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read:  3.4, 5.1, 5.2, 3.5 Pierce 

 



the lambda calculus 

• Originally, the lambda calculus was developed as a logic by 
Alonzo Church in 1932 at Princeton 

– Church says: “There may, indeed, be other applications of the 
system than its use as a logic.” 

– Dave says: “There sure are!” 

• The lambda calculus is a language of pure functions 

• It serves as the semantic basis for languages like Haskell that 
are based around functions, but also pretty much every other 
language that includes some notion of function  

• It is just as powerful as a Turing Machine (lambda terms can 
compute anything a Turing Machine can) and provides an 
alternate basis for understanding computation 

 

• Pierce Text, Chap 3, 5 



Operational Semantics 

• Denotational semantics for a language provides a function 
that translates from program syntax into mathematical 
objects like sets, functions, lists or even some other 
programming language 

– a denotational semantics acts like a compiler 

• Operational semantics works by rewriting or executing 
programs step-by-step 

– it uses only one program syntax to explain how a program runs 

• As languages become more complicated, it is often easier to 
define operational semantics than denotational semantics  

– it requires less math to do so 

– but you might not be able to prove particularly strong theorems 
using the semantics 

• Starting with the lambda calculus, we will look at operational 
semantics 



Operational Rules 

• Operational rules typically look like this: 

 

 

 

 

• Read prog --> prog' as prog "steps to" prog' 

• prog --> prog' is a new kind of judgement (aka 
property/assertion/claim) 

condition1 …. conditionk         subprogram --> subprogram' 
                                  prog --> prog' 



Operational Rules 

• Operational rules typically look like this: 

 

 

 

 

• Read prog --> prog' as prog "steps to" prog' 

• prog --> prog' is a new kind of judgement (aka 
property/assertion/claim) 

• An example, defining evaluation of if statements: 

condition1 …. conditionk         subprogram --> subprogram' 
                                  prog --> prog' 

if True then c1 else c2 --> c1 if  False then c1 else c2 --> c2 

                                e --> e' 
if e then c1 else c2 --> if  e' then c1 else c2 



LAMBDA CALCULUS 



syntax 

 

 

e ::= x   (a variable)  

      | \x.e  (a function; in Haskell: \x -> e)  

      | e e  (function application) 

 

 

[ “\” will be written “” in a nice font and pronounced "lambda"] 



syntax 

• the identity function: 
• \x.x 

• 2 notational conventions: 
• applications associate to the left (like in Haskell):   

• “y z x”     is   “(y z) x” 

• the body of a lambda extends as far as possible to the right: 

• “\x.x \z.x z x”     is     “\x.(x \z.(x z x))” 

 



terminology 

\x.x x 

 

 

 

\x.x y 

the scope of x is the entire body of the function 
(ie: the x’s that appear in the body of the function refer to that particular argument) 

x is bound 
in the term \x.x y  

y is free in the term \x.x y 



scope again, shadowed names 

\x.\x. x x 

 

 

\y.\x. x y 

 

 

 

 

 

 

the scope of the  
right-most x includes 
the body of the function; 
the scope of the left-most 
x does not 

if you wanted to 
refer to the first x, 
above, well you can’t. 
You should have chosen 
a different variable name 
in your programs 

Important note:  The names of bound variables don’t matter to 
the semantics of lambda calculus programs, so you can rename 
bound variables (provided you do so consistently) whenever you want. 

\x.x        ==          \y.y        ==        \z.z 

\x.\y.x y      ==          \y.\x.y x       ==        \z.\w. z w 



Call-by-value operational semantics 

• single-step, call-by-value operational semantics: 

 

                                           e --> e’ 

 

• In English, we say “e steps to e’” 

 

• This is a new kind of “judgement”, just like a Hoare triple was a 
judgement and there were rules that allowed us to conclude 
when it was a valid judgement 



Call-by-value operational semantics 

• single-step, call-by-value operational semantics: e --> e’ 

– values are     v ::= \x.e  

– primary rule (beta reduction): 

 

 

 

 

– e [v/x] is the expression in which all free occurrences of x in e are 
replaced with v 

– this replacement operation is called substitution 

– implementing substitution for the lambda calculus properly is 
actually tougher than it would seem at first 

 

 

(\x.e) v --> e [v/x] 

call-by-value 
since argument is a 
value rather than 
general expression 



operational semantics 

• beta rule: 

 

 

• is used together with search rules: 

 

 

 

• notice, because of the rules, evaluation is left to right 

 

 

• and that's it --  3 rules -- that is all you need to know about 
evaluating expressions in the lambda calculus! 

     e1 --> e1’ 
e1 e2 --> e1’ e2 

   e2 --> e2’ 
v e2 --> v e2’ 

