
Thinking Recursively

COS 326

David Walker

Princeton University

Typed Functional Programming

• We've seen that functional programs operate by first
extracting information from their arguments and then
producing new values

• So far, we've defined non-recursive functions in this style to
analyze pairs and optional values

• Why? Because recursive functions typically come from
recursive data

– Pairs are not recursive -- we need only do a small, (statically)
predictable amount of work to get at the information these
structures contain

– Lists and natural numbers can be viewed as recursive

• not surprisingly, you’ve defined recursive functions over numbers!

LISTS: A RECURSIVE DATA TYPE

Lists are Recursive Data

• In O'Caml, a list value is:

– [] (the empty list)

– v :: vs (a value v followed by a shorter list of values vs)

Lists are Recursive Data

• In O'Caml, a list value is:

– [] (the empty list)

– v :: vs (a value v followed by a shorter list of values vs)

• An example:

– 2 :: 3 :: 5 :: [] has type int list

– is the same as: 2 :: (3 :: (5 :: []))

– "::" is called "cons"

• An alternative (better style) syntax:

– [2; 3; 5]

– But this is just a shorthand for 2 :: 3 :: 5 :: []. If you ever get
confused fall back on the 2 basic primitives: :: and []

Typing Lists

• Typing rules for lists:

[] may have any list type t list

if e1 : t and e2 : t list
then e1 :: e2 : t list

(1)

(2)

Typing Lists

• Typing rules for lists:

• More examples:

(1 + 2) :: (3 + 4) :: [] : ??

(2 :: []) :: (5 :: 6 :: []) :: [] : ??

[[2]; [5; 6]] : ??

[] may have any list type t list

if e1 : t and e2 : t list
then e1 :: e2 : t list

(1)

(2)

Typing Lists

• Typing rules for lists:

• More examples:

(1 + 2) :: (3 + 4) :: [] : int list

(2 :: []) :: (5 :: 6 :: []) :: [] : int list list

[[2]; [5; 6]] : int list list

(Remember that the 3rd example is an abbreviation for the 2nd)

[] may have any list type t list

if e1 : t and e2 : t list
then e1 :: e2 : t list

(1)

(2)

Another Example

• What type does this have?

 [2] :: [3]

Another Example

[2] :: [3];;

Error: This expression has type int but an

 expression was expected of type

 int list

• What type does this have?

 [2] :: [3]

int list int list

rule: e1 :: e2 : t list if e1 : t and e2 : t list

Another Example

• What type does this have?

 [2] :: [3]

• Give me a simple fix that makes the expression type check?

int list int list

Another Example

• What type does this have?

 [2] :: [3]

• Give me a simple fix that makes the expression type check?

 Either: 2 :: [3] : int list

 Or: [2] :: [[3]] : int list list

int list int list

Analyzing Lists

• Just like options, there are two possibilities when
deconstructing lists. Hence we use a match with two branches

(* return Some v, if v is the first list element;

 return None, if the list is empty *)

let head (xs : int list) : int option =

;;

Analyzing Lists

• Just like options, there are two possibilities when
deconstructing lists. Hence we use a match with two branches

(* return Some v, if v is the first list element;

 return None, if the list is empty *)

let head (xs : int list) : int option =

 match xs with

 | [] ->

 | hd :: _ ->

;;

we don't care about the contents of the
tail of the list so we use the underscore

Analyzing Lists

• Just like options, there are two possibilities when
deconstructing lists. Hence we use a match with two branches

• This function isn't recursive -- we only extracted a small , fixed
amount of information from the list -- the first element

(* return Some v, if v is the first list element;

 return None, if the list is empty *)

let head (xs : int list) : int option =

 match xs with

 | [] -> None

 | hd :: _ -> Some hd

;;

A more interesting example

(* Given a list of pairs of integers,

 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

A more interesting example

(* Given a list of pairs of integers,

 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) list) : int list =

;;

A more interesting example

(* Given a list of pairs of integers,

 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) list) : int list =

 match xs with

 | [] ->

 | (x,y) :: tl ->

;;

A more interesting example

(* Given a list of pairs of integers,

 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) list) : int list =

 match xs with

 | [] -> []

 | (x,y) :: tl ->

;;

A more interesting example

(* Given a list of pairs of integers,

 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) list) : int list =

 match xs with

 | [] -> []

 | (x,y) :: tl -> ?? :: ??

