
Reasoning About
Imperative Programs

COS 441 Slides 10b

Agenda

• Last time

– Hoare Logic:

• { P } C { Q }

• If P is true in the initial state s. And C in state s evaluates to s’.
Then Q must be true in s’.

– Program states s:

• finite partial maps (ie: functions) from variables to values

– Semantics of formulae:

• fsem s P :: Maybe Bool

• fsem s P is always Just b if s and P are “well-formed”

• This time:

– Mathematical presentation of the semantics of formulae

– Rules of Hoare Logic

SEMANTICS OF FORMULAE:
PRESENTATION II: MATHEMATICS

Two Differences from the Haskell Presentation

• The Haskell definitions used datatype notation for the syntax
of formulae:

• The standard math formulation overloads the same “*” and
“+” symbols using them in different ways:

expressions
e ::= ... | e + e | e * e

data Exp = ...
 Add Exp Exp
 | Mult Exp Exp

esem s (Add e1 e2) = ... Just (... + ...)

esem s (Mult e1 e2) = ... Just (... * ...)

esem (e1 + e2) = ... + ...

esem (e1 * e2) = ... * ...

Expression syntax (type Exp)
Defined using Haskell datatype

Integer operators (type Int)

Expression syntax (type “expression”) Integer (type “math integer”)

Two Differences from the Haskell Presentation

• The Haskell semantic function explicitly creates “Maybe”
objects all the time:

• This makes the Haskell function a total function but it is
verbose and obscures the main idea:

– the syntax “And f1 f2” is defined to be f1 && f2

fsem :: State -> Form -> Maybe Bool

...

fsem s (And f1 f2) =
 case (fsem s f1, fsem s f2) of
 (Just b1, Just b2) -> Just (b1 && b2)
 (_, _) -> Nothing

fsem s (Or f1 f2) =
 case (fsem s f1, fsem s f2) of
 (Just b1, Just b2) -> Just (b1 || b2)
 (_, _) -> Nothing

Two Differences from the Haskell Presentation

• Whereas the Haskell function will be total, the math function
will be partial -- it will be partial in all the places we would
have used Nothing in Haskell

• We will use a standard mathematical convention that when
the result of a function contains undefined parts, the entire
result is considered undefined

• For example, if I were to write in math:

• I mean “the semantics of e1 * e2 is (the semantics of e1)
multiplied by (the semantics of e2), provided the semantics of
e1 and e2 are both defined. If one of them is not defined,
then the semantics of e1 * e2 is not defined either”

• That’s exactly what the Haskell code says, which makes it
more explicit, but a lot more long-winded

esem s (e1 * e2) = esem s (e1) * esem s (e2)

The Semantics Using Conventional Math Notation

integer variables
x := x1 | x2 | x3 | ... | y | z | ...

integer expressions
e ::= N | x | e + e | e * e

predicates
p ::= e = e | e < e

formulae
f ::= true | false| p| f & f | f || f | ~f

Syntax
[[.]] :: int exp -> state -> int

[[N]]s = N
[[x]]s = s(x)
[[e1 + e2]]s = [[e1]]s + [[e2]]s
[[e1 * e2]]s = [[e1]]s + [[e2]]s

[[.]] :: predicate -> state -> bool

[[e1 = e2]]s = [[e1]]s == [[e2]]s
[[e1 < e2]]s = [[e1]]s < [[e2]]s

[[.]] :: formula -> state -> bool

[[true]]s = true
[[false]]s = false
[[p]]s = [[p]]s
[[f1 & f2]]s = [[f1]]s & [[f2]]s
[[f1 || f2]]s = [[f1]]s || [[f2]]s
[[~f]]s = not [[f]]s

Semantics could be a
partial function
symbol:
but making
those in
powerpoint
is irritating.

these definitions are incredibly
elegant and compact.

experienced researchers can look
at them and virtually instantaneously
understand the meaning of the
language or detect flaws in definition

variable
lookup in the
environment
(a finite
partial map)

“** ++” is
merely an
unusual
name for a
function

Math vs. Haskell

• Summary: you should be able to understand and manipulate
both kinds of notation.

