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Agenda 

• Last time: 

– We looked at implementation strategies for languages with 
errors, with printing and with storage 

– We introduced the concept of a monad, which involves 3 things: 

• What is the type of the result of evaluation? 

– ie: what type defines the monad type class instance 

• How do we evaluate a pure value and do nothing else? 

– ie: how do we implement “return” 

• How do we compose evaluation of two subexpressions 

– ie: how do we implement “bind”:  e >>= f 

 

• This time: 

– How do we implement monads for printing and for storage? 

– Can we use monads more generally? 



REVIEW: 
THE ERROR MONAD 



The Monad Typeclass 

class Monad m where 
  return :: a -> m a  -- the null computation 
   
  (>>=) :: m a -> (a -> m b) -> m b  -- “bind” ie: composition 
 
 
A useful derived operator: 
 
  >> :: m a -> m b -> m b  -- sequencing 
 
  x >> y = (x >>= f)    where f _ = y  
 

the type 



The Error Monad 
• The error monad: 

 

 

 

 

 

 

instance Monad Maybe where 
  return v = Just v  -- an error-free computation that 
    -- does nothing but return a value v 
   
      -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b 
  (Just v) >>= f  = f v   -- compose an error-free computation with f 
  Nothing >>= f = Nothing  -- compose an error-full computation with f 
 



The Error Monad 
• The error monad: 

 

 

 

 

 

 

• Using the error monad: 

instance Monad Maybe where 
  return v = Just v  -- an error-free computation that 
    -- does nothing but return a value v 
   
      -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b 
  (Just v) >>= f  = f v   -- compose an error-free computation with f 
  Nothing >>= f = Nothing  -- compose an error-full computation with f 
 

eval (Val v) = return v 
           
eval (Add e1 e2) = do 
    x <- eval e1  
    y <- eval e2 
    return (x + y) 

do 
block 



The Error Monad 
• The error monad: 

 

 

 

 

 

 

• Using the error monad: 

instance Monad Maybe where 
  return v = Just v  -- an error-free computation that 
    -- does nothing but return a value v 
   
      -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b 
  (Just v) >>= f  = f v   -- compose an error-free computation with f 
  Nothing >>= f = Nothing  -- compose an error-full computation with f 
 

eval (Val v) = return v 
           
eval (Add e1 e2) = do 
    x <- eval e1  
    y <- eval e2 
    return (x + y) 

eval (Add e1 e2) = 
  eval e1 >>= (\x.  
  eval e1 >>= (\y. 
  return (x + y))) 

do 
block 



THE PRINTING MONAD 



Recall Evaluation of Printing Expressions 

data Expr3=  
       Val3 Int                             
    | Add3 Expr3 Expr3              
    | PrintThen String Expr3    

eval3 :: Expr3 -> (String, Int) 
 
eval3 (Val3 x) = ("", x)                                
 
eval3 (Add3 e1 e2) = 
     let (s1,n1) = eval3 e1 
           (s2,n2) = eval3 e2 in 
     (s1 ++ s2, n1 + n2)              
 
eval3 (PrintThen s e) = 
     let (s', n) = eval3 e in (s ++ s', n)  

null computation 

plumbing that arises 
from composing 
computations that 
manipulate strings 



Recall Evaluation of Printing Expressions 

data Expr3=  
       Val3 Int                             
    | Add3 Expr3 Expr3              
    | PrintThen String Expr3    

eval3 :: Expr3 -> (String, Int) 
 
eval3 (Val2 x) = ("", x)                                
 
eval3 (Add3 e1 e2) = 
     let (s1,n1) = eval3 e1 
           (s2,n2) = eval3 e2 in 
     (s1 ++ s2, n1 + n2)              
 
eval3 (PrintThen s e) = 
     let (s', n) = eval3 e in (s ++ s', n)  

 
instance Monad (String, a) where 
 
  

intuitively, we would like 
to make a monad from 
just a pair of a String and  
a return value a 
 
however, we can only 
attach type classes to 
abstract types created 
using the data or newtype 
keywords 



Recall Evaluation of Printing Expressions 

data Expr3=  
       Val3 Int                             
    | Add3 Expr3 Expr3              
    | PrintThen String Expr3    

eval3 :: Expr3 -> (String, Int) 
 
eval3 (Val2 x) = ("", x)                                
 
eval3 (Add3 e1 e2) = 
     let (s1,n1) = eval3 e1 
           (s2,n2) = eval3 e2 in 
     (s1 ++ s2, n1 + n2)              
 
eval3 (PrintThen s e) = 
     let (s', n) = eval3 e in (s ++ s', n)  

newtype Output a = Out (String, a) 
 
instance Monad Output where 
 
  



