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Some Design & Coding Rules 
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• Laziness can be a really good force in design. 

• Never write the same code twice. 

– factor out the common bits into a re-usable procedure. 

– better, use someone else’s (well-tested, well-documented, and 
well-maintained) procedure. 

• Why is this a good idea?  

– why don’t we just cut-and-paste snippets of code using the 
editor instead of abstracting them into procedures?  



Some Design & Coding Rules 
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• Laziness can be a really good force in design. 

• Never write the same code twice. 

– factor out the common bits into a re-usable procedure. 

– better, use someone else’s (well-tested, well-documented, and 
well-maintained) procedure. 

• Why is this a good idea?  

– why don’t we just cut-and-paste snippets of code using the 
editor instead of abstracting them into procedures? 

– find and fix a bug in one copy, have to fix in all of them. 

– decide to change the functionality, have to track down all of the 
places where it gets used.    



Factoring Code in OCaml 
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Consider these definitions: 

 

 

 

 

 

 

 

 

 

 

let rec inc_all (xs:int list) : int list =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (hd+1)::(inc_all tl) 

 

 

let rec square_all (xs:int list) : int list = 

  match xs with 

  | [] -> [] 

  | hd::tl -> (hd*hd)::(square_all tl) 

 



Factoring Code in OCaml 
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Consider these definitions: 

 

 

 

 

 

 

 

 

 

The code is almost identical – factor it out! 

 

 

let rec inc_all (xs:int list) : int list =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (hd+1)::(inc_all tl) 

 

 

let rec square_all (xs:int list) : int list = 

  match xs with 

  | [] -> [] 

  | hd::tl -> (hd*hd)::(square_all tl) 

 



Factoring Code in Ocaml 
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A higher-order function captures the recursion pattern: 

 

 

 

 

 

 

 

 

 

 

 

let rec map (f:int->int) (xs:int list) : int list =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 

 

 



Factoring Code in Ocaml 
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A higher-order function captures the recursion pattern: 

 

 

 

 

 

Uses of the function: 

 

 

 

 

 

 

 

 

 

 

 

let rec map (f:int->int) (xs:int list) : int list =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 

 

 

let inc x = x+1;; 

let inc_all xs = map inc xs;; 

 



Factoring Code in Ocaml 
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A higher-order function captures the recursion pattern: 

 

 

 

 

 

Uses of the function: 

 

 

 

 

 

 

 

 

 

 

 

let rec map (f:int->int) (xs:int list) : int list =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 

 

 

let inc x = x+1;; 

let inc_all xs = map inc xs;; 

 

let square y = y*y;; 

let square_all xs = map square xs;; 

 



Factoring Code in Ocaml 
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A higher-order function captures the recursion pattern: 

 

 

 

 

 

Uses of the function: 

 

 

 

 

 

 

 

 

 

 

 

let rec map (f:int->int) (xs:int list) : int list =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 

 

 

let inc x = x+1;; 

let inc_all xs = map inc xs;; 

 

let square y = y*y;; 

let square_all xs = map square xs;; 

 

Writing little 
functions like inc 

just so we call 
map is a pain. 



Factoring Code in Ocaml 
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A higher-order function captures the recursion pattern: 

 

 

 

 

 

Uses of the function: 

 

 

 

 

 

 

 

 

 

 

 

let rec map (f:int->int) (xs:int list) : int list =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 

 

 

 

let inc_all xs = map (fun x -> x + 1) xs;; 

 

 

let square_all xs = map (fun y -> y * y) xs;; 

 

We can use an 
anonymous 

function 
instead. Originally, 

Church wrote 
this function 

using l instead 
of fun: 

(lx.  x+1) or  
(lx. x*x) 



Another example 
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let rec sum (xs:int list) : int =  

  match xs with  

  | [] -> 0 

  | hd::tl -> hd + (sum tl) 

;; 

 

let rec prod (xs:int list) : int =  

  match xs with  

  | [] -> 1 

  | hd::tl -> hd * (prod tl) 

;; 

 

 

Goal:  Create a function called reduce that 
when supplied with a couple of arguments 
can implement both sum and prod 
 
(Try it/demo) 