(\x.e) v --> e [v/x] 
(beta) 

(app1) (app2) 



Example 

• Program: 

 

 

 

• Proof that it can take a step: 

 

 

 

((\x.\y. x y)  (\w.w))  (\z.z) 

     e1 --> e1’ 
e1 e2 --> e1’ e2 

   e2 --> e2’ 
v e2 --> v e2’ 

(app1) 

(app2) 

(\x.e) v --> e [v/x] 
(beta) 



Example 

• Program: 

 

 

 

• Proof that it can take a step: 

 

 

 

((\x.\y. x y)  (\w.w))  (\z.z) 

              (\x.\y. x y) (\w.w) --> \y. (\w.w) y 
((\x.\y. x y)  (\w.w))  (\z.z) --> (\y. (\w.w) y) (\z.z) 

     e1 --> e1’ 
e1 e2 --> e1’ e2 

   e2 --> e2’ 
v e2 --> v e2’ 

(app1) 

(app2) 

(\x.e) v --> e [v/x] 
(beta) 

(app1) 

(beta) 

e1 e1’ e2 e2 



Example 

• Program: 

 

 

 

• Proof that it can take a step: 

 

 

 

• Proof it can take a second step: 

 

 

• So we typically write (without explicit proofs): 

((\x.\y. x y)  (\w.w))  (\z.z) 

              (\x.\y. x y) (\w.w) --> \y. (\w.w) y 
((\x.\y. x y)  (\w.w))  (\z.z) --> (\y. (\w.w) y) (\z.z) 

     e1 --> e1’ 
e1 e2 --> e1’ e2 

   e2 --> e2’ 
v e2 --> v e2’ 

(app1) 

(app2) 

(\x.e) v --> e [v/x] 
(beta) 

(app1) 

(beta) 

(\y. (\w.w) y)  (\z.z) --> (\w.w) (\z.z) 
(beta) 

((\x.\y. x y)  (\w.w))  (\z.z)  --> (\y. (\w.w) y)  (\z.z)  --> (\w.w) (\z.z) 



Example 

      (\x.x x) (\y.y) 



Example 

      (\x.x x) (\y.y) 

--> x x [\y.y / x] 

 



Example 

      (\x.x x) (\y.y) 

--> x x [\y.y / x] 

== (\y.y) (\y.y) 



Example 

      (\x.x x) (\y.y) 

--> x x [\y.y / x] 

== (\y.y) (\y.y) 

--> y [\y.y / y] 

 



Example 

      (\x.x x) (\y.y) 

--> x x [\y.y / x] 

== (\y.y) (\y.y) 

--> y [\y.y / y] 

== \y.y 



A Non-Example 

• Given: 

 

 

 

• One might think that: 

 

 

 

• Since: 

 

• But that would require the presence of this rule: 

((\x.x) (\y.y)) ((\w.w) (\z.z)) 

     e1 --> e1’ 
e1 e2 --> e1’ e2 

   e2 --> e2’ 
v e2 --> v e2’ 

(app1) 

(app2) 

(\x.e) v --> e [v/x] 
(beta) 

((\x.x) (\y.y)) ((\w.w) (\z.z)) --> ((\x.x) (\y.y)) (\z.z) 

(\w.w) (\z.z) --> (\z.z) 

   e2 --> e2’ 
e1 e2 --> e1 e2’ 

(app3) 



Another example 

(\x.x x) (\x.x x) 

 



Another example 

(\x.x x) (\x.x x) 

--> x x [\x.x x/x] 



Another example 

(\x.x x) (\x.x x) 

--> x x [\x.x x/x] 

== (\x.x x) (\x.x x) 

 

• In other words, it is simple to write non-terminating 
computations in the lambda calculus 

 

• So, what else can we do with the lambda calculus? 



We can do everything 

• The lambda calculus can be used as an “assembly language” 

• We can show how to compile useful, high-level operations 
and language features into the lambda calculus 
– Result = adding high-level operations is convenient for 

programmers, but not a computational necessity 

– Result = make your compiler intermediate language simpler  

 

• Translations that show how to implement various useful 
programming features in the lambda calculus are typically 
called "Church encodings" after Alonzo Church 



Aside 

• Single-step reduction, one by one, gets pretty tedious, so we 
can make up a new notation for multi-step evaluation (and 
give the new notation a formal definition!) 

