Thinking Recursively

COS 326
David Walker
Princeton University
We've seen that functional programs operate by first *extracting information* from their arguments and then *producing new values*

So far, we've defined *non-recursive* functions in this style to analyze pairs and optional values.

Why? Because *recursive functions typically come from recursive data*

- Pairs are not recursive -- we need only do a small, (statically) predictable amount of work to get at the information these structures contain
- Lists and natural numbers can be viewed as recursive
 - not surprisingly, you’ve defined recursive functions over numbers!
LISTS: A RECURSIVE DATA TYPE
Lists are Recursive Data

- In O'Caml, a list value is:
 - `[]` (the empty list)
 - `v :: vs` (a value `v` followed by a shorter list of values `vs`)
Lists are Recursive Data

• In O'Caml, a list value is:
 – [] (the empty list)
 – v :: vs (a value v followed by a shorter list of values vs)

• An example:
 – 2 :: 3 :: 5 :: [] has type int list
 – is the same as: 2 :: (3 :: (5 :: []))
 – "::" is called "cons"

• An alternative (better style) syntax:
 – [2; 3; 5]
 – But this is just a shorthand for 2 :: 3 :: 5 :: []. If you ever get confused fall back on the 2 basic primitives: :: and []
Typing Lists

• Typing rules for lists:

(1) \[\] may have any list type \(t \) \(\text{list} \)

(2) if \(e_1 : t \) and \(e_2 : t \) \(\text{list} \)
then \(e_1 :: e_2 : t \) \(\text{list} \)
Typing Lists

• Typing rules for lists:

 (1) \[\] may have any list type t list

 (2) if \(e_1 : t \) and \(e_2 : t \) list
 then \(e_1 :: e_2 : t \) list

• More examples:

 (1 + 2) :: (3 + 4) :: [] : ??

 (2 :: []) :: (5 :: 6 :: []) :: [] : ??

Typing Lists

• Typing rules for lists:

(1) [] may have any list type t list

(2) if e1 : t and e2 : t list
 then e1 :: e2 : t list

• More examples:

(1 + 2) :: (3 + 4) :: [] : int list

(2 :: []) :: (5 :: 6 :: []) :: [] : int list list

[[2]; [5; 6]] : int list list

(Remember that the 3rd example is an abbreviation for the 2nd)
• What type does this have?

\[\{2\} :: \{3\} \]
Another Example

What type does this have?

```
```

- `int list`
- `int list`

Rule:

```
rule: e1 :: e2 : t list  if  e1 : t  and  e2 : t list
```

Example:

```
# [2] :: [3];;
Error: This expression has type int but an expression was expected of type int list
```

#
Another Example

- What type does this have?

- int list
 - [2]
 - [3]

- int list
 - [2]
 - [3]

- Give me a simple fix that makes the expression type check?
Another Example

• What type does this have?

```
```

int list int list

• Give me a simple fix that makes the expression type check?

Either: 2 :: [3] : int list

Analyzing Lists

• Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

```plaintext
(* return Some v, if v is the first list element;
  return None, if the list is empty *)

let head (xs : int list) : int option =

;;
```
Analyzing Lists

• Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches.

```
(* return Some v, if v is the first list element; return None, if the list is empty *)

let head (xs : int list) : int option =
  match xs with
  | [] ->
  | hd :: _ ->
```

we don't care about the contents of the tail of the list so we use the underscore
Analyzing Lists

- Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches.

```ocaml
(* return Some v, if v is the first list element; return None, if the list is empty *)

let head (xs : int list) : int option =
    match xs with
    | [] -> None
    | hd :: _ -> Some hd
;;
```

- This function isn't recursive -- we only extracted a small, fixed amount of information from the list -- the first element.
(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list = ;;
(* Given a list of pairs of integers, produce the list of products of the pairs *)

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] ->
 | (x,y) :: tl ->
 ;;
(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl ->
;;
A more interesting example