A generic reducer 
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let add x y = x + y;;   

let mul x y = x * y;; 

 

let rec reduce (f:int->int->int) (u:int) (xs:int list) : int =  

  match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

let sum xs = reduce add 0 xs ;; 

let prod xs = reduce mul 1 xs ;; 

 

 



Using Anonymous Functions 

14 

 

 

 

let rec reduce (f:int->int->int) (u:int) (xs:int list) : int =  

  match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

let sum xs = reduce (fun x y -> x+y) 0 xs ;; 

let prod xs = reduce (fun x y -> x*y) 1 xs ;; 

 

 



Using Anonymous Functions 

15 

 

 

 

let rec reduce (f:int->int->int) (u:int) (xs:int list) : int =  

  match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

let sum xs = reduce (fun x y -> x+y) 0 xs ;; 

let prod xs = reduce (fun x y -> x*y) 1 xs ;; 

 

let sum_of_squares xs = sum (map (fun x -> x * x)) xs 

let pairify xs = map (fun x -> (x,x)) xs 

 



More on Anonymous Functions 
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Function declarations are actually abbreviations: 

 

 

 

are syntactic sugar for: 

 

 

 

So, fun’s are values we can bind to a variable, just like 3 or 
“moo” or true.   

 

O'Caml obeys the principle of orthogonal language design. 

 

 

 

 

 

 

let square x = x*x ;; 

 

let add x y = x+y ;; 

let square = (fun x -> x*x) ;; 

 

let add = (fun x y -> x+y) ;; 



One argument, one result 

17 

Actually, functions are even simpler. 

All functions take one argument and return one result.  So, 

 

 

 

is shorthand for: 

 

 

That is, add is a function which: 

– when given a value x, returns a function (fun y -> x+y) which: 

• when given a value y, returns x+y. 

 
 

 

 

 

 

 

let add = (fun x y -> x+y) 

let add = (fun x -> (fun y -> x+y)) 



Curried Functions 
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fun x -> (fun y -> x+y) (* curried *) 

fun x y -> x + y (* curried *) 

fun (x,y) -> x+y (* uncurried *) 

 

Currying:   encoding a multi-argument 
function using nested, higher-order  
functions. 

 

Named after the logician Haskell B. Curry. 
– was trying to find minimal logics that are powerful enough to encode 

traditional logics. 

– much easier to prove something about a logic with 3 connectives than 
one with 20.   

– the ideas translate directly to math (set & category theory) as well as to 
computer science.  

– (actually, Curry ripped off Moses Schönfinkel) 

– (thankfully, we don't have to talk about Schönfinkelled functions) 



What is the type of add? 

19 

 

 

 

Add’s type is written: 

 

 

 

which is short-hand for: 

 

 

 

That is, the arrow type is right-associative.   

let add = (fun x -> (fun y -> x+y)) 

int -> int -> int 

int -> (int -> int) 



What’s so good about Currying? 
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In addition to simplifying the language (orthogonal design), 
currying functions so that they only take one argument leads 
to two major wins: 

1. We can partially apply a function. 

2. We can more easily compose functions.  

 

 

 

 



Partial Application 

21 

   

 

Curried functions allow defs of new, partially applied functions:   

 

 

Equivalent to writing: 

 

 

which is equivalent to writing: 

 

 

let add = (fun x -> (fun y -> x+y)) ;; 

let inc = add 1;; 

 let inc = (fun y -> 1+y);; 

 let inc y = 1+y;; 



SIMPLE REASONING ABOUT 
HIGHER-ORDER FUNCTIONS 



Reasoning About Definitions 
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Fundamental question:  How can I rewrite these definitions so  
my program is simpler, easier to understand, more concise, can  
be refactored, …  
 
I want some rules for doing so that never fail. 

let rec map f xs =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 

 

let square_all = map square;;  



Simple Equational Reasoning 

(fun x -> ... x ... x ...) arg       ... arg ... arg ... 

let f = def let f x = (def) x 

chose name x wisely so it does not 
shadow other names used in def 

if arg is a value or, when executed, will 
always terminate and produce a value Rewrite 2 (Substitution): 

Rewrite 3 (Eta-expansion): 

if f has a function type 

let f x = body let f = (fun x -> body) 