Recall Evaluation of Printing Expressions 
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Recall Evaluation of Printing Expressions 

data Expr3=  
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eval3 :: Expr3 -> (String, Int) 
 
eval3 (Val2 x) = ("", x)                                
 
eval3 (Add3 e1 e2) = 
     let (s1,n1) = eval3 e1 
           (s2,n2) = eval3 e2 in 
     (s1 ++ s2, n1 + n2)              
 
eval3 (PrintThen s e) = 
     let (s', n) = eval3 e in (s ++ s', n)  

newtype Output a = Out (String, a) 
 
instance Monad Output where 
  return v = Out ("", v) 
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  printme s = Out (s, ())    
     



Recall Evaluation of Printing Expressions 

data Expr3=  
       Val3 Int                             
    | Add3 Expr3 Expr3              
    | PrintThen String Expr3    

eval3 :: Expr3 -> (String, Int) 
 
eval3 (Val2 x) = ("", x)                                
 
eval3 (Add3 e1 e2) = 
     let (s1,n1) = eval3 e1 
           (s2,n2) = eval3 e2 in 
     (s1 ++ s2, n1 + n2)              
 
eval3 (PrintThen s e) = 
     let (s', n) = eval3 e in (s ++ s', n)  

newtype Output a = Out (String, a) 
 
instance Monad Output where 
  return v = Out ("", v) 
   
  (Out (s,v)) >>= f  =  
      let (s',v') = f v in (s ++ s', v')  
 
  printme s = Out (s, ())    
     

eval3 (Val3 x) = return x                                
 
eval3 (Add3 e1 e2) = do 
     n1 <- eval3 e1 
     n2 <- eval3 e2 
     return (n1 + n2)   
            
eval3 (PrintThen s e) = do 
     printme s 
     eval3 e 
      



Comparing Implementations of add 

 

 

 

 

 

 

 

 

• The only difference is the type, which controls which monad 
we are evaluating inside of, using the type class mechanism 

• We have isolated the essence of evaluating addition, 
independently of other side-effects such as errors or printing! 

• This is deep!  What an abstraction! 

eval3 :: Expr3 -> Output Int 
 
eval3 (Val3 x) = return x                                
 
eval3 (Add3 e1 e2) = do 
     n1 <- eval3 e1 
     n2 <- eval3 e2 
     return (n1 + n2)   
           
      

eval :: Expr1 -> Maybe Int 
 
eval (Val1 x) = return x 
           
eval (Add1 e1 e2) = do 
    n1 <- eval e1 
    n2 <- eval e2 
    return (n1 + n2)  
 



THE STATE MONAD 



Recall Evaluation of a Stateful Language 

data Expr4 =  Val4 | Add4 Expr4 Expr4 | StoreThen Expr4 Expr4 | Read 

type State = Int 
type Result a = State -> (State, a) 
eval4 :: Expr4 -> Result a 
 
eval4 (Val4 x) = \s -> (s, x)                                
 
eval4(Read) = \s -> (s, s) 
      
eval4(Add e1 e2) =  
    let f1 = eval4 e1  
          f2 = eval4 e2 in 
    \s0 -> let (s1, n1) = f1 s0 
                     (s2, n2) = f2 s1 in 
                (s2, n1 + n2) 
   

eval4 (StoreThen e1 e2) = 
     let f1 = eval4 e1 
           f2 = eval4 e2 in 
     \s0 -> let (_, n1) = f1 s0 in 
                 f2 n1 
 

implementing reading 
and writing requires 
a state transformer 



The State Monad 

type State = Int 
newtype SM a = Transform (State -> (State, a)) 
 
instance Monad (SM) where 



The State Monad 

type State = Int 
newtype SM a = Transform (State -> (State, a)) 
 
instance Monad (SM) where 
    return x =     -- return :: a -> SM a  



The State Monad 
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The State Monad 

type State = Int 
newtype SM a = Transform (State -> (State, a)) 
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The State Monad 
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The State Monad 

type State = Int 
newtype SM a = Transform (State -> (State, a)) 
 
instance Monad (SM) where 
    return x = Transform (\s -> (s,x))                 -- return :: a -> SM a  
                  
    (Transform t) >>= f =                                      -- (>>=) :: SM a  -> (a -> SM b) -> SM b 
        Transform     -- t :: State -> (State, a) , f :: a -> SM b  
            (\s ->     -- s :: State 
                  let (s', x) = t s in   -- x :: a 
                  let (Transform g) = f x in                   -- g :: State -> (State, b) 
                  g s') 
 
getState :: SM State 
getState = Transform (\s -> (s, s)) 
 
setState :: State -> SM () 
setState s' = Transform (\s -> (s', ())) 