• In particular, you should be able to take a mathematical
definition and convert it in to Haskell program:

...

[[f1 & f2]]s = [[f1]]s & [[f2]]s
[[f1 || f2]]s = [[f1]]s || [[f2]]s

...

fsem s (And f1 f2) =
 case (fsem s f1, fsem s f2) of
 (Just b1, Just b2) -> Just (b1 && b2)
 (_, _) -> Nothing

fsem s (Or f1 f2) =
 case (fsem s f1, fsem s f2) of
 (Just b1, Just b2) -> Just (b1 || b2)
 (_, _) -> Nothing

ONE MORE BIT OF NOTATION:
SUBSTITUTION

One Additional Bit of Notation

• Given an expression containing some variables, we often want
to substitute some other expression for one of the variables

– eg: below, we substitute the expression “2+3” for “x” in the
expression “x * x”

let x = 2 + 3 in
x * x

(2 + 3) * (2 + 3)

One Additional Bit of Notation

• Given an expression containing some variables, we often want
to substitute some other expression for one of the variables

– eg: below, we substitute the expression “2+3” for “x” in the
expression “x * x”

– Another way to write the result is using substitution notation:

let x = 2 + 3 in
x * x

(2 + 3) * (2 + 3)

(x * x) [2 + 3 / x] == (2 + 3) * (2 + 3)

One Additional Bit of Notation

• Given an expression containing some variables, we often want
to substitute some other expression for one of the variables

– eg: below, we substitute the expression “2+3” for “x” in the
expression “x * x”

– Another way to write the result is using substitution notation:

– More generally, for any expressions e and e’, we write:

e * e’/x +

contains x, possibly
several times or not at all

let x = 2 + 3 in
x * x

(2 + 3) * (2 + 3)

(x * x) [2 + 3 / x] == (2 + 3) * (2 + 3)

the expression replacing x

the name of the variable
to be replaced
(could be x or y or z ...)

IMP:
A SIMPLE IMPERATIVE LANGUAGE

IMP

• Different languages have different sets of operations

– the operations available in a language change the reasoning
system quite a bit

– that’s why reasoning about Haskell is so different from
reasoning about C or Java!

– if we added concurrency, it would be a whole new ball of wax ...

• We will look at IMP: the simplest possible language one can
imagine that still embodies “imperative programming”

IMP Syntax

• IMP has three parts:

– integer variables, integer expressions and statements

– for simplicity, we’ve intentionally avoided having more than one
type -- we are sticking with integers

integer variables
x := x1 | x2 | x3 | ... | y | z | ...

integer expressions
e ::= N | x | e + e | e * e

statements (aka Commands)
C ::= x = e (an assignment)
 | skip (a no-op)
 | C; C (sequencing)
 | if (e > 0) then C else C (if statement)
 | while (e > 0) do C (while loop)

An Example Program ...

a = 0;
i = N;

while (i > 0) do
 a = a + V;
 i = i - 1

... With It's Specification

{ true }

a = 0;
i = N;

while (i > 0) do
 a = a + V;
 i = i - 1

{a = N*V}

A HOARE LOGIC FOR IMP

The Floyd-Hoare Rules for IMP

• We are looking for very general reasoning rules:

– We want to figure out the reasoning rules once and for all and
then be able to apply them to any program

– If we figure the rules out once and for all, we can verify that the
rules are correct -- any future Hoare proofs that use the rules
exactly as stated are guaranteed to be correct

The Floyd-Hoare Rules for IMP

• We are looking for very general reasoning rules:

– We want the rules to be sound:

• if the rules allow us to come to a conclusion {P} C {Q}, the
definition must hold:

• Whenever we start in a state s such that [[P]]s, and execution of C
leaves us in final state s' then [[Q]]s'

– We would also like the rules to be complete:

• if {P} C {Q} is a valid Hoare triple, it should be possible for us to
conclude it using the rules supplied.

• It turns out completeness is unobtainable, but that doesn't
prevent us from verifying many programs

The Floyd-Hoare Rules for IMP

• Strategy for devising rules

– For each simple imperative statement, we define a rule

– For each compound statements, we define a rule

• these rules typically use proofs about the underlying statements

– Finally, we have a few "structural" rules that help us glue proof
pieces together

NOT the Rule for Assignment

• Consider this rule. Is it good? How good?