;;

the result type is int list, so we can speculate
that we should create a list

A more interesting example

(* Given a list of pairs of integers,

 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) list) : int list =

 match xs with

 | [] -> []

 | (x,y) :: tl -> (x * y) :: ??

;;

the first element is the product

A more interesting example

(* Given a list of pairs of integers,

 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) list) : int list =

 match xs with

 | [] -> []

 | (x,y) :: tl -> (x * y) :: ??

;;

to complete the job, we must compute
the products for the rest of the list

A more interesting example

(* Given a list of pairs of integers,

 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) list) : int list =

 match xs with

 | [] -> []

 | (x,y) :: tl -> (x * y) :: prods tl

;;

 reasoning process:
• assume prods computes correctly on the smaller list tl
• conclude therefore that (x * y) :: prods tl is correct
for the entire list

A more interesting example

• Next: test it . What inputs should we test it on?

(* Given a list of pairs of integers,

 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) list) : int list =

 match xs with

 | [] -> []

 | (x,y) :: tl -> (x * y) :: prods tl

;;

Note the strategy

• Broad steps:

– break down the input based on its type in to a set of cases

• there can be more than one way to do this

– make the assumption (the induction hypothesis) that your
recursive function works correctly when called on a smaller list

• you might have to make 0,1,2 or more recursive calls

– build the output (guided by its type) from the results of
recursive calls

let rec prods (xs : (int * int) list) : int list =

 match xs with

 | [] -> []

 | (x,y) :: tl -> (x * y) :: prods tl

;;

Another example: zip

(* Given two lists of integers,

 return None if the lists are different lengths

 otherwise stitch the lists together to create

 Some of a list of pairs

 zip [2; 3] [4; 5] == Some [(2,4); (3,5)]

 zip [5; 3] [4] == None

 zip [4; 5; 6] [8; 9; 10; 11; 12] == None

*)

(Give it a try.)

Another example: zip

let rec zip (xs : int list) (ys : int list)

 : (int * int) list option =

;;

Another example: zip

let rec zip (xs : int list) (ys : int list)

 : (int * int) list option =

 match (xs, ys) with

 | ([], []) -> Some []

 | ([], y::ys') ->

 | (x::xs', []) ->

 | (x::xs', y::ys') ->

;;

Another example: zip

let rec zip (xs : int list) (ys : int list)

 : (int * int) list option =

 match (xs, ys) with

 | ([], []) -> Some []

 | ([], y::ys') -> None

 | (x::xs', []) -> None

 | (x::xs', y::ys') ->

;;

Another example: zip

let rec zip (xs : int list) (ys : int list)

 : (int * int) list option =

 match (xs, ys) with

 | ([], []) -> Some []

 | ([], y::ys') -> None

 | (x::xs', []) -> None

 | (x::xs', y::ys') -> (x, y) :: zip xs' ys'

;;

is this ok?

Another example: zip

let rec zip (xs : int list) (ys : int list)

 : (int * int) list option =

 match (xs, ys) with

 | ([], []) -> Some []

 | ([], y::ys') -> None

 | (x::xs', []) -> None

 | (x::xs', y::ys') -> (x, y) :: zip xs' ys'

;;

No! zip returns a list option, not a list!
We need to match it and decide if it is Some or None.

Another example: zip

let rec zip (xs : int list) (ys : int list)

 : (int * int) list option =

 match (xs, ys) with

 | ([], []) -> Some []

 | ([], y::ys') -> None

 | (x::xs', []) -> None

 | (x::xs', y::ys') ->

 (match zip xs' ys' with

 None -> None

 | Some zs -> (x,y) :: zs

;;

Closer, but no cigar.

Another example: zip

let rec zip (xs : int list) (ys : int list)

 : (int * int) list option =

 match (xs, ys) with

 | ([], []) -> Some []

 | ([], y::ys') -> None

 | (x::xs', []) -> None

 | (x::xs', y::ys') ->

 (match zip xs' ys' with

 None -> None

 | Some zs -> Some ((x,y) :: zs)

;;

Another example: zip

let rec zip (xs : int list) (ys : int list)

 : (int * int) list option =

 match (xs, ys) with

 | ([], []) -> Some []

 | (x::xs', y::ys') ->

 (match zip xs' ys' with

 None -> None

 | Some zs -> Some ((x,y) :: zs))

 | (_, _) -> None

;;

Clean up.
Reorganize the cases.
Pattern matching proceeds in order.

