
Monads

COS 441 Slides 16

Agenda

• Last time:

– We looked at implementation strategies for languages with
errors, with printing and with storage

– We introduced the concept of a monad, which involves 3 things:

• What is the type of the result of evaluation?

– ie: what type defines the monad type class instance

• How do we evaluate a pure value and do nothing else?

– ie: how do we implement “return”

• How do we compose evaluation of two subexpressions

– ie: how do we implement “bind”: e >>= f

• This time:

– How do we implement monads for printing and for storage?

– Can we use monads more generally?

REVIEW:
THE ERROR MONAD

The Monad Typeclass

class Monad m where
 return :: a -> m a -- the null computation

 (>>=) :: m a -> (a -> m b) -> m b -- “bind” ie: composition

A useful derived operator:

 >> :: m a -> m b -> m b -- sequencing

 x >> y = (x >>= f) where f _ = y

the type

The Error Monad
• The error monad:

instance Monad Maybe where
 return v = Just v -- an error-free computation that
 -- does nothing but return a value v

 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 (Just v) >>= f = f v -- compose an error-free computation with f
 Nothing >>= f = Nothing -- compose an error-full computation with f

The Error Monad
• The error monad:

• Using the error monad:

instance Monad Maybe where
 return v = Just v -- an error-free computation that
 -- does nothing but return a value v

 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 (Just v) >>= f = f v -- compose an error-free computation with f
 Nothing >>= f = Nothing -- compose an error-full computation with f

eval (Val v) = return v

eval (Add e1 e2) = do
 x <- eval e1
 y <- eval e2
 return (x + y)

do
block

The Error Monad
• The error monad:

• Using the error monad:

instance Monad Maybe where
 return v = Just v -- an error-free computation that
 -- does nothing but return a value v

 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 (Just v) >>= f = f v -- compose an error-free computation with f
 Nothing >>= f = Nothing -- compose an error-full computation with f

eval (Val v) = return v

eval (Add e1 e2) = do
 x <- eval e1
 y <- eval e2
 return (x + y)

eval (Add e1 e2) =
 eval e1 >>= (\x.
 eval e1 >>= (\y.
 return (x + y)))

do
block

THE PRINTING MONAD

Recall Evaluation of Printing Expressions

data Expr3=
 Val3 Int
 | Add3 Expr3 Expr3
 | PrintThen String Expr3

eval3 :: Expr3 -> (String, Int)

eval3 (Val3 x) = ("", x)

eval3 (Add3 e1 e2) =
 let (s1,n1) = eval3 e1
 (s2,n2) = eval3 e2 in
 (s1 ++ s2, n1 + n2)

eval3 (PrintThen s e) =
 let (s', n) = eval3 e in (s ++ s', n)

null computation

plumbing that arises
from composing
computations that
manipulate strings

Recall Evaluation of Printing Expressions

data Expr3=
 Val3 Int
 | Add3 Expr3 Expr3
 | PrintThen String Expr3

eval3 :: Expr3 -> (String, Int)

eval3 (Val2 x) = ("", x)

eval3 (Add3 e1 e2) =
 let (s1,n1) = eval3 e1
 (s2,n2) = eval3 e2 in
 (s1 ++ s2, n1 + n2)

eval3 (PrintThen s e) =
 let (s', n) = eval3 e in (s ++ s', n)

instance Monad (String, a) where

intuitively, we would like
to make a monad from
just a pair of a String and
a return value a

however, we can only
attach type classes to
abstract types created
using the data or newtype
keywords