Rewrite 1 (Function de-sugaring): 

== 

== 

== 



Eliminating the Sugar in Map 
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let rec map f xs =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 

 

 



Eliminating the Sugar in Map 
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let rec map f xs =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 

 

let rec map =  

  (fun f ->  

    (fun xs ->  

    match xs with 

    | [] -> [] 

    | hd::tl -> (f hd)::(map f tl)));; 

 



Substitute map in to square_all 
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let rec map =  

  (fun f ->  

    (fun xs ->  

    match xs with 

    | [] -> [] 

    | hd::tl -> (f hd)::(map f tl)));; 

 

let square_all = 

   map square ;; 

 



Substitute map in to square_all 

28 

let rec map =  

  (fun f ->  

    (fun xs ->  

    match xs with 

    | [] -> [] 

    | hd::tl -> (f hd)::(map f tl)));; 

 

let square_all = 

   (fun f -> 

       (fun xs ->  

       match xs with 

       | [] -> [] 

       | hd::tl -> (f hd)::(map f tl) 

       ) 

   ) square ;; 



Substitute Square 

29 

let rec map =  

  (fun f ->  

    (fun xs ->  

    match xs with 

    | [] -> [] 

    | hd::tl -> (f hd)::(map f tl)));; 

 

let square_all = 

   ( 

       (fun xs ->  

       match xs with 

       | [] -> [] 

       | hd::tl -> (square hd)::(map square tl) 

       ) 

                  ;; 

argument square substituted 
for parameter f 



Expanding map square 
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let rec map =  

  (fun f ->  

    (fun xs ->  

    match xs with 

    | [] -> [] 

    | hd::tl -> (f hd)::(map f tl)));; 

 

let square_all ys = 

    

       (fun xs ->  

       match xs with 

       | [] -> [] 

       | hd::tl -> (square hd)::(map square tl) 

       ) ys 

   ;; 

add argument 
via eta-expansion 



Expanding map square 

31 

let rec map =  

  (fun f ->  

    (fun xs ->  

    match xs with 

    | [] -> [] 

    | hd::tl -> (f hd)::(map f tl)));; 

 

let square_all ys = 

    

        

       match ys with 

       | [] -> [] 

       | hd::tl -> (square hd)::(map square tl) 

        

   ;; 

substitute again  
(argument ys for  
 parameter xs) 



What Happened? 
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We saw this: 

 

 

 

 

 

 

Is equivalent to this: 

 

 

 

 

 

Moral of the story (1) O'Caml makes it easy to capture recursion patterns in 
higher-order functions and (2) we can figure out what is going on by 
equational reasoning.   

Notice that map still appears in square_all – we’ll need to reason using induction 
to eliminate a recursive function.  More on equational reasoning later. 

let rec map f xs =  

 match xs with 

 | [] -> [] 

 | hd::tl -> (f hd)::(map f tl);; 

 

let square_all ys = map square 

let square_all ys = 

  match ys with 

    | [] -> [] 

    | hd::tl -> (square hd)::(map square tl) 

;; 



Exercise:  Use rewriting to simplify sum, prod 
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let rec reduce f u xs =  

  match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

let sum xs = reduce add 0 xs ;; 

let prod xs = reduce mul 1 xs ;; 



Here’s an annoying thing 

34 

 

 

 

 

 

What if I want to increment a list of floats? 

Alas, I can’t just call this map.  It works on ints! 

 

 
 

let rec map (f:int->int) (xs:int list) : int list =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 



Here’s an annoying thing 

35 

 

 

 

 

 

What if I want to increment a list of floats? 

Alas, I can’t just call this map.  It works on ints! 

 

 
 

let rec map (f:int->int) (xs:int list) : int list =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 

let rec mapfloat (f:float->float) (xs:float list) :  

           float list =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(mapfloat f tl);; 



Turns out 
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let rec map f xs =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 

 

map (fun x -> x + 1) [1; 2; 3; 4] ;; 

 

map (fun x -> x +. 2.0) [3.1415; 2.718; 42.0] ;; 

 

map String.uppercase [“greg”; “victor”; “joe”] ;; 



Type of the undecorated map? 
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let rec map f xs =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl) 

;; 

 

 

map : (‘a -> ‘b) -> ‘a list -> ‘b list 

 



Type of the undecorated map? 

