
Lambda Calculus

COS 441 Slides 12

read: 3.4, 5.1, 5.2, 3.5 Pierce

the lambda calculus

• Originally, the lambda calculus was developed as a logic by
Alonzo Church in 1932 at Princeton

– Church says: “There may, indeed, be other applications of the
system than its use as a logic.”

– Dave says: “There sure are!”

• The lambda calculus is a language of pure functions

• It serves as the semantic basis for languages like Haskell that
are based around functions, but also pretty much every other
language that includes some notion of function

• It is just as powerful as a Turing Machine (lambda terms can
compute anything a Turing Machine can) and provides an
alternate basis for understanding computation

• Pierce Text, Chap 3, 5

Operational Semantics

• Denotational semantics for a language provides a function
that translates from program syntax into mathematical
objects like sets, functions, lists or even some other
programming language

– a denotational semantics acts like a compiler

• Operational semantics works by rewriting or executing
programs step-by-step

– it uses only one program syntax to explain how a program runs

• As languages become more complicated, it is often easier to
define operational semantics than denotational semantics

– it requires less math to do so

– but you might not be able to prove particularly strong theorems
using the semantics

• Starting with the lambda calculus, we will look at operational
semantics

Operational Rules

• Operational rules typically look like this:

• Read prog --> prog' as prog "steps to" prog'

• prog --> prog' is a new kind of judgement (aka
property/assertion/claim)

condition1 …. conditionk subprogram --> subprogram'
 prog --> prog'

Operational Rules

• Operational rules typically look like this:

• Read prog --> prog' as prog "steps to" prog'

• prog --> prog' is a new kind of judgement (aka
property/assertion/claim)

• An example, defining evaluation of if statements:

condition1 …. conditionk subprogram --> subprogram'
 prog --> prog'

if True then c1 else c2 --> c1 if False then c1 else c2 --> c2

 e --> e'
if e then c1 else c2 --> if e' then c1 else c2

LAMBDA CALCULUS

syntax

e ::= x (a variable)

 | \x.e (a function; in Haskell: \x -> e)

 | e e (function application)

[“\” will be written “” in a nice font and pronounced "lambda"]

syntax

• the identity function:
• \x.x

• 2 notational conventions:
• applications associate to the left (like in Haskell):

• “y z x” is “(y z) x”

• the body of a lambda extends as far as possible to the right:

• “\x.x \z.x z x” is “\x.(x \z.(x z x))”

terminology

\x.x x

\x.x y

the scope of x is the entire body of the function
(ie: the x’s that appear in the body of the function refer to that particular argument)

x is bound
in the term \x.x y

y is free in the term \x.x y

scope again, shadowed names

\x.\x. x x

\y.\x. x y

the scope of the
right-most x includes
the body of the function;
the scope of the left-most
x does not

if you wanted to
refer to the first x,
above, well you can’t.
You should have chosen
a different variable name
in your programs

Important note: The names of bound variables don’t matter to
the semantics of lambda calculus programs, so you can rename
bound variables (provided you do so consistently) whenever you want.

\x.x == \y.y == \z.z

\x.\y.x y == \y.\x.y x == \z.\w. z w

Call-by-value operational semantics

• single-step, call-by-value operational semantics:

 e --> e’

• In English, we say “e steps to e’”

• This is a new kind of “judgement”, just like a Hoare triple was a
judgement and there were rules that allowed us to conclude
when it was a valid judgement

Call-by-value operational semantics

• single-step, call-by-value operational semantics: e --> e’

– values are v ::= \x.e

– primary rule (beta reduction):

– e [v/x] is the expression in which all free occurrences of x in e are
replaced with v

– this replacement operation is called substitution

– implementing substitution for the lambda calculus properly is
actually tougher than it would seem at first

(\x.e) v --> e [v/x]

call-by-value
since argument is a
value rather than
general expression

operational semantics

• beta rule:

• is used together with search rules:

• notice, because of the rules, evaluation is left to right

• and that's it -- 3 rules -- that is all you need to know about
evaluating expressions in the lambda calculus!