Recall Evaluation of Printing Expressions

data Expr3=
 Val3 Int
 | Add3 Expr3 Expr3
 | PrintThen String Expr3

eval3 :: Expr3 -> (String, Int)

eval3 (Val2 x) = ("", x)

eval3 (Add3 e1 e2) =
 let (s1,n1) = eval3 e1
 (s2,n2) = eval3 e2 in
 (s1 ++ s2, n1 + n2)

eval3 (PrintThen s e) =
 let (s', n) = eval3 e in (s ++ s', n)

newtype Output a = Out (String, a)

instance Monad Output where

Recall Evaluation of Printing Expressions

data Expr3=
 Val3 Int
 | Add3 Expr3 Expr3
 | PrintThen String Expr3

eval3 :: Expr3 -> (String, Int)

eval3 (Val2 x) = ("", x)

eval3 (Add3 e1 e2) =
 let (s1,n1) = eval3 e1
 (s2,n2) = eval3 e2 in
 (s1 ++ s2, n1 + n2)

eval3 (PrintThen s e) =
 let (s', n) = eval3 e in (s ++ s', n)

newtype Output a = Out (String, a)

instance Monad Output where
 return v = Out ("", v)

 (Out (s,v)) >>= f =
 let (s',v') = f v in (s ++ s', v')

Recall Evaluation of Printing Expressions

data Expr3=
 Val3 Int
 | Add3 Expr3 Expr3
 | PrintThen String Expr3

eval3 :: Expr3 -> (String, Int)

eval3 (Val2 x) = ("", x)

eval3 (Add3 e1 e2) =
 let (s1,n1) = eval3 e1
 (s2,n2) = eval3 e2 in
 (s1 ++ s2, n1 + n2)

eval3 (PrintThen s e) =
 let (s', n) = eval3 e in (s ++ s', n)

newtype Output a = Out (String, a)

instance Monad Output where
 return v = Out ("", v)

 (Out (s,v)) >>= f =
 let (s',v') = f v in (s ++ s', v')

 printme s = Out (s, ())

Recall Evaluation of Printing Expressions

data Expr3=
 Val3 Int
 | Add3 Expr3 Expr3
 | PrintThen String Expr3

eval3 :: Expr3 -> (String, Int)

eval3 (Val2 x) = ("", x)

eval3 (Add3 e1 e2) =
 let (s1,n1) = eval3 e1
 (s2,n2) = eval3 e2 in
 (s1 ++ s2, n1 + n2)

eval3 (PrintThen s e) =
 let (s', n) = eval3 e in (s ++ s', n)

newtype Output a = Out (String, a)

instance Monad Output where
 return v = Out ("", v)

 (Out (s,v)) >>= f =
 let (s',v') = f v in (s ++ s', v')

 printme s = Out (s, ())

eval3 (Val3 x) = return x

eval3 (Add3 e1 e2) = do
 n1 <- eval3 e1
 n2 <- eval3 e2
 return (n1 + n2)

eval3 (PrintThen s e) = do
 printme s
 eval3 e

Comparing Implementations of add

• The only difference is the type, which controls which monad
we are evaluating inside of, using the type class mechanism

• We have isolated the essence of evaluating addition,
independently of other side-effects such as errors or printing!

• This is deep! What an abstraction!

eval3 :: Expr3 -> Output Int

eval3 (Val3 x) = return x

eval3 (Add3 e1 e2) = do
 n1 <- eval3 e1
 n2 <- eval3 e2
 return (n1 + n2)

eval :: Expr1 -> Maybe Int

eval (Val1 x) = return x

eval (Add1 e1 e2) = do
 n1 <- eval e1
 n2 <- eval e2
 return (n1 + n2)

THE STATE MONAD

Recall Evaluation of a Stateful Language

data Expr4 = Val4 | Add4 Expr4 Expr4 | StoreThen Expr4 Expr4 | Read

type State = Int
type Result a = State -> (State, a)
eval4 :: Expr4 -> Result a

eval4 (Val4 x) = \s -> (s, x)

eval4(Read) = \s -> (s, s)

eval4(Add e1 e2) =
 let f1 = eval4 e1
 f2 = eval4 e2 in
 \s0 -> let (s1, n1) = f1 s0
 (s2, n2) = f2 s1 in
 (s2, n1 + n2)

eval4 (StoreThen e1 e2) =
 let f1 = eval4 e1
 f2 = eval4 e2 in
 \s0 -> let (_, n1) = f1 s0 in
 f2 n1

implementing reading
and writing requires
a state transformer

The State Monad

type State = Int
newtype SM a = Transform (State -> (State, a))

instance Monad (SM) where

The State Monad

type State = Int
newtype SM a = Transform (State -> (State, a))

instance Monad (SM) where
 return x = -- return :: a -> SM a

The State Monad

type State = Int
newtype SM a = Transform (State -> (State, a))

instance Monad (SM) where
 return x = Transform (\s -> (s,x)) -- return :: a -> SM a