(* Given a list of pairs of integers,
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> ?? :: ??
;;

the result type is int list, so we can speculate that we should create a list
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: ??
;;}

the first element is the product
(* Given a list of pairs of integers, produce the list of products of the pairs

```prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: ??
;;

To complete the job, we must compute the products for the rest of the list.
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]*)

let rec prods (xs : (int * int) list) : int list = 
match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: prods tl
;;

reasoning process:
• assume prods computes correctly on the smaller list tl
• conclude therefore that (x * y) :: prods tl is correct for the entire list
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: prods tl
;;

• Next: test it. What inputs should we test it on?
Note the strategy

• Broad steps:
  – *break down the input* based on its type in to a set of cases
    • there can be more than one way to do this
  – *make the assumption* (the *induction hypothesis*) that your recursive function works correctly when called on a *smaller list*
    • you might have to make 0, 1, 2 or more recursive calls
  – *build the output* (guided by its type) from the results of recursive calls

```ocaml
let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: prods tl
;;
```
Another example: zip

(*) Given two lists of integers, return None if the lists are different lengths otherwise stitch the lists together to create a list of pairs

    zip [2; 3] [4; 5] == Some [(2,4); (3,5)]
    zip [5; 3] [4] == None
    zip [4; 5; 6] [8; 9; 10; 11; 12] == None

(Give it a try.)
let rec zip (xs : int list) (ys : int list) : (int * int) list option = ;;
Another example: zip

```ocaml
let rec zip (xs : int list) (ys : int list) :
 (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') ->
 | (x::xs', []) ->
 | (x::xs', y::ys') ->

;;
```
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') ->

;;
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =

    match (xs, ys) with
    | ([], []) -> Some []
    | ([], y::ys') -> None
    | (x::xs', []) -> None
    | (x::xs', y::ys') -> (x, y) :: zip xs' ys'

;;
Another example: zip

```
let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') -> (x, y) :: zip xs' ys'

;;
```

No! zip returns a list option, not a list!
We need to match it and decide if it is Some or None.
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

  match (xs, ys) with
  | ([], []) -> Some []
  | ([], y::ys') -> None
  | (x::xs', []) -> None
  | (x::xs', y::ys') ->
    (match zip xs' ys' with
      None -> None
      | Some zs -> (x,y) :: zs

  ;;

Closer, but no cigar.
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

    match (xs, ys) with
    | ([], []) -> Some []
    | ([], y::ys') -> None
    | (x::xs', []) -> None
    | (x::xs', y::ys') ->
      (match zip xs' ys' with
        None -> None
        | Some zs -> Some ((x,y) :: zs))

;;
Another example: zip