 e1 --> e1’
e1 e2 --> e1’ e2

 e2 --> e2’
v e2 --> v e2’

(\x.e) v --> e [v/x]
(beta)

(app1) (app2)

Example

• Program:

• Proof that it can take a step:

((\x.\y. x y) (\w.w)) (\z.z)

 e1 --> e1’
e1 e2 --> e1’ e2

 e2 --> e2’
v e2 --> v e2’

(app1)

(app2)

(\x.e) v --> e [v/x]
(beta)

Example

• Program:

• Proof that it can take a step:

((\x.\y. x y) (\w.w)) (\z.z)

 (\x.\y. x y) (\w.w) --> \y. (\w.w) y
((\x.\y. x y) (\w.w)) (\z.z) --> (\y. (\w.w) y) (\z.z)

 e1 --> e1’
e1 e2 --> e1’ e2

 e2 --> e2’
v e2 --> v e2’

(app1)

(app2)

(\x.e) v --> e [v/x]
(beta)

(app1)

(beta)

e1 e1’ e2 e2

Example

• Program:

• Proof that it can take a step:

• Proof it can take a second step:

• So we typically write (without explicit proofs):

((\x.\y. x y) (\w.w)) (\z.z)

 (\x.\y. x y) (\w.w) --> \y. (\w.w) y
((\x.\y. x y) (\w.w)) (\z.z) --> (\y. (\w.w) y) (\z.z)

 e1 --> e1’
e1 e2 --> e1’ e2

 e2 --> e2’
v e2 --> v e2’

(app1)

(app2)

(\x.e) v --> e [v/x]
(beta)

(app1)

(beta)

(\y. (\w.w) y) (\z.z) --> (\w.w) (\z.z)
(beta)

((\x.\y. x y) (\w.w)) (\z.z) --> (\y. (\w.w) y) (\z.z) --> (\w.w) (\z.z)

Example

 (\x.x x) (\y.y)

Example

 (\x.x x) (\y.y)

--> x x [\y.y / x]

Example

 (\x.x x) (\y.y)

--> x x [\y.y / x]

== (\y.y) (\y.y)

Example

 (\x.x x) (\y.y)

--> x x [\y.y / x]

== (\y.y) (\y.y)

--> y [\y.y / y]

Example

 (\x.x x) (\y.y)

--> x x [\y.y / x]

== (\y.y) (\y.y)

--> y [\y.y / y]

== \y.y

A Non-Example

• Given:

• One might think that:

• Since:

• But that would require the presence of this rule:

((\x.x) (\y.y)) ((\w.w) (\z.z))

 e1 --> e1’
e1 e2 --> e1’ e2

 e2 --> e2’
v e2 --> v e2’

(app1)

(app2)

(\x.e) v --> e [v/x]
(beta)

((\x.x) (\y.y)) ((\w.w) (\z.z)) --> ((\x.x) (\y.y)) (\z.z)

(\w.w) (\z.z) --> (\z.z)

 e2 --> e2’
e1 e2 --> e1 e2’

(app3)

Another example

(\x.x x) (\x.x x)

Another example

(\x.x x) (\x.x x)

--> x x [\x.x x/x]

Another example

(\x.x x) (\x.x x)

--> x x [\x.x x/x]

== (\x.x x) (\x.x x)

• In other words, it is simple to write non-terminating
computations in the lambda calculus

• So, what else can we do with the lambda calculus?

We can do everything

• The lambda calculus can be used as an “assembly language”

• We can show how to compile useful, high-level operations
and language features into the lambda calculus
– Result = adding high-level operations is convenient for

programmers, but not a computational necessity

– Result = make your compiler intermediate language simpler

• Translations that show how to implement various useful
programming features in the lambda calculus are typically
called "Church encodings" after Alonzo Church

Aside

• Single-step reduction, one by one, gets pretty tedious, so we
can make up a new notation for multi-step evaluation (and
give the new notation a formal definition!)