The State Monad

type State = Int
newtype SM a = Transform (State -> (State, a))

instance Monad (SM) where
 return x = Transform (\s -> (s,x)) -- return :: a -> SM a

 (Transform t) >>= f = -- (>>=) :: SM a -> (a -> SM b) -> SM b
 -- t :: State -> (State, a), f :: a -> SM b

The State Monad

type State = Int
newtype SM a = Transform (State -> (State, a))

instance Monad (SM) where
 return x = Transform (\s -> (s,x)) -- return :: a -> SM a

 (Transform t) >>= f = -- (>>=) :: SM a -> (a -> SM b) -> SM b
 Transform -- t :: State -> (State, a) , f :: a -> SM b
 (\s -> ... -- s :: State

The State Monad

type State = Int
newtype SM a = Transform (State -> (State, a))

instance Monad (SM) where
 return x = Transform (\s -> (s,x)) -- return :: a -> SM a

 (Transform t) >>= f = -- (>>=) :: SM a -> (a -> SM b) -> SM b
 Transform -- t :: State -> (State, a) , f :: a -> SM b
 (\s -> -- s :: State
 let (s', x) = t s in -- x :: a
 let (Transform g) = f x in -- g :: State -> (State, b)
 g s')

The State Monad

type State = Int
newtype SM a = Transform (State -> (State, a))

instance Monad (SM) where
 return x = Transform (\s -> (s,x)) -- return :: a -> SM a

 (Transform t) >>= f = -- (>>=) :: SM a -> (a -> SM b) -> SM b
 Transform -- t :: State -> (State, a) , f :: a -> SM b
 (\s -> -- s :: State
 let (s', x) = t s in -- x :: a
 let (Transform g) = f x in -- g :: State -> (State, b)
 g s')

getState :: SM State
getState = Transform (\s -> (s, s))

setState :: State -> SM ()
setState s' = Transform (\s -> (s', ()))

The State Monad

type State = Int
newtype SM a = Transform (State -> (State, a))

instance monad (SM) where
 return x = Transform (\s -> (s,x))

 (Transform t) >>= f =
 Transform
 (\s ->
 let (s', x) = t s in
 let (Transform g) = f x in
 g s')

getState :: SM State
getState = Transform (\s -> (s, s))

setState :: State -> SM ()
setState s' = Transform (\s -> (s', ()))

eval4 (Val4 x) = return x

eval4 (Read) = ...

The State Monad

type State = Int
newtype SM a = Transform (State -> (State, a))

instance monad (SM) where
 return x = Transform (\s -> (s,x))

 (Transform t) >>= f =
 Transform
 (\s ->
 let (s', x) = t s in
 let (Transform g) = f x in
 g s')

getState :: SM State
getState = Transform (\s -> (s, s))

setState :: State -> SM ()
setState s' = Transform (\s -> (s', ()))

eval4 (Val4 x) = return x

eval4 (Read) = getState

The State Monad

type State = Int
newtype SM a = Transform (State -> (State, a))

instance monad (SM) where
 return x = Transform (\s -> (s,x))

 (Transform t) >>= f =
 Transform
 (\s ->
 let (s', x) = t s in
 let (Transform g) = f x in
 g s')

getState :: SM State
getState = Transform (\s -> (s, s))

setState :: State -> SM ()
setState s' = Transform (\s -> (s', ()))

eval4 (Val4 x) = return x

eval4 (Read) = getState

eval4 (Add e1 e2) =
 n1 <- eval4 e1
 n2 <- eval4 e2
 return (n1 + n2)

eval4 (StoreThen e1 e2) = ...