The State Monad 
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eval4 (Read) = ... 
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The State Monad 

type State = Int 
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The State Monad 

type State = Int 
newtype SM a = Transform (State -> (State, a)) 
 
instance monad (SM) where 
    return x = Transform (\s -> (s,x))                  
                  
    (Transform t) >>= f =                                       
        Transform       
            (\s ->      
                  let (s', x) = t s in    
                  let (Transform g) = f x in  
                  g s') 
 
getState :: SM State 
getState = Transform (\s -> (s, s)) 
 
setState :: State -> SM () 
setState s' = Transform (\s -> (s', ())) 

eval4 (Val4 x) = return x                             
 
eval4 (Read) = getState 
      
eval4 (Add e1 e2) =  
    n1 <- eval4 e1  
    n2 <- eval4 e2 
    return (n1 + n2) 
 
eval4 (StoreThen e1 e2) = 
    n1 <- eval4 e1 
    setState n1 
    eval e2 
 



The State Makeover:  Before and After 

eval4 (Val4 x) = \s -> (s, x)                                
 
eval4(Read) = \s -> (s, s) 
      
eval4(Add e1 e2) =  
    let f1 = eval4 e1  
          f2 = eval4 e2 in 
    \s0 -> let (s1, n1) = f1 s0 
                     (s2, n2) = f2 s1 in 
                (s2, n1 + n2) 
   
eval4 (StoreThen e1 e2) = 
     let f1 = eval4 e1 
           f2 = eval4 e2 in 
     \s0 -> let (_, n1) = f1 s0 in 
                 f2 n1 
 

eval4 (Val4 x) = return x                             
 
eval4 (Read) = getState 
      
eval4 (Add e1 e2) =  
    n1 <- eval4 e1  
    n2 <- eval4 e2 
    return n1 + n2 
 
eval4 (StoreThen e1 e2) = 
    n1 <- eval4 e1 
    setState n1 
    eval e2 
 

Before the state monad: After the state monad: 



USING MONADS IN  
GENERAL-PURPOSE COMPUTATIONS 



Why Did Haskell Implementers Bother? 

• Did the Haskell implementers really invent monads and a 
special syntax just to make it easier to implement expression 
evaluators? 

– No!  Of course not. 

• Monads are used more generally to compose computations 



Why Did Haskell Implementers Bother? 

"Walker, David, Prof" 
 
"Monsanto, Chris, TA" 
 
"Kid, Wiz, Student" 
 
"Wiz, Not"          
 
"" 

inputs 



Why Did Haskell Implementers Bother? 

"Walker, David, Prof" 
 
"Monsanto, Chris, TA" 
 
"Kid, Wiz, Student" 
 
"Wiz, Not"          
 
"" 

Consider a simple string processing application: 
 
csvConvert s = aux "" s 
   where 
      aux "" [] = [] 
      aux s   []          = [reverse s] 
      aux s   (',' : cs) = reverse s : aux "" cs  
      aux s   (c : cs)   = aux (c:s) cs 
 
By the way, what is the type of csvConvert? 

inputs 



Why Did Haskell Implementers Bother? 

"Walker, David, Prof" 
 
"Monsanto, Chris, TA" 
 
"Kid, Wiz, Student" 
 
"Wiz, Not"          
 
"" 

Consider a simple string processing application: 
 
csvConvert s = aux "" s 
   where 
      aux "" [] = [] 
      aux s   []          = [reverse s] 
      aux s   (',' : cs) = reverse s : aux "" cs  
      aux s   (c : cs)   = aux (c:s) cs 
 
Add a list indexing function: 
 
index :: [a] -> Int -> Maybe a 
index []           i  = Nothing 
index (x:xs)    0  = Just x 
index (x:xs)    i  = index xs (i-1) 

inputs 



Why Did Haskell Implementers Bother? 

"Walker, David, Prof" 
 
"Monsanto, Chris, TA" 
 
"Kid, Wiz, Student" 
 
"Wiz, Not"          
 
"" 

csvConvert :: String -> [String] 
index :: [a] -> Int -> Maybe a 
 
getall :: String -> Maybe (String, String, String) 
getall s =  inputs 



Why Did Haskell Implementers Bother? 

