env.ye

;;

type f1_env = {xe:int; ye:int} type f1_clos = (int * f1_env -> int) * f1_env

type f2_env = {xe:int} type f2_clos = (int * f2_env -> int) * f2_env

type f1_env = {xe:int; ye:int}

type f2_env = {xe:int}

type f1_clos = exists env.(int * env -> int) * env

type f2_clos = exists env.(int * env -> int) * env

fix II:

“From System F to Typed Assembly Language,”
 -- Morrisett, Walker et al.

Aside: Existential Types

map has a universal polymorphic type:

when we closure-convert a function that has type int -> int, we get a function
with existential polymorphic type:

 exists 'a. ((int * 'a) -> int) * 'a

In OCaml, we can approximate existential types using datatypes (a data type
allows you to say "there exists a type 'a drawn from one of the following finite
number of options." In Haskell, you've got the real thing.

map : ('a -> 'b) -> 'a list -> 'b list "for all types 'a and for all types 'b, …"

"there exists some type 'a such that, …"

Closure Conversion: Summary

All function definitions equipped with extra env parameter:

All free variables obtained from environment:

All functions values paired with environment:

All function calls extract code and environment and call code:

let f_code (arg, env) = ...

x

let f arg = ...

env.cx

f (f_code, {ve1=v1; ...; ven=vn})

f e let (f_code, f_env) = f in

f_code (e, f_env)

(after) (before)

The Space Cost of Closures

The space cost of a closure

= the cost of the pair of code and environment pointers

+ the cost of the data referred to by function free variables

TAIL CALLS AND CONTINUATIONS

Some Innocuous Code

Let’s try it.

(Go to tail.ml)

(* sum of 0..n *)

let rec sum_to (n:int) : int =

 if n > 0 then

 n + sum_to (n-1)

 else 0

;;

let big_int = 1000000;;

sum big_int;;

Some Other Code

Four functions: Green works on big inputs; Red doesn’t.

let rec sum_to (n:int) : int =

 if n > 0 then

 n + sum_to (n-1)

 else 0

;;

let sum_to2 (n: int) : int =

 let rec aux (n:int) (a:int) : int =

 if n > 0 then

 aux (n-1) (a+n)

 else a

 in

 aux n 0

;;

let sum (l:int list) : int =

 let rec aux (l:int list) (a:int) : int =

 match l with

 [] -> a

 | hd::tail -> aux tail (a+hd)

 in

 aux l 0

;;

let rec sum2 (l:int list) : int =

 match l with

 [] -> 0

 | hd::tail -> hd + sum2 tail

;;

Some Other Code

Four functions: Green works on big inputs; Red doesn’t.

let rec sum_to (n:int) : int =

 if n > 0 then

 n + sum_to (n-1)

 else 0

;;

let sum_to2 (n: int) : int =

 let rec aux (n:int) (a:int) : int =

 if n > 0 then

 aux (n-1) (a+n)

 else a

 in

 aux n 0

;;

let sum (l:int list) : int =

 let rec aux (l:int list) (a:int) : int =

 match l with

 [] -> a

 | hd::tail -> aux tail (a+hd)

 in

 aux l 0

;;

let rec sum2 (l:int list) : int =

 match l with

 [] -> 0

 | hd::tail -> hd + sum2 tail

;;

code that works:
no computation after
recursive function call

Tail Recursion

A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum_to2 (n: int) : int =

 let rec aux (n:int)(a:int)

 : int =

 if n > 0 then

 aux (n-1) (a+n)

 else a

 in

 aux n 0

;;

Tail Recursion

A tail-recursive function is a function that does no work after it
calls itself recursively.

Tail-recursive:
(* sum of 0..n *)

let sum_to2 (n: int) : int =

 let rec aux (n:int)(a:int)

 : int =

 if n > 0 then

 aux (n-1) (a+n)

 else a

 in

 aux n 0

;;

 sum_to2 1000000

-->

 aux 1000000 0

-->

 aux 99999 1000000

-->

 aux 99998 1999999

-->

 ...

-->

 aux 0 (-363189984)

-->

 -363189984

(addition overflow occurred
at some point)

constant size expression

Tail Recursion

A tail-recursive function is a function that does no work after it
calls itself recursively.