The State Monad

type State = Int
newtype SM a = Transform (State -> (State, a))

instance monad (SM) where
 return x = Transform (\s -> (s,x))

 (Transform t) >>= f =
 Transform
 (\s ->
 let (s', x) = t s in
 let (Transform g) = f x in
 g s')

getState :: SM State
getState = Transform (\s -> (s, s))

setState :: State -> SM ()
setState s' = Transform (\s -> (s', ()))

eval4 (Val4 x) = return x

eval4 (Read) = getState

eval4 (Add e1 e2) =
 n1 <- eval4 e1
 n2 <- eval4 e2
 return (n1 + n2)

eval4 (StoreThen e1 e2) =
 n1 <- eval4 e1
 setState n1
 eval e2

The State Makeover: Before and After

eval4 (Val4 x) = \s -> (s, x)

eval4(Read) = \s -> (s, s)

eval4(Add e1 e2) =
 let f1 = eval4 e1
 f2 = eval4 e2 in
 \s0 -> let (s1, n1) = f1 s0
 (s2, n2) = f2 s1 in
 (s2, n1 + n2)

eval4 (StoreThen e1 e2) =
 let f1 = eval4 e1
 f2 = eval4 e2 in
 \s0 -> let (_, n1) = f1 s0 in
 f2 n1

eval4 (Val4 x) = return x

eval4 (Read) = getState

eval4 (Add e1 e2) =
 n1 <- eval4 e1
 n2 <- eval4 e2
 return n1 + n2

eval4 (StoreThen e1 e2) =
 n1 <- eval4 e1
 setState n1
 eval e2

Before the state monad: After the state monad:

USING MONADS IN
GENERAL-PURPOSE COMPUTATIONS

Why Did Haskell Implementers Bother?

• Did the Haskell implementers really invent monads and a
special syntax just to make it easier to implement expression
evaluators?

– No! Of course not.

• Monads are used more generally to compose computations

Why Did Haskell Implementers Bother?

"Walker, David, Prof"

"Monsanto, Chris, TA"

"Kid, Wiz, Student"

"Wiz, Not"

""

inputs

Why Did Haskell Implementers Bother?

"Walker, David, Prof"

"Monsanto, Chris, TA"

"Kid, Wiz, Student"

"Wiz, Not"

""

Consider a simple string processing application:

csvConvert s = aux "" s
 where
 aux "" [] = []
 aux s [] = [reverse s]
 aux s (',' : cs) = reverse s : aux "" cs
 aux s (c : cs) = aux (c:s) cs

By the way, what is the type of csvConvert?

inputs

Why Did Haskell Implementers Bother?

"Walker, David, Prof"

"Monsanto, Chris, TA"

"Kid, Wiz, Student"

"Wiz, Not"

""

Consider a simple string processing application:

csvConvert s = aux "" s
 where
 aux "" [] = []
 aux s [] = [reverse s]
 aux s (',' : cs) = reverse s : aux "" cs
 aux s (c : cs) = aux (c:s) cs

Add a list indexing function:

index :: [a] -> Int -> Maybe a
index [] i = Nothing
index (x:xs) 0 = Just x
index (x:xs) i = index xs (i-1)

inputs

Why Did Haskell Implementers Bother?

"Walker, David, Prof"

"Monsanto, Chris, TA"

"Kid, Wiz, Student"

"Wiz, Not"

""

csvConvert :: String -> [String]
index :: [a] -> Int -> Maybe a

getall :: String -> Maybe (String, String, String)
getall s = inputs

Why Did Haskell Implementers Bother?