• To say a program takes 0, 1 or many steps, we write: 

 

 

• Rules: 

 

e -->* e' 

e -->* e 
e1 --> e2        e2 -->* e3 
            e1 -->* e3 

(reflexivity) (transitivity) 



Aside 

 

 

 

 

 

 

 

• A multi-step proof: 

e -->* e 

e1 --> e2        e2 -->* e3 
            e1 -->* e3 

(reflexivity) 

(transitivity) 

 
 
 
a --> b     b -->* e 
       a -->* e 



Aside 

 

 

 

 

 

 

 

• A multi-step proof: 

e1 --> e2        e2 -->* e3 
            e1 -->* e3 

(transitivity) 

 
 
                b --> c     c -->* e 
a --> b     b -->* e 
       a -->* e 

e -->* e 
(reflexivity) 



Aside 

 

 

 

 

 

 

 

• A multi-step proof: 

e1 --> e2        e2 -->* e3 
            e1 -->* e3 

(transitivity) 

                                                d --> e         e -->* e  
                               c --> d      d -->* e 
                b --> c     c -->* e 
a --> b     b -->* e 
       a -->* e 

e -->* e 
(reflexivity) 



Aside 

 

 

 

 

 

 

 

• A multi-step proof: 

e1 --> e2        e2 -->* e3 
            e1 -->* e3 

(transitivity) 

                                                d --> e         e -->* e  
                               c --> d      d -->* e 
                b --> c     c -->* e 
a --> b     b -->* e 
       a -->* e proof that 

a --> b 

e -->* e 
(reflexivity) 



CHURCH ENCODINGS 



Let Expressions 

• It is useful to bind intermediate results of computations to 
variables: 

let x = e1 in e2 

• Question: can we implement this idea in the lambda calculus? 

source = lambda calculus + let 

target = lambda calculus 

translate/compile 



Let Expressions 

• It is useful to bind intermediate results of computations to 
variables: 

let x = e1 in e2 

• Question: can we implement this idea in the lambda calculus? 

translate (let x = e1 in e2) = 

   



Let Expressions 

• It is useful to bind intermediate results of computations to 
variables: 

let x = e1 in e2 

• Question: can we implement this idea in the lambda calculus? 

translate (let x = e1 in e2) = 

  (\x. translate e2) (translate e1) 



Let Expressions 

• It is useful to bind intermediate results of computations to 
variables: 

let x = e1 in e2 

• Question: can we implement this idea in the lambda calculus? 

translate (let x = e1 in e2) = 

  (\x. translate e2) (translate e1) 

translate (x) = x 

translate (\x.e) = \x.translate e 

translate (e1 e2) = (translate e1) (translate e2) 



ENCODING BOOLEANS 



booleans 

• we can encode booleans 
– we will represent “true” and “false” as functions named 

“tru” and “fls” 

– how do we define these functions? 

– think about how “true” and “false” can be used 

– they can be used by a testing function: 
• “test b then else” returns “then” if b is true and returns “else” if b 

is false 

• the only thing the implementation of test is going to be able to do 
with b is to apply it 

• the functions “tru” and “fls” must distinguish themselves when 
they are applied  

 



booleans 

• the encoding: 

 

tru = \t.\f. t 

 

fls = \t.\f. f 

 

test = \x.\then.\else. x then else 



booleans 

tru = \t.\f. t             fls = \t.\f. f 

test = \x.\then.\else. x then else 

 

eg: 

 

test tru a b  



booleans 

tru = \t.\f. t             fls = \t.\f. f 

test = \x.\then.\else. x then else 

 

eg: 

 

test tru a b  

== (\x.\then.\else. x then else) (\t.\f.t) a b 



booleans 

tru = \t.\f. t             fls = \t.\f. f 

test = \x.\then.\else. x then else 

 

eg: 

 

test tru a b  

== (\x.\then.\else. x then else) (\t.\f.t) a b 

-->* (\t.\f. t) a b  



booleans 

tru = \t.\f. t             fls = \t.\f. f 

test = \x.\then.\else. x then else 

 

eg: 

 

test tru a b  

== (\x.\then.\else. x then else) (\t.\f.t) a b 

-->* (\t.\f. t) a b  

-->* a 



Challenge 

tru = \t.\f. t             fls = \t.\f. f 

test = \x.\then.\else. x then else 

 

create a function "and" in the lambda calculus that mimics 
conjunction.  It should have the following properties. 

 

and tru tru -->* tru 

and fls tru -->* fls 

and tru fls -->* fls 

and fls fls -->* fls 



SUMMARY 



Summary 

• The Lambda Calculus involves  just 3 things: 

– variables x, y, z 

– function definitions \x.e 

– function application e1 e2 

• Despite its simplicity, despite the apparent lack of if statements 
or loops or any data structures other than functions, it is Turing 
complete 

• Church encodings are translations that show how to encode 
various data types or linguistic features  in the lambda calculus 