38 

 

 

 

 

 

 

 

Read as:  for any types ‘a and ‘b, if you give map a 
function from ‘a to ‘b, it will return a function which 
when given a list of ‘a values, returns a list of ‘b 
values. 

 

let rec map f xs =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl) 

;; 

 

 

map : (‘a -> ‘b) -> ‘a list -> ‘b list 

 

We often use 
greek letters 
like a or b to 

represent type 
variables. 



We can say this explicitly 

39 

 
 
 
 
 
 
 
 
The Ocaml compiler is smart enough to figure out that this is the 

most general type that you can assign to the code.   
 
We say map is polymorphic in the types ‘a and ‘b – just a fancy 

way to say map can be used on many types.  
 
Java generics derived from ML-style polymorphism (but added 

after the fact and more complicated due to subtyping) 
 
 
 

let rec map (f:'a -> 'b) (xs:'a list) : 'b list =  

  match xs with  

  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl) 

;; 

 

map : (‘a -> ‘b) -> ‘a list -> ‘b list 

 



More realistic polymorphic functions 
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let rec merge (lt:’a->’a->bool) (xs:’a list) (ys:’a list) : ‘a list =  

  match (xs,ys) with  

  | ([],_) -> ys 

  | (_,[]) -> xs 

  | (x::xst, y::yst) ->  

    if lt x y then x::(merge lt xst ys) 

      else y::(merge lt xs yst) ;; 

 

let rec split (xs:’a list) (ys:’a list) (zs:’a list) : ‘a list * ‘a list = 

  match xs with  

  | [] -> (ys, zs) 

  | x::rest -> split rest zs (x::ys) ;; 

 

let rec mergesort (lt:’a->’a->bool) (xs:’a list) : ‘a list =  

  match xs with  

  | ([] | _::[]) -> xs 

  | _ -> let (first,second) = split xs [] [] in 

         merge lt (mergesort lt first) (mergesort lt second) ;;  

 



More realistic polymorphic functions 
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mergesort : (’a->’a->bool) -> ’a list -> ‘a list   

 

mergesort (<) [3;2;7;1]  

  == [1;2;3;7] 

 

mergesort (>) [2.718; 3.1415; 42.0]  

  == [42.0 ; 3.1415; 2.718] 

 

mergesort (fun x y -> String.compare x y < 0) [“Hi”; “Bi”]  

  == [“Bi”; “Hi”]  

 

let int_sort = mergesort (<) ;; 

let int_sort_down = mergesort (>) ;; 

let str_sort = mergesort (fun x y -> String.compare x y < 0) ;; 

 



Another Interesting Function 
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let comp f g x = f (g x) ;; 

 

let mystery = comp (add 1) square ;; 

let comp = fun f -> (fun g -> (fun x -> f (g x))) ;; 

 

let mystery = comp (add 1) square ;; 

let mystery = (fun f -> (fun g -> (fun x -> f (g x)))) (add 1) square ;; 

let mystery =                              fun x -> (add 1) ((square) x) ;; 

let mystery x = (add 1) ((square) x) ;; 



Optimization 

43 

map f (map g [x1; x2; …; xn])  

What does this program do? 

For each element of the list x1, x2, x3 ... xn, it executes g, creating: 

map f ([g x1; g x2; …; g xn])  

Then for each element of the list [g x1, g x2, g x3 ... g xn], it executes f, creating: 

[f (g x1); f (g x2); …; f (g xn)]  

Is there a faster way? Yes!  (And query optimizers for SQL do it for you.) 

map (comp f g) [x1; x2; ...; xn]  



What is the type of comp? 
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let comp f g x = f (g x) ;; 



What is the type of comp? 

45 

comp : (‘b -> ‘c) ->  

       (‘a -> ‘b) ->  

       (‘a -> ‘c) 

 

let comp f g x = f (g x) ;; 



How about reduce? 
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let rec reduce f u xs =  

 match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

What’s the most general type of reduce? 