"Walker, David, Prof"

"Monsanto, Chris, TA"

"Kid, Wiz, Student"

"Wiz, Not"

""

csvConvert :: String -> [String]
index :: [a] -> Int -> Maybe a

getall :: String -> Maybe (String, String, String)
getall s =
 let items = csvConvert s in
 case index items 0 of
 Nothing -> Nothing
 Just last ->
 case index items 1 of
 Nothing -> Nothing
 Just first ->
 case index items 2 of
 Nothing -> Nothing
 Just role -> Just (last, first, role)

inputs

red is useful computation
blue is plumbing
so much plumbing!!!
plumbing just like the
plumbing in our evaluator!

Why Did Haskell Implementers Bother?

"Walker, David, Prof"

"Monsanto, Chris, TA"

"Kid, Wiz, Student"

"Wiz, Not"

""

csvConvert :: String -> [String]
index :: [a] -> Int -> Maybe a

getall :: String -> Maybe (String, String, String)
getall s = do
 let items = csvConvert s
 last <- index items 0
 first <- index items 1
 role <- index items 2
 return (first, last, role)

inputs

the Maybe monad takes care of the
error-propagation plumbing!

Programming with Errors

• In general, we might have a whole bunch of functions that can
produce errors:

• We can string them together inside a monad that does error-
propagation for us :

getHead :: [a] -> Maybe a
getTail :: [a] -> Maybe [a]
getStart :: [a] -> Maybe [a]
getLast :: [a] -> Maybe a

exchange :: [a] -> Maybe [a]

exchange xs =do
 x <- getHead xs
 ys <- getTail xs
 zs <- getStart ys
 z <- getLast ys
 return (z ++ zs ++ x)

PROGRAMMING WITH STATE
IN HASKELL

Programming with State

• In Java, a unique string generator:

• An analogous functional Haskell program:

static int n = 0;

String gen () {
 String s = "x" + Integer.toString(n);
 n = n + 1;
 return s;
}

global variable no parameters

gen :: Int -> (String, Int)
gen n = ("x" ++ show n, n + 1)

global variable
becomes
parameter
and result

Using State

• In Java (or C or most other imperative languages):

• In Haskell:

• In functional languages, you have to manually thread the state
through the program. Yuck! No wonder no one uses them!

String s1, s2, s3;

s1 = gen()
s2 = gen()
s3 = gen()

let n0 = 0 in
let (s1, n1) = gen n0 in
let (s2, n2) = gen n1 in
let (s3, n3) = gen n3 in
….

plumbing!

A Generic State Monad

data ST s a = S (s -> (a, s))

apply :: ST s a -> s -> (a, s)
apply (S f) x = f x

A Generic State Monad

data ST s a = S (s -> (a, s))

apply :: ST s a -> s -> (a, s)
apply (S f) x = f x

instance Monad (ST s) where -- type State = ST s
 return x = S (\s -> (x,s)) -- return :: a -> State a

 st >>= f = S transform -- (>>=) :: State a -> (a -> State b) -> State b
 where transform s =
 let (x,s') = apply st s in
 apply (f x) s'

Using the State Monad

data Tree a = Leaf a | Node (Tree a) (Tree a)

tree :: Tree Char
tree = Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c')

type State = ST Int -- Int is the kind of state we'll use
gen :: State String
gen = S (\n -> ("x" ++ show n, n+1))

treeLabel :: Tree a -> State (Tree (String, a))

Using the State Monad

data Tree a = Leaf a | Node (Tree a) (Tree a)

tree :: Tree Char
tree = Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c')

type State = ST Int -- Int is the kind of state we'll use
gen :: State String
gen = S (\n -> ("x" ++ show n, n+1))

treeLabel :: Tree a -> State (Tree (String, a))

treeLabel (Leaf x) = do
 s <- gen
 return (Leaf (s, x))

treeLabel (Node l r) = do
 l' <- mlabel l
 r' <- mlabel r
 return (Node l' r')