• To say a program takes 0, 1 or many steps, we write:

• Rules:

e -->* e'

e -->* e
e1 --> e2 e2 -->* e3
 e1 -->* e3

(reflexivity) (transitivity)

Aside

• A multi-step proof:

e -->* e

e1 --> e2 e2 -->* e3
 e1 -->* e3

(reflexivity)

(transitivity)

a --> b b -->* e
 a -->* e

Aside

• A multi-step proof:

e1 --> e2 e2 -->* e3
 e1 -->* e3

(transitivity)

 b --> c c -->* e
a --> b b -->* e
 a -->* e

e -->* e
(reflexivity)

Aside

• A multi-step proof:

e1 --> e2 e2 -->* e3
 e1 -->* e3

(transitivity)

 d --> e e -->* e
 c --> d d -->* e
 b --> c c -->* e
a --> b b -->* e
 a -->* e

e -->* e
(reflexivity)

Aside

• A multi-step proof:

e1 --> e2 e2 -->* e3
 e1 -->* e3

(transitivity)

 d --> e e -->* e
 c --> d d -->* e
 b --> c c -->* e
a --> b b -->* e
 a -->* e proof that

a --> b

e -->* e
(reflexivity)

CHURCH ENCODINGS

Let Expressions

• It is useful to bind intermediate results of computations to
variables:

let x = e1 in e2

• Question: can we implement this idea in the lambda calculus?

source = lambda calculus + let

target = lambda calculus

translate/compile

Let Expressions

• It is useful to bind intermediate results of computations to
variables:

let x = e1 in e2

• Question: can we implement this idea in the lambda calculus?

translate (let x = e1 in e2) =

Let Expressions

• It is useful to bind intermediate results of computations to
variables:

let x = e1 in e2

• Question: can we implement this idea in the lambda calculus?

translate (let x = e1 in e2) =

 (\x. translate e2) (translate e1)

Let Expressions

• It is useful to bind intermediate results of computations to
variables:

let x = e1 in e2

• Question: can we implement this idea in the lambda calculus?

translate (let x = e1 in e2) =

 (\x. translate e2) (translate e1)

translate (x) = x

translate (\x.e) = \x.translate e

translate (e1 e2) = (translate e1) (translate e2)

ENCODING BOOLEANS

booleans

• we can encode booleans
– we will represent “true” and “false” as functions named

“tru” and “fls”

– how do we define these functions?

– think about how “true” and “false” can be used

– they can be used by a testing function:
• “test b then else” returns “then” if b is true and returns “else” if b

is false

• the only thing the implementation of test is going to be able to do
with b is to apply it

• the functions “tru” and “fls” must distinguish themselves when
they are applied

booleans

• the encoding:

tru = \t.\f. t

fls = \t.\f. f

test = \x.\then.\else. x then else

booleans

tru = \t.\f. t fls = \t.\f. f

test = \x.\then.\else. x then else

eg:

test tru a b

booleans

tru = \t.\f. t fls = \t.\f. f

test = \x.\then.\else. x then else

eg:

test tru a b

== (\x.\then.\else. x then else) (\t.\f.t) a b

booleans

tru = \t.\f. t fls = \t.\f. f

test = \x.\then.\else. x then else

eg:

test tru a b

== (\x.\then.\else. x then else) (\t.\f.t) a b

-->* (\t.\f. t) a b

booleans

tru = \t.\f. t fls = \t.\f. f

test = \x.\then.\else. x then else

eg:

test tru a b

== (\x.\then.\else. x then else) (\t.\f.t) a b

-->* (\t.\f. t) a b

-->* a

Challenge

tru = \t.\f. t fls = \t.\f. f

test = \x.\then.\else. x then else

create a function "and" in the lambda calculus that mimics
conjunction. It should have the following properties.

and tru tru -->* tru

and fls tru -->* fls

and tru fls -->* fls

and fls fls -->* fls

SUMMARY

Summary

• The Lambda Calculus involves just 3 things:

– variables x, y, z

– function definitions \x.e

– function application e1 e2

• Despite its simplicity, despite the apparent lack of if statements
or loops or any data structures other than functions, it is Turing
complete

• Church encodings are translations that show how to encode
various data types or linguistic features in the lambda calculus