• Is it sound?

– The precondition does not restrict the state we are allowed to
start in since [[true]]s is always true.

{ true } x = e { x = e }

NOT the Rule for Assignment

• Consider this rule. Is it good? How good?

• Is it sound?

– The precondition does not restrict the state we are allowed to
start in since [[true]]s is always true.

– What if e is x + 1? Specializing the rule:

{ true } x = e { x = e }

{ true } x = x+1 { x = x+1 }

assignment statement that
changes the value of x

an equation: for what values of x is x
equal to itself plus 1?

NOT the Rule for Assignment

• Consider this rule. Is it good? How good?

• Is it sound?

– The precondition does not restrict the state we are allowed to
start in since [[true]]s is always true.

– What if e is x + 1? Specializing the rule:

{ true } x = e { x = e }

{ true } x = x+1 { x = x+1 }

assignment statement that
changes the value of x

an equation: for what values of x is x
equal to itself plus 1?

there are no values of x that satisfy
the equation! It doesn’t matter what x
we start with.

NOT the Rule for Assignment

• Consider this rule. Is it good? How good?

• Is it sound?

– The precondition restricts the state we are allowed to start in
since [[false]]s is always false for any s.

– Semantics of Hoare Triples: If we start in a state satisfying the
precondition then … some other things need to hold

– So it is trivially sound

• Is it complete?

– No. Here’s a simple triple we can’t prove with the rule:

– The precondition false is just wayyyyy to strong

{ false } x = e { x = e }

{ x = 9 } x = x + 1 { x = 10 }

The Rule for Assignment

• Consider this rule. Is it good? How good?

{ F [e/x] } x = e { F }

The Rule for Assignment

• Consider this rule. Is it good? How good?

• An example:

• Is it sound?

– What initial states satisfy x + 1 = 10?

{ x + 1 = 10 } x = x + 1 { x = 10 }

{ F [e/x] } x = e { F }

The Rule for Assignment

• Consider this rule. Is it good? How good?

• An example:

• Is it sound?

– What initial states satisfy x + 1 = 10?

• [x = 9]

– When we execute the assignment in that state, what do we get?

• [x = 10]

– It seems to work!

{ x + 1 = 10 } x = x + 1 { x = 10 }

{ F [e/x] } x = e { F }

The Rule for Assignment

• Consider this rule. Is it good? How good?

• Is it complete?

– Are there valid triples that we cannot prove use this rule?

– What about this one:

– (x = 10) [(x + 1) / x] is x+1 = 10

– But x+1 = 10 is not syntactically equivalent to x = 9

– However, x = 9 is semantically equivalent to (x + 1) = 10

• Summary: this assignment rule is pretty good but we need
another rule for converting between semantically equivalent
formulae and more ...

{ F [e/x] } x = e { F }

{ x = 9 } x = x + 1 { x = 10 }

The Rule of Consequence

• Recall: A Hoare triple is valid if whenever we start in a state
that satisfies the pre-condition P and execution of C
terminates, we wind up in a state that satisfies Q

• Intuition:

– P’ => P: any state that satisfies P’ also satisfies P

• P’ is “stronger” than P

– Q => Q’: any state that satisfies Q also satisfies Q’

• Q’ is “weaker” than Q

• The rule of consequence:

If P’ => P and , P - C , Q - and Q => Q’

then , P’ - C , Q’ -

The Rule of Consequence

• Rule of consequence:

• Example:

If P’ => P and , P - C , Q - and Q => Q’
then , P’ - C , Q’ -

{ x = 9 & y = 7 } x = x + 1 { x < 11 }

The Rule of Consequence

• Rule of consequence:

• Example:

If P’ => P and , P - C , Q - and Q => Q’
then , P’ - C , Q’ -

(2) { x + 1 = 10 } x = x + 1 { x = 10 } (valid assignment rule)

{ x = 9 & y = 7 } x = x + 1 { x < 11 }

The Rule of Consequence

• Rule of consequence:

• Example:

If P’ => P and , P - C , Q - and Q => Q’
then , P’ - C , Q’ -

(1) x = 9 & y = 7 => x + 1 = 10 (valid strengthening;
 more states satisfy x + 1 = 10)

(2) { x + 1 = 10 } x = x + 1 { x = 10 } (valid assignment rule)

{ x = 9 & y = 7 } x = x + 1 { x < 11 }

The Rule of Consequence

• Rule of consequence:

• Example:

If P’ => P and , P - C , Q - and Q => Q’
then , P’ - C , Q’ -

(1) x = 9 & y = 7 => x + 1 = 10 (valid strengthening;
 more states satisfy x + 1 = 10)

(2) { x + 1 = 10 } x = x + 1 { x = 10 } (valid assignment rule)

(3) x = 10 => x < 11 (valid strengthening)

{ x = 9 & y = 7 } x = x + 1 { x < 11 } (by (1), (2), (3), rule of consequence)

Compound Statements

• We have a rule for a single assignment, what about a sequence?

• Sequencing rule:

if { F1 } C1 { F2 } and { F2 } C2 { F3}

then { F1 } C1; C2 { F3 }

Compound Statements

• Example:

x = x + 1;

y = x – 3

x = y + y

Compound Statements

• Example:

x = x + 1;

y = x – 3

x = y + y

{ x = 17 & y < 23}

Compound Statements

• Example:

x = x + 1;

y = x – 3

{ y + y = 17 & y < 23 }

x = y + y

{ x = 17 & y < 23}

Compound Statements

• Example:

x = x + 1;

{ (x – 3) + (x – 3) = 17 & x – 3 < 23 }

y = x – 3

{ y + y = 17 & y < 23 }

x = y + y

{ x = 17 & y < 23}

Compound Statements

• Example:

{ (x + 1) – 3 + (x + 1) – 3 = 17 & (x + 1) – 3 < 23 }

x = x + 1;

{ (x – 3) + (x – 3) = 17 & x – 3 < 23 }

y = x – 3

{ y + y = 17 & y < 23 }

x = y + y

{ x = 17 & y < 23}

Compound Statements

• Example:

{ 2*x = 21 & x < 25 }

{ (x + 1) – 3 + (x + 1) – 3 = 17 & (x + 1) – 3 < 23 }

x = x + 1;

{ (x – 3) + (x – 3) = 17 & x – 3 < 23 }

y = x – 3

{ y + y = 17 & y < 23 }

x = y + y

{ x = 17 & y < 23}

Skip

• Skip is a no-op “do nothing” statement

• Easy Hoare rule:

• Intuition:

– If you start with any state s that satisfies the precondition P, and
you do nothing, you’ll stay in the same state s and satisfy the
postcondition P

– And, of course, you can couple this rule with the rule of
consequence. eg:

{ P } skip { P }

{ x = 10 } skip { x < 11 }

If Statements

• Rule for if statements

• Example:

If { e > 0 & P } C1 { Q } and { ~(e > 0) & P } C2 { Q }

then { P } if e > 0 then C1 else C2 { Q }

{ true }

if x > 0 then
 skip;
else
 y = 1;

{ x > 0 || y = 1 }

If Statements

• Rule for if statements

• Example:

If { e > 0 & P } C1 { Q } and { ~(e > 0) & P } C2 { Q }

then { P } if e > 0 then C1 else C2 { Q }

{ true }

if x > 0 then
 skip;
else
 y = 1;

{ x > 0 || y = 1 }

{ x > 0 || y = 1 }
 skip;
{ x > 0 || y = 1 }

{ x > 0 || 1 = 1 }
 y = 1;
{ x > 0 || y = 1 }

assignment
rule

If Statements

• Rule for if statements

• Example:

If { e > 0 & P } C1 { Q } and { ~(e > 0) & P } C2 { Q }

then { P } if e > 0 then C1 else C2 { Q }

{ true }

if x > 0 then
 skip;
else
 y = 1;