A bad list example

let rec sum (xs : int list) : int =

 match xs with

 | hd::tl -> hd + sum tl

;;

A bad list example

let rec sum (xs : int list) : int =

 match xs with

 | hd::tl -> hd + sum tl

;;

Characters 39-78:

 ..match xs with

 x :: xs -> x + sum xs..

Warning 8: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

val sum : int list -> int = <fun>

INSERTION SORT

Recall Insertion Sort

• At any point during the insertion sort:

– some initial segment of the array will be sorted

– the rest of the array will be in the same (unsorted) order as it
was originally

-5 -2 3 -4 10 6 7

sorted unsorted

Recall Insertion Sort

• At any point during the insertion sort:

– some initial segment of the array will be sorted

– the rest of the array will be in the same (unsorted) order as it
was originally

• At each step, take the next item in the array and insert it in
order into the sorted portion of the list

-5 -2 3 -4 10 6 7

sorted unsorted

-5 -4 -2 3 10 6 7

sorted unsorted

Insertion Sort With Lists

• The algorithm is similar, except instead of one array, we will
maintain two lists, a sorted list and an unsorted list

• We'll factor the algorithm:

– a function to insert in to a sorted list

– a sorting function that repeatedly inserts

-5 -2 3 -4 10 6 7

sorted unsorted

list 1: list 2:

Insert

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =

;;

Insert

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =

;;

Insert

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =

 match xs with

 | [] ->

 | hd :: tl ->

;;

 a familiar pattern:
analyze the list by cases

Insert

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =

 match xs with

 | [] -> [x]

 | hd :: tl ->

;;

insert x in to the
empty list

Insert

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =

 match xs with

 | [] -> [x]

 | hd :: tl ->

 if hd < x then

 hd :: insert x tl

;;

build a new list with:
• hd at the beginning
• the result of inserting x in to

the tail of the list afterwards

Insert

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =

 match xs with

 | [] -> [x]

 | hd :: tl ->

 if hd < x then

 hd :: insert x tl

 else

 x :: xs

;;

put x on the front of the list,
the rest of the list follows

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

;;

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =

 in

;;

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =

 in

 aux [] xs

;;

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =

 match unsorted with

 | [] ->

 | hd :: tl ->

 in

 aux [] xs

;;

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =

 match unsorted with

 | [] -> sorted

 | hd :: tl -> aux (insert hd sorted) tl

 in

 aux [] xs

;;

A COUPLE MORE THOUGHTS ON
LISTS

The (Single) List Programming Paradigm

• Recall that a list is either:

– [] (the empty list)

– v :: vs (a value v followed by a previously constructed list vs)

• Some examples:

let l0 = [];; (* length is 0 *)

let l1 = 1::l0;; (* length is 1 *)

let l2 = 2::l1;; (* length is 2 *)

let l3 = 3::l2;; (* length is 3 *)

…

Consider This Picture

• Consider the following picture. How long is the linked structure?

• Can we build a value with type int list to represent it?

1

2

3 4

Consider This Picture

• How long is it? Infinitely long.

• Can we build a value with type int list to represent it? No!

– all values with type int list have finite length

1

2

3 4

The List Type

• Is it a good thing that the type list does not contain any
infinitely long lists? Yes!

• A terminating list-processing scheme:

let f (xs : int list) : int =

 match xs with

 [] -> … do something not recursive …

 | hd::tail -> … f tail …

;;

terminates because f only called recursively on smaller lists

A Loopy Program

let loop (xs : int list) : int =

 match xs with

 [] -> []

 | hd::tail -> hd + loop (0::tail)

;;

Does this program terminate?