"Walker, David, Prof" 
 
"Monsanto, Chris, TA" 
 
"Kid, Wiz, Student" 
 
"Wiz, Not"          
 
"" 

csvConvert :: String -> [String] 
index :: [a] -> Int -> Maybe a 
 
getall :: String -> Maybe (String, String, String) 
getall s =  
    let items = csvConvert s in 
    case index items 0 of 
        Nothing -> Nothing 
        Just last ->  
             case index items 1 of 
                  Nothing -> Nothing 
                  Just first ->  
                       case index items 2 of 
                            Nothing -> Nothing 
                            Just role -> Just (last, first, role)   

inputs 

red is useful computation 
blue is plumbing 
so much plumbing!!! 
plumbing just like the  
plumbing in our evaluator! 



Why Did Haskell Implementers Bother? 

"Walker, David, Prof" 
 
"Monsanto, Chris, TA" 
 
"Kid, Wiz, Student" 
 
"Wiz, Not"          
 
"" 

csvConvert :: String -> [String] 
index :: [a] -> Int -> Maybe a 
 
getall :: String -> Maybe (String, String, String) 
getall s = do 
    let items = csvConvert s  
    last <- index items 0 
    first <- index items 1 
    role <- index items 2 
    return (first, last, role) 

inputs 

the Maybe monad takes care of the  
error-propagation plumbing! 



Programming with Errors 

• In general, we might have a whole bunch of functions that can 
produce errors: 

 

 

 

 

• We can string them together inside a monad that does error-
propagation for us : 

getHead :: [a]  -> Maybe a 
getTail :: [a] -> Maybe [a] 
getStart :: [a] -> Maybe [a] 
getLast :: [a] -> Maybe a 

exchange :: [a] -> Maybe [a] 
 
exchange xs =do 
   x    <- getHead xs 
   ys  <- getTail  xs 
   zs  <- getStart ys 
   z    <- getLast ys 
   return (z ++ zs ++ x) 
 



PROGRAMMING WITH STATE 
IN HASKELL 



Programming with State 

• In Java, a unique string generator: 

 

 

 

 

 

 

 

• An analogous functional Haskell program: 

static int  n = 0; 
  
String gen () { 
       String s = "x" + Integer.toString(n); 
       n = n + 1; 
       return s; 
} 

global variable no parameters 

gen :: Int -> (String, Int) 
gen n = ("x" ++ show n, n + 1) 

global variable 
becomes 
parameter 
and result 



Using State 

• In Java (or C or most other imperative languages): 

 

 

 

 

 

• In Haskell: 

 

 

 

 

 

• In functional languages, you have to manually thread the state 
through the program.  Yuck!  No wonder no one uses them! 

 

String s1, s2, s3; 
 
s1 = gen() 
s2 = gen() 
s3 = gen() 

let n0 = 0 in 
let (s1, n1) = gen n0 in 
let (s2, n2) = gen n1 in 
let (s3, n3) = gen n3 in 
…. 

plumbing! 



A Generic State Monad 

data ST s a = S (s -> (a, s)) 
 
apply        :: ST s a -> s -> (a, s) 
apply (S f) x = f x 
 
 



A Generic State Monad 

data ST s a = S (s -> (a, s)) 
 
apply        :: ST s a -> s -> (a, s) 
apply (S f) x = f x 
 
instance Monad (ST s) where                   -- type State = ST s 
   return x   = S (\s -> (x,s))                         -- return :: a -> State a 
 
 
   st >>= f   = S transform                            -- (>>=)  :: State a -> (a -> State b) -> State b 
                            where transform s =  
                        let (x,s') = apply st s in  
                        apply (f x) s' 
 



Using the State Monad 

data Tree a = Leaf a | Node (Tree a) (Tree a) 
 
tree :: Tree Char 
tree = Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c') 
 
type State = ST Int        -- Int is the kind of state we'll use 
gen :: State String 
gen = S (\n -> ("x" ++ show n, n+1)) 
 
treeLabel :: Tree a -> State (Tree (String, a)) 
 
 



Using the State Monad 

data Tree a = Leaf a | Node (Tree a) (Tree a) 
 
tree :: Tree Char 
tree = Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c') 
 
type State = ST Int        -- Int is the kind of state we'll use 
gen :: State String 
gen = S (\n -> ("x" ++ show n, n+1)) 
 
treeLabel :: Tree a -> State (Tree (String, a)) 
 
treeLabel (Leaf x) = do  
    s <- gen 
    return (Leaf (s, x)) 
 
treeLabel (Node l r) = do  
    l' <- mlabel l 
    r' <- mlabel r 
    return (Node l' r') 