Not tail-recursive:
(* sum of 0..n *)

let rec sum_to (n:int) : int =

 if n > 0 then

 n + sum_to (n-1)

 else 0

;;

let big_int = 1000000;;

sum big_int;;

 sum_to 1000000

-->

 1000000 + sum_to 99999

-->

 1000000 + 99999 + sum_to 99998

-->

 ...

-->

 1000000 + 99999 + 99998 + ... + sum_to 0

-->

 1000000 + 99999 + 99998 + ... + 0

-->

 ... add it all back up ...

expression grows
at every recursive call

Memory is partitioned: Stack and Heap

heap space (big!)

stack space
(small!)

Data Needed on Return Saved on Stack

 sum_to 1000000

-->

 ...

-->

 1000000 + 99999 + 99998 + 99997 + ... +

-->

 ...

-->

 ...

1000000
999999
999998
999997
999996
999995

every non-tail call puts
the data from
the calling context
on the stack

not much space left!
will run out soon!

the stack

Question

Can any non-tail-recursive function be transformed in to a tail-
recursive one?

let sum_to2 (n: int) : int =

 let rec aux (n:int)(a:int) : int =

 if n > 0 then

 aux (n-1) (a+n)

 else a

 in

 aux n 0

;;

let rec sum_to (n: int) : int =

 if n > 0 then

 n + sum_to (n-1)

 else

 0

;;

human
ingenuity

not only is sum2
tail-recursive
but it reimplements
an algorithm that
took linear space
(on the stack)
using an algorithm
that executes in
constant space!

Question

Can any non-tail-recursive function be transformed in to a tail-
recursive one? Yes, if we can capture the differential between a
tail-recursive function and a non-tail-recursive one.

Idea: Focus on what happens after the recursive call.

let rec sum (l:int list) : int =

 match l with

 [] -> 0

 | hd::tail -> hd + sum tail

;;

Question

Can any non-tail-recursive function be transformed in to a tail-
recursive one? Yes, if we can capture the differential between a
tail-recursive function and a non-tail-recursive one.

Idea: Focus on what happens after the recursive call.

Extracting that piece:

How do we capture it?

let rec sum (l:int list) : int =

 match l with

 [] -> 0

 | hd::tail -> hd + sum tail

;;

hd +

what happens
next

Question

How do we capture that computation?

hd +

fun s -> hd + s

Question

How do we capture that computation?

let rec sum (l:int list) : int =

 match l with

 [] -> 0

 | hd::tail -> hd + sum tail

;;

hd +

fun s -> hd + s

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> ???) ;;

Question

How do we capture that computation?

let rec sum (l:int list) : int =

 match l with

 [] -> 0

 | hd::tail -> hd + sum tail

;;

hd +

fun s -> hd + s

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

Question

How do we capture that computation?

let rec sum (l:int list) : int =

 match l with

 [] -> 0

 | hd::tail -> hd + sum tail

;;

hd +

fun s -> hd + s

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = ??

Question

How do we capture that computation?

let rec sum (l:int list) : int =

 match l with

 [] -> 0

 | hd::tail -> hd + sum tail

;;

hd +

fun s -> hd + s

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execution

 sum [1;2]

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execution

 sum [1;2]

-->

 sum_cont [1;2] (fun s -> s)

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execution

 sum [1;2]

-->

 sum_cont [1;2] (fun s -> s)

-->

 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execution

 sum [1;2]

-->

 sum_cont [1;2] (fun s -> s)

-->

 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;

-->

 sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execution

 sum [1;2]

-->

 sum_cont [1;2] (fun s -> s)

-->

 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;

-->

 sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))

-->

 (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execution

 sum [1;2]

-->

 sum_cont [1;2] (fun s -> s)

-->

 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;

-->

 sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))

-->

 (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0

-->

 (fun s -> (fun s -> s) (1 + s)) (2 + 0))

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execution

 sum [1;2]

-->

 sum_cont [1;2] (fun s -> s)

-->

 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;

-->

 sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))

-->

 (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0

-->

 (fun s -> (fun s -> s) (1 + s)) (2 + 0))

-->

 (fun s -> s) (1 + (2 + 0))

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execution

 sum [1;2]

-->

 sum_cont [1;2] (fun s -> s)

-->

 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;

-->

 sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))

-->

 (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0

-->

 (fun s -> (fun s -> s) (1 + s)) (2 + 0))

-->

 (fun s -> s) (1 + (2 + 0))

-->

 1 + (2 + 0)

-->

 3

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Question

 sum [1;2]

-->

 sum_cont [1;2] (fun s -> s)

-->

 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;

-->

 sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))

-->

 ...