```ocaml
let rec zip (xs : int list) (ys : int list) : (int * int) list option =
 match (xs, ys) with
 | ([], []) -> Some []
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> Some ((x,y) :: zs))
 | (_, _) -> None
;;
```

Clean up.
Reorganize the cases.
Pattern matching proceeds in order.
A bad list example

let rec sum (xs : int list) : int =
    match xs with
    | hd::tl -> hd + sum tl

;;
let rec sum (xs : int list) : int =
  match xs with
  | hd::tl -> hd + sum tl
;;

# Characters 39-78:
  ..match xs with
    x :: xs -> x + sum xs..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
val sum : int list -> int = <fun>
INSERTION SORT
Recall Insertion Sort

- At any point during the insertion sort:
  - some initial segment of the array will be sorted
  - the rest of the array will be in the same (unsorted) order as it was originally

-5  -2  3  -4  10  6  7

sorted  unsorted
Recall Insertion Sort

- At any point during the insertion sort:
  - some initial segment of the array will be sorted
  - the rest of the array will be in the same (unsorted) order as it was originally

- At each step, take the next item in the array and insert it in order into the sorted portion of the list
• The algorithm is similar, except instead of one array, we will maintain two lists, a sorted list and an unsorted list.

-5 -2 3

list 1:

sorted

-4 10 6 7

list 2:

unsorted

• We'll factor the algorithm:
  – a function to insert into a sorted list
  – a sorting function that repeatedly inserts
let rec insert (x : int) (xs : int list) : int list =;;

(* insert x in to sorted list xs *)

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =

;;
(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =

;;
let rec insert (x : int) (xs : int list) : int list =
    match xs with
    | [] ->
      | hd :: tl ->
      ;;

(* insert x in to sorted list xs *)

a familiar pattern: analyze the list by cases
let rec insert (x : int) (xs : int list) : int list =
match xs with
| [] -> [x]
| hd :: tl -> ;;
let rec insert (x : int) (xs : int list) : int list =
  match xs with
  | [] -> [x]
  | hd :: tl ->
    if hd < x then
      hd :: insert x tl
    ;;

(* insert x in to sorted list xs *)

build a new list with:
• hd at the beginning
• the result of inserting x in to the tail of the list afterwards
(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
    match xs with
    | [] -> [x]
    | hd :: tl ->
      if hd < x then
        hd :: insert x tl
      else
        x :: xs

;;

put x on the front of the list, the rest of the list follows
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

  let rec aux (sorted : il) (unsorted : il) : il =

    in

;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

  let rec aux (sorted : il) (unsorted : il) : il =

    in
    aux [] xs

;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

  let rec aux (sorted : il) (unsorted : il) : il =
    match unsorted with
      | [] ->
      | hd :: tl ->
    in
    aux [] xs

;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

  let rec aux (sorted : il) (unsorted : il) : il =
    match unsorted with
    | [] -> sorted
    | hd :: tl -> aux (insert hd sorted) tl
  in
  aux [] xs
;

A COUPLE MORE THOUGHTS ON LISTS
The (Single) List Programming Paradigm

• Recall that a list is either:
  – [ ] (the empty list)
  – v :: vs (a value v followed by a previously constructed list vs)

• Some examples:

let l0 = [];; (* length is 0 *)
let l1 = 1::l0;; (* length is 1 *)
let l2 = 2::l1;; (* length is 2 *)
let l3 = 3::l2;; (* length is 3 *)
...

let 10 = [];; (* length is 0 *)
let 11 = 1::10;; (* length is 1 *)
let 12 = 2::11;; (* length is 2 *)
let 13 = 3::12;; (* length is 3 *)
...
Consider the following picture. How long is the linked structure?

- Can we build a value with type `int list` to represent it?
Consider This Picture

- How long is it? **Infinitely long.**
- Can we build a value with type `int list` to represent it? **No!**
  - all values with type `int list` have finite length
Is it a good thing that the type list does not contain any infinitely long lists? Yes!

A terminating list-processing scheme:

```
let f (xs : int list) : int =
 match xs with
 [] -> ... do something not recursive ...
 | hd::tail -> ... f tail ...
;;
```

terminates because f only called recursively on smaller lists
let loop (xs : int list) : int =
   match xs with
   [] -> []
   | hd::tail -> hd + loop (0::tail)
;;

Does this program terminate?
let loop (xs : int list) : int =
  match xs with
  [] -> []
  | hd::tail -> hd + loop (0::tail)
;;

Does this program terminate? No! Why not? We call loop recursively on (0::tail). This list is the same size as the original list -- not smaller.
ML has a strong type system
  • ML types say a lot about the set of values that inhabit them

In this case, the tail of the list is always shorter than the whole list.

This makes it easy to write functions that terminate; it would be harder if you had to consider more cases, such as the case that the tail of a list might loop back on itself.

Note: Just because the list type excludes cyclic structures does not mean that an ML program can't build a cyclic data structure if it wants to. (We'll do that later in the course.)
I want to build a perfect HO-scale ("1/87") model train layout of my town.

IN YOUR BASEMENT? BAD IDEA. NEVER MAKE A LAYOUT OF THE AREA YOU'RE IN.

Why not?

BECAUSE IT'D INCLUDE A LITTLE 10" REPLICA OF YOUR HOUSE.

So? That'd be cool. I'd make tiny replicas of my rooms, my furniture—

—And your train layout?

SPIDER WEB

28 µm

COLD VIRUS

320 nm

THE MATRYOSHKA LIMIT: IT IS IMPOSSIBLE TO NEST MORE THAN SIX HO LAYOUTS

My God.

Yeah. It's the second rule of model train layouts: no nesting.

...What's the first rule?

"Do not talk about model train layouts. That rule was actually voted in by our friends and families. Philistines."
Example problems to practice

• Write a function to sum the elements of a list
  – sum [1; 2; 3] ==> 6

• Write a function to append two lists
  – append [1;2;3] [4;5;6] ==> [1;2;3;4;5;6]

• Write a function to reverse a list
  – rev [1;2;3] ==> [3;2;1]

• Write a function to a list of pairs into a pair of lists
  – split [(1,2); (3,4); (5,6)] ==> ([1;3;5], [2;4;6])

• Write a function that returns all prefixes of a list
  – prefixes [1;2;3] ==> [[]; [1]; [1;2]; [1;2;3]]
PROGRAMMING WITH NATURAL NUMBERS
Natural Numbers

• Natural numbers are a lot like lists
  – both can be defined recursively (inductively)
• A natural number $n$ is either
  – $0$, or
  – $m + 1$ where $m$ is a smaller natural number
• Functions over naturals $n$ must consider both cases
  – programming the base case $0$ is usually easy
  – programming the inductive case ($m+1$) will often involve recursive calls over smaller numbers
• OCaml doesn't have a built-in type "nat" so we will use "int" instead for now ...
(* precondition: n is a natural number
  return double the input *)

let rec double_nat (n : int) : int =

;;

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m
An Example

(* precondition: n is a natural number
return double the input *)

let rec double_nat (n : int) : int =
match n with
| 0 ->
| _   ->
;;

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m
An Example

(* precondition: n is a natural number
return double the input *)

let rec double_nat (n : int) : int =
  match n with
  | 0 -> 0
  | _  ->
  ;;

solve easy \textit{base case} first

consider:
what number is double 0?

By definition of naturals:
\begin{itemize}
  \item n = 0 or
  \item n = m+1 for some nat m
\end{itemize}
An Example

(* precondition: n is a natural number
   return double the input *)

let rec double_nat (n : int) : int =
  match n with
  | 0 -> 0
  | _ -> ????

; assume double_nat m is correct
where n = m+1

that’s the *inductive hypothesis*

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m
An Example

(* precondition: n is a natural number  
return double the input *)

let rec double_nat (n : int) : int =  
match n with  
| 0 -> 0  
| _ -> 2 + double_nat (n-1)  
;;

assume double_nat m is correct where n = m+1

that’s the inductive hypothesis

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m

I wish I had a pattern (m+1) ... but OCaml doesn’t have it. So I use n-1 to get m.
An Example

(* fail if the input is negative
  double the input if it is non-negative *)

let double (n : int) : int =

  let rec double_nat (n : int) : int =
    match n with
    0 -> 0
    | n -> 2 + double_nat (n-1)
  in

  if n < 0 then
    failwith "negative input!"
  else
    double_nat n
;;

nest double_nat so it can only be called by double

raises exception

protect precondition of double_nat by wrapping it with dynamic check

later we will see how to create a static guarantee using types
More than one way to decompose naturals

A natural $n$ is either:
- 0,
- $m+1$, where $m$ is a natural

unary decomposition

A natural $n$ is either:
- 0,
- 1,
- $m+2$, where $m$ is a natural

unary even/odd decomposition

A natural $n$ is either:
- 0,
- $m\times2$
- $m\times2+1$

binary decomposition
More than one way to decompose lists

A list $xs$ is either:
- $[]$, 
- $x::xs$, where $ys$ is a list

unary decomposition

A list $xs$ is either:
- $[]$, 
- $[x]$, 
- $x::y::ys$, where $ys$ is a list

unary even/odd decomposition

A natural $n$ is either:
- $0$, 
- $m*2$ 
- $m*2+1$

binary decomposition doesn't work out as smoothly for lists as lists have more information content: they contain structured elements
• Instead of while or for loops, functional programmers use recursive functions

• These functions operate by:
  – decomposing the input data
  – considering all cases
  – some cases are *base cases*, which do not require recursive calls
  – some cases are *inductive cases*, which require recursive calls on *smaller* arguments

• We've seen:
  – lists with cases:
    • (1) empty list, (2) a list with one or more elements
  – natural numbers with cases:
    • (1) zero (2) m+1
  – we'll see many more examples throughout the course
END