Using the State Monad

data Tree a = Leaf a | Node (Tree a) (Tree a)

tree :: Tree Char
tree = Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c')

type State = ST Int -- Int is the kind of state we'll use
gen :: State String
gen = S (\n -> ("x" ++ show n, n+1))

treeLabel :: Tree a -> State (Tree (String, a))

treeLabel (Leaf x) = do
 s <- gen
 return (Leaf (s, x))

treeLabel (Node l r) = do
 l' <- mlabel l
 r' <- mlabel r
 return (Node l' r')

runST :: State a -> a
runST s = fst (apply s 0)

treelab :: Tree a -> Tree (String, a)
treelab t =
 runST (treeLabel t)

BUILT-IN STATE

IO Monad

• Haskell uses monads itself to structure its own evaluation:

main :: IO Char

main = do
 putStr “Hello”
 c <- getChar
 putStr

IO is a complex monad combining:

• printing to standard out
• reading files
• writing files
• reading command-line args
• writing mutable references (state)
• reading mutable references
• errors
• exceptions
• …
• all of the "effects" you find in
ordinary languages

IO Monad

• Intuitively:

• Using the IO monad allows us to modify the "world"

– files

– stdout

– …

data ST s a = S (s -> (a, s))

type World = …

newtype IO a = ST World a

Built-in Mutable References

import Data.IORef as R

new = R.newIORef -- create a new mutable object with 1 field
get = R.readIORef -- read out the stored object
r != n = R.writeIORef r n -- store n into reference r

Built-in Mutable References

import Data.IORef as R

new = R.newIORef -- create a new mutable object with 1 field
get = R.readIORef -- read out the stored object
r != n = R.writeIORef r n -- store n into reference r

mkgenerator :: IO (IO String)

mkgenerator = do
 r <- new 0
 let gen = do n <- get r
 r != (n+1)
 return ("x" ++ show n))
 return gen

Built-in Mutable References

mkgenerator = do
 r <- new 0
 let gen = do n <- get r
 r != (n+1)
 return ("x" ++ show n))
 return gen

mynames = do
 gen <- mkgenerator
 x1 <- gen
 y1 <- gen
 gen' <- mkgenerator
 x2 <- gen'
 y2 <- gen'
 z1 <- gen
 return ([x1,y1,z1], [x2,y2])

in ghci:

*Main> mynames
(["x0","x1","x2"],["x0","x1"])

Mutable Data Structures

• A pure, functional binary search tree (not mutable):

• A tree with mutable leaves:

BST key val = Null | Node key val (Tree a) (Tree a)

import Data.IORef

MBST key val = Null | Node key (IORef val) (Tree a) (Tree a)

single key val = do
 r <- new v
 return (Node k r Null Null)

Mutable Data Structures

• A pure, functional binary search tree (not mutable):

• A tree with mutable leaves:

BST key val = Null | Node key val (Tree a) (Tree a)

import Data.IORef

MBST key val = Null | Node key (IORef val) (Tree a) (Tree a)

update :: (Ord key) => MBST key val -> key -> val -> IO Bool
update Null k v = return False
update (Node k' r' left right) k v =
 if k' == k then
 do {r' != v; return True}
 else if k' < k then
 update left k v
 else
 update right k v

return true if update succeeds
return false if not

Get me out of here!

• When we built our own state monad, we could extract the
final value and throw away the state:

• When we work within the state monad, we can't do that.

• There is no safe function:

• But you can use unsafe IO:

See: http://www.haskell.org/ghc/docs/latest/html/libraries/base/System-IO-Unsafe.html

runST :: State a -> a
runST s = fst (apply s 0)

performIO :: IO a -> a

import System.IO.Unsafe

unsafePerformIO :: IO a -> a

SUMMARY

Summary

• We learned several things:

– We can simplify the implementation of evaluators by using
monads

– We can simplify implementation and composition of more general
computations using monads

• errors using maybe

• string creation (ie "printing")

• state

• …

– Haskell has some built-in monads for handling effects, the most
common being the IO monad

• The latter is at the core of how Haskell handles effects and yet
still acts like a functional program and preserves powerful
reasoning principles involving substitution of equals for equals