Using the State Monad 

data Tree a = Leaf a | Node (Tree a) (Tree a) 
 
tree :: Tree Char 
tree = Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c') 
 
type State = ST Int        -- Int is the kind of state we'll use 
gen :: State String 
gen = S (\n -> ("x" ++ show n, n+1)) 
 
treeLabel :: Tree a -> State (Tree (String, a)) 
 
treeLabel (Leaf x) = do  
    s <- gen 
    return (Leaf (s, x)) 
 
treeLabel (Node l r) = do  
    l' <- mlabel l 
    r' <- mlabel r 
    return (Node l' r') 

runST :: State a -> a 
runST s = fst (apply s 0) 
 
treelab :: Tree a -> Tree (String, a) 
treelab t = 
  runST (treeLabel t) 



BUILT-IN STATE 



IO Monad 

• Haskell uses monads itself to structure its own evaluation: 

main :: IO Char 
 
main = do  
    putStr “Hello” 
    c <- getChar 
    putStr  

IO is a complex monad combining: 
 
• printing to standard out 
• reading files 
• writing files 
• reading command-line args 
• writing mutable references (state) 
• reading mutable references 
• errors 
• exceptions 
• … 
• all of the "effects" you find in 
ordinary languages 
 



IO Monad 

• Intuitively: 

 

 

 

 

 

 

• Using the IO monad allows us to modify the "world" 

– files 

– stdout 

– … 

data ST s a = S (s -> (a, s)) 
 
type World = … 
 
newtype IO a = ST World a 



Built-in Mutable References 

import Data.IORef as R 
 
new  = R.newIORef                       -- create a new mutable object with 1 field 
get       = R.readIORef                     -- read out the stored object 
r != n   = R.writeIORef r n  -- store n into reference r 
 



Built-in Mutable References 

import Data.IORef as R 
 
new  = R.newIORef                       -- create a new mutable object with 1 field 
get  = R.readIORef                    -- read out the stored object 
r != n  = R.writeIORef r n         -- store n into reference r 
 
mkgenerator :: IO (IO String) 
 
mkgenerator = do 
  r <- new 0 
  let gen = do n <- get r 
                         r != (n+1) 
                         return ("x" ++ show n)) 
  return gen 



Built-in Mutable References 

mkgenerator = do 
  r <- new 0 
  let gen = do n <- get r 
                         r != (n+1) 
                         return ("x" ++ show n)) 
  return gen 

mynames = do 
  gen <- mkgenerator 
  x1 <- gen 
  y1 <- gen 
  gen' <- mkgenerator 
  x2 <- gen' 
  y2 <- gen' 
  z1 <- gen 
  return ([x1,y1,z1], [x2,y2]) 
 
 
in ghci: 
 
*Main> mynames 
(["x0","x1","x2"],["x0","x1"]) 



Mutable Data Structures 

• A pure, functional binary search tree (not mutable): 

 

 

• A tree with mutable leaves: 

BST key val = Null | Node key val (Tree a) (Tree a) 

import Data.IORef 
 
MBST key val = Null | Node key (IORef val) (Tree a) (Tree a) 
 
single key val = do 
   r <- new v 
   return (Node k r Null Null)   



Mutable Data Structures 

• A pure, functional binary search tree (not mutable): 

 

 

• A tree with mutable leaves: 

BST key val = Null | Node key val (Tree a) (Tree a) 

import Data.IORef 
 
MBST key val = Null | Node key (IORef val) (Tree a) (Tree a) 
 
update :: (Ord key) => MBST key val -> key -> val -> IO Bool 
update Null k v = return False 
update (Node k' r' left right) k v = 
  if k' == k then  
    do {r' != v; return True} 
  else if k' < k then  
    update left k v 
  else  
    update right k v 

return true if update succeeds 
return false if not 



Get me out of here! 

• When we built our own state monad, we could extract the 
final value and throw away the state: 

 

 

 

• When we work within the state monad, we can't do that. 

• There is no safe function:  

 

 

• But you can use unsafe IO: 

 

 

 
See:  http://www.haskell.org/ghc/docs/latest/html/libraries/base/System-IO-Unsafe.html 

runST :: State a -> a 
runST s = fst (apply s 0) 
 

performIO :: IO a -> a 

import System.IO.Unsafe 
 
unsafePerformIO :: IO a -> a 



SUMMARY 



Summary 

• We learned several things: 

– We can simplify the implementation of evaluators by using 
monads 

– We can simplify implementation and composition of more general 
computations using monads 

• errors using maybe 

• string creation (ie "printing") 

• state 

• … 

– Haskell has some built-in monads for handling effects, the most 
common being the IO monad 

• The latter is at the core of how Haskell handles effects and yet 
still acts like a functional program and preserves powerful 
reasoning principles involving substitution of equals for equals 

 