-->

 3

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Where did the stack space go?

CPS

CPS:

– short for Continuation-Passing Style

– Every function takes a continuation as an argument that
expresses "what to do next"

– CPS functions only call other functions as the last thing they do

CORRECTNESS OF A CPS
TRANSFORM

Are the two functions the same?

Here, it is really pretty tricky to be sure you've done it right if you
don't prove it. Let's try to prove this theorem and see what
happens:

let rec sum (l:int list) : int =

 match l with

 [] -> 0

 | hd::tail -> hd + sum tail

;;

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =

 match l with

 [] -> k 0

 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum2 (l:int list) : int = sum_cont l (fun s -> s)

for all l:int list,

 sum_cont l (fun x => x) == sum l

Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []

 ...

case: hd::tail

 IH: sum_cont tail (fun s -> s) == sum tail

Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []

 ...

case: hd::tail

 IH: sum_cont tail (fun s -> s) == sum tail

 sum_cont (hd::tail) (fun s -> s)

==

Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []

 ...

case: hd::tail

 IH: sum_cont tail (fun s -> s) == sum tail

 sum_cont (hd::tail) (fun s -> s)

== sum_cont tail (fn s' -> (fn s -> s) (hd + s')) (eval)

Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []

 ...

case: hd::tail

 IH: sum_cont tail (fun s -> s) == sum tail

 sum_cont (hd::tail) (fun s -> s)

== sum_cont tail (fn s' -> (fn s -> s) (hd + s')) (eval)

== sum_cont tail (fn s' -> hd + s') (eval -- hd + s' valuable)

Need to Generalize the Theorem and IH

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []

 ...

case: hd::tail

 IH: sum_cont tail (fun s -> s) == sum tail

 sum_cont (hd::tail) (fun s -> s)

== sum_cont tail (fn s' -> (fn s -> s) (hd + s')) (eval)

== sum_cont tail (fn s' -> hd + s') (eval -- hd + s' valuable)

== darn!

we'd like to use the IH, but we can't!
we might like:

sum_cont tail (fn s' -> hd + s') == sum tail

... but that's not even true

not the identity continuation
(fun s -> s) like the IH requires

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

 must prove: for all k:int->int, sum_cont [] k == k (sum [])

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

 must prove: for all k:int->int, sum_cont [] k == k (sum [])

 pick an arbitrary k:

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

 must prove: for all k:int->int, sum_cont [] k == k (sum [])

 pick an arbitrary k:

 sum_cont [] k

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

 must prove: for all k:int->int, sum_cont [] k == k (sum [])

 pick an arbitrary k:

 sum_cont [] k

 == match [] with [] -> k 0 | hd::tail -> ... (eval)

 == k 0 (eval)

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

 must prove: for all k:int->int, sum_cont [] k == k (sum [])

 pick an arbitrary k:

 sum_cont [] k

 == match [] with [] -> k 0 | hd::tail -> ... (eval)

 == k 0 (eval)

 == k (sum [])

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

 must prove: for all k:int->int, sum_cont [] k == k (sum [])

 pick an arbitrary k:

 sum_cont [] k

 == match [] with [] -> k 0 | hd::tail -> ... (eval)

 == k 0 (eval)

 == k (0) (eval, reverse)

 == k (match [] with [] -> 0 | hd::tail -> ...) (eval, reverse)

 == k (sum [])

case done!

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

 IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

 Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

 IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

 Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

 Pick an arbitrary k,

 sum_cont (hd::tail) k

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

 IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

 Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

 Pick an arbitrary k,

 sum_cont (hd::tail) k

 == sum_cont tail (fun s -> k (hd + x)) (eval)

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

 IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

 Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

 Pick an arbitrary k,

 sum_cont (hd::tail) k

 == sum_cont tail (fun s -> k (hd + x)) (eval)

 == (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'

 replaced with (fun x -> k (hd+x))

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

 IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

 Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

 Pick an arbitrary k,

 sum_cont (hd::tail) k

 == sum_cont tail (fun s -> k (hd + x)) (eval)

 == (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'

 replaced with (fun x -> k (hd+x))

 == k (hd + (sum tail)) (eval, since sum total and

 and sum tail valuable)

Need to Generalize the Theorem and IH

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

 IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

 Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

 Pick an arbitrary k,

 sum_cont (hd::tail) k

 == sum_cont tail (fun s -> k (hd + x)) (eval)

 == (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'

 replaced with (fun x -> k (hd+x))

 == k (hd + (sum tail)) (eval, since sum total and

 and sum tail valuable)

 == k (sum (hd:tail)) (eval sum, reverse)

case done!