A Loopy Program

Does this program terminate? No! Why not? We call loop recursively on (0::tail).
This list is the same size as the original list -- not smaller.

let loop (xs : int list) : int =

 match xs with

 [] -> []

 | hd::tail -> hd + loop (0::tail)

;;

Take-home Message

ML has a strong type system

• ML types say a lot about the set of values that inhabit them

In this case, the tail of the list is always shorter than the whole list

This makes it easy to write functions that terminate; it would be
harder if you had to consider more cases, such as the case that the
tail of a list might loop back on itself

Note: Just because the list type excludes cyclic structures does not
mean that an ML program can't build a cyclic data structure if it
wants to. (We'll do that later in the course.)

xkcd

Example problems to practice

• Write a function to sum the elements of a list

– sum [1; 2; 3] ==> 6

• Write a function to append two lists

– append [1;2;3] [4;5;6] ==> [1;2;3;4;5;6]

• Write a function to revers a list

– rev [1;2;3] ==> [3;2;1]

• Write a function to a list of pairs in to a pair of lists

– split [(1,2); (3,4); (5,6)] ==> ([1;3;5], [2;4;6])

• Write a function that returns all prefixes of a list

– prefixes [1;2;3] ==> [[]; [1]; [1;2]; [1;2;3]]

PROGRAMMING WITH
NATURAL NUMBERS

Natural Numbers

• Natural numbers are a lot like lists

– both can be defined recursively (inductively)

• A natural number n is either

– 0, or

– m + 1 where m is a smaller natural number

• Functions over naturals n must consider both cases

– programming the base case 0 is usually easy

– programming the inductive case (m+1) will often involve
recursive calls over smaller numbers

• OCaml doesn't have a built-in type "nat" so we will use "int"
instead for now …

An Example

(* precondition: n is a natural number

 return double the input *)

let rec double_nat (n : int) : int =

;;

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m

An Example

(* precondition: n is a natural number

 return double the input *)

let rec double_nat (n : int) : int =

 match n with

 | 0 ->

 | _ ->

;;

two cases:
one for 0
one for m+1

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m

An Example

(* precondition: n is a natural number

 return double the input *)

let rec double_nat (n : int) : int =

 match n with

 | 0 -> 0

 | _ ->

;;

solve easy base case first

consider:
what number is double 0?

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m

An Example

(* precondition: n is a natural number

 return double the input *)

let rec double_nat (n : int) : int =

 match n with

 | 0 -> 0

 | _ -> ????

;;

 assume double_nat m is correct
where n = m+1

that’s the inductive hypothesis

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m

An Example

(* precondition: n is a natural number

 return double the input *)

let rec double_nat (n : int) : int =

 match n with

 | 0 -> 0

 | _ -> 2 + double_nat (n-1)

;;

 assume double_nat m is correct
where n = m+1

that’s the inductive hypothesis

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m

I wish I had a pattern (m+1) ... but
OCaml doesn’t have it. So I use n-1
to get m.

(* fail if the input is negative

 double the input if it is non-negative *)

let double (n : int) : int =

 let rec double_nat (n : int) : int =

 match n with

 0 -> 0

 | n -> 2 + double_nat (n-1)

 in

 if n < 0 then

 failwith "negative input!"

 else

 double_nat n

;;

An Example

protect precondition of double_nat
by wrapping it with dynamic check

later we will see how to create a
static guarantee using types

raises exception

nest double_nat so it
can only be called by
double

More than one way to decompose naturals

A natural n is either:

– 0,

– m+1, where m is a natural

A natural n is either:

– 0,

– 1,

– m+2, where m is a natural

A natural n is either:

– 0,

– m*2

– m*2+1

unary decomposition

unary even/odd decomposition

binary decomposition

More than one way to decompose lists

A list xs is either:

– [],

– x::xs, where ys is a list

A list xs is either:

– [],

– [x],

– x::y::ys, where ys is a list

A natural n is either:

– 0,

– m*2

– m*2+1

unary decomposition

unary even/odd decomposition

binary decomposition doesn't
work out as smoothly for lists
as lists have more information content:
they contain structured elements

Summary

• Instead of while or for loops, functional programmers use
recursive functions

• These functions operate by:

– decomposing the input data

– considering all cases

– some cases are base cases, which do not require recursive calls

– some cases are inductive cases, which require recursive calls on
smaller arguments

• We've seen:

– lists with cases:

• (1) empty list, (2) a list with one or more elements

– natural numbers with cases:

• (1) zero (2) m+1

– we'll see many more examples throughout the course

END