{ x > 0 || y = 1 }

{ ~(x > 0) & true }
 y = 1;
{ x > 0 || y = 1 }

{ x > 0 & true }
 skip;
{ x > 0 || y = 1 }

{ x > 0 || y = 1 }
 skip;
{ x > 0 || y = 1 }

{ x > 0 || 1 = 1 }
 y = 1;
{ x > 0 || y = 1 }

If Statements

• Rule for if statements

• Example:

If { e > 0 & P } C1 { Q } and { ~(e > 0) & P } C2 { Q }

then { P } if e > 0 then C1 else C2 { Q }

{ true }

if x > 0 then
 skip;
else
 y = 1;

{ x > 0 || y = 1 }

{ ~(x > 0) & true }
 y = 1;
{ x > 0 || y = 1 }

{ x > 0 & true }
 skip;
{ x > 0 || y = 1 }

{ x > 0 || y = 1 }
 skip;
{ x > 0 || y = 1 }

{ x > 0 || 1 = 1 }
 y = 1;
{ x > 0 || y = 1 }

x > 0 & true =>
x > 0 || y = 1

~(x > 0) & true =>
x > 0 || 1 = 1

If Statements

• Rule for if statements

• Example:

If { e > 0 & P } C1 { Q } and { ~(e > 0) & P } C2 { Q }

then { P } if e > 0 then C1 else C2 { Q }

{ true }

if x > 0 then
 skip;
else
 y = 1;

{ x > 0 || y = 1 }

{ ~(x > 0) & true }
 y = 1;
{ x > 0 || y = 1 }

{ x > 0 & true }
 skip;
{ x > 0 || y = 1 }

{ x > 0 || y = 1 }
 skip;
{ x > 0 || y = 1 }

{ x > 0 || 1 = 1 }
 y = 1;
{ x > 0 || y = 1 }

x > 0 & true =>
x > 0 || y = 1

~(x > 0) & true =>
x > 0 || 1 = 1

DONE!

While Statements

• Rule for while statements

If ???

then { P } while (e > 0) do C { Q }

While Statements

• Bogus rule for while statements

If { P & e > 0 } C { Q }

then { P } while (e > 0) do C { Q }

While Statements

• Bogus rule for while statements

If { P & e > 0 } C { Q }

then { P } while (e > 0) do C { Q }

{ i = N & a = 0 }
while (i > 0) do
 a = a + K;
 i = i - 1;
{ a = N * K }

basic problem:
this rule only
captures 1 iteration
of the loop,
not all of them

While Statements

• Bogus rule for while statements

If { P & e > 0 } C { Q }

then { P } while (e > 0) do C { Q }

{ i = N & a = 0 }
while (i > 0) do
 a = a + K;
 i = i - 1;
{ a = N * K }

{ i = N & a = 0 & i > 0 }
 a = a + K;
 i = i - 1;
{ a = N * K }

must
prove

While Statements

• Bogus rule for while statements

If { P & e > 0 } C { Q }

then { P } while (e > 0) do C { Q }

{ i = N & a = 0 }
while (i > 0) do
 a = a + K;
 i = i - 1;
{ a = N * K }

{ i = N & a = 0 & i > 0 }
 a = a + K;
 i = i - 1;
{ a = N * K }

this isn’t even
close to a valid triple!
With that precondition,
a = K at the end!

must
prove

While Statements

• Problem: We need to verify all iterations of a loop and we
need to do it with a finite amount of work

• Solution: We will come up with an invariant that holds at the
beginning and end of all iterations.

– We prove that the loop body preserves the invariant every time
around

• Unfortunate reality: Inferring invariants automatically is
undecideable.

– This puts significant limits on the degree to which we can
automate verification.

While Statements

• While rule:

If P => I and { e > 0 & I } C { I } and I & ~(e > 0) => Q

then { P } while (e > 0) do C { Q }

loop invariant I

While Statements

• While rule:

If P => I and { e > 0 & I } C { I } and I & ~(e > 0) => Q

then { P } while (e > 0) do C { Q }

loop invariant I

{ i = N & a = 0 }
while (i > 0) do
 a = a + K;
 i = i - 1;
{ a = N * K }

While Statements

• While rule:

If P => I and { e > 0 & I } C { I } and I & ~(e > 