QED!

Finishing Up

Ok, now what we have is a proof of this theorem:

We can use that general theorem to get what we really want:

So, we've show that the function sum2, which is tail-recursive, is
functionally equivalent to the non-tail-recursive function sum.

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

for all l:int list,

 sum2 l

== sum_cont l (fun s -> s) (by eval sum2)

== (fun s -> s) (sum l) (by theorem, instantiating k with (fun s -> s)

== sum l

SUMMARY

Summary of the CPS Proof
We tried to prove the specific theorem we wanted:

But it didn't work because in the middle of the proof, the IH didn't
apply -- inside our function we had the wrong kind of continuation
-- not (fun s -> s) like our IH required. So we had to prove a more
general theorem about all continuations.

This is a common occurrence -- generalizing the induction
hypothesis -- and it requires human ingenuity. It's why proving
theorems is hard. It's also why writing programs is hard -- you have
to make the proofs and programs work more generally, around
every iteration of a loop.

for all l:int list, sum_cont l (fun s -> s) == sum l

for all l:int list,

 for all k:int->int, sum_cont l k == k (sum l)

Overall Summary
We developed techniques for reasoning about the space costs of
functional programs

– the cost of manipulating data types like tuples and trees

– the cost of allocating and using function closures

– the cost of tail-recursive and non-tail-recursive functions

We also talked about some important program transformations:

– closure conversion makes nested functions with free variables in to
pairs of closed code and environment

– the continuation-passing style (CPS) transformation turns non-tail-
recursive functions in to tail-recursive ones that use no stack space

• the stack gets moved in to the function closure

– since stack space is often small compared with heap space, it is
often necessary to use continuations and tail recursion

• but full CPS-converted programs are unreadable: use judgement

Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =

 match t with

 Leaf -> Leaf

 | Node (j,left,right) -> Node (i+j, incr left i, incr right i)

;;

(see solution after the next slide)

END

CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =

 match t with

 Leaf -> Leaf

 | Node (j,left,right) -> Node (i+j, incr left i, incr right i)

;;

type cont = tree -> tree ;;

let rec incr_cps (t:tree) (i:int) (k:cont) : tree =

 match t with

 Leaf -> k Leaf

 | Node (j,left,right) -> ...

;;

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =

 match t with

 Leaf -> Leaf

 | Node (j,left,right) -> Node (i+j, incr left i, incr right i)

;;

Node (i+j, ___________ , incr right i)

Node (i+j, left_done, ______________)

first continuation:

second continuation:

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =

 match t with

 Leaf -> Leaf

 | Node (j,left,right) -> Node (i+j, incr i left, incr i right)

;;

fun left_done -> Node (i+j, left_done , incr right i)

fun right_done -> k (Node (i+j, left_done, right_done))

first continuation:

second continuation:

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =

 match t with

 Leaf -> Leaf

 | Node (j,left,right) -> Node (i+j, incr left i, incr right i)

;;

fun left_done ->

 let k2 =

 (fun right_done ->

 k (Node (i+j, left_done, right_done))

)

 in

 incr right i k2

second continuation
inside

first continuation:

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =

 match t with

 Leaf -> Leaf

 | Node (j,left,right) -> Node (i+j, incr left i, incr right i)

;;

type cont = tree -> tree ;;

let rec incr_cps (t:tree) (i:int) (k:cont) : tree =

 match t with

 Leaf -> k Leaf

 | Node (j,left,right) ->

 let k1 = (fun left_done ->

 let k2 = (fun right_done ->

 k (Node (i+j, left_done, right_done)))

 in

 incr_cps right i k2

)

 in

 incr_cps left i k1

;;

let incr_tail (t:tree) (i:int) : tree = incr_cps t i (fun t -> t);;