 



How about reduce? 
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let rec reduce f u xs =  

 match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

What’s the most general type of reduce? 

 

Based on the 
patterns, we 

know xs must be 
a (‘a list) for 

some type ‘a. 



How about reduce? 

48 

let rec reduce f u (xs: ‘a list)  =  

 match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

What’s the most general type of reduce? 

 



How about reduce? 

49 

let rec reduce f u (xs: ‘a list)  =  

 match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

What’s the most general type of reduce? 

 
f is called so it 

must be a 
function of two 

arguments. 



How about reduce? 
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let rec reduce (f:? -> ? -> ?) u (xs: ‘a list)  =  

 match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

What’s the most general type of reduce? 

 



How about reduce? 
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let rec reduce (f:? -> ? -> ?) u (xs: ‘a list)  =  

 match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

What’s the most general type of reduce? 

 

Furthermore, hd 
came from xs, so 
f must take an ‘a 
value as its first 

argument. 



How about reduce? 

52 

let rec reduce (f:’a -> ? -> ?) u (xs: ‘a list)  =  

 match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

What’s the most general type of reduce? 

 



How about reduce? 
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let rec reduce (f:’a -> ? -> ?) u (xs: ‘a list)  =  

 match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

What’s the most general type of reduce? 

 

The second 
argument to f 
must have the 

same type as the 
result of reduce.  

Let’s call it ‘b. 



How about reduce? 
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let rec reduce (f:’a -> ‘b -> ‘b) u (xs: ‘a list) : ‘b =  

 match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

What’s the most general type of reduce? 

 



How about reduce? 
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let rec reduce (f:’a -> ‘b -> ‘b) u (xs: ‘a list) : ‘b =  

 match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

What’s the most general type of reduce? 

 

If xs is empty, 
then reduce 

returns u.  So u’s 
type must be ‘b. 



How about reduce? 
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let rec reduce (f:’a -> ‘b -> ‘b) (u:’b) (xs: ‘a list) : 

‘b =  

 match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

What’s the most general type of reduce? 

 



How about reduce? 

57 

let rec reduce (f:’a -> ‘b -> ‘b) (u:’b) (xs: ‘a list) : 

‘b =  

 match xs with 

  | [] -> u 

  | hd::tl -> f hd (reduce f u tl);; 

 

What’s the most general type of reduce? 
 

 (‘a -> ‘b -> ‘b) -> ‘b -> ‘a list -> ‘b  

 



The List Library 
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• NB:  map and reduce are already defined in the List library.   

 

– However, reduce is called “fold_right”.   

– (Good bet there’s a “fold_left” too.) 

• I’ll continue to call “fold_right” reduce for 3 reasons: 

– Analogy with Google’s Map/Reduce  

– Makes the example fit on a slide. 

– The library’s arguments to fold_right are in the wrong order. 



Summary 
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• Map and reduce are two higher-order functions that capture 
very, very common recursion patterns 

 

• Reduce is especially powerful: 

– related to the “visitor pattern” of OO languages like Java. 

– can implement most list-processing functions using it, including 
things like copy, append, filter, reverse, map, etc. 

 

• We can write clear, terse, reuseable code by exploiting: 

– higher-order functions 

– anonymous functions 

– first-class functions 

– polymorphism 

 



Practice Problems 
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• Using map, write a function that takes a list of pairs of integers, and 
produces a list of the sums of the pairs.   
– e.g., list_add [(1,3); (4,2); (3,0)] = [4; 6; 3] 
– Write list_add directly using reduce. 

 

• Using map, write a function that takes a list of pairs of integers, and 
produces their quotient if it exists. 
– e.g., list_div [(1,3); (4,2); (3,0)] = [Some 0; Some 2; None] 
– Write list_div directly using reduce. 

 

• Using reduce, write a function that takes a list of optional integers, and 
filters out all of the None’s. 
– e.g., filter_none [Some 0; Some 2; None; Some 1] = [0;2;1] 
– Why can’t we directly use filter?  How would you generalize filter so that 

you can compute filter_none? 
 

• Using reduce, write a function to compute the sum of squares of a list of 
numbers. 
– e.g., sum_squares = [3,5,2] = 38 

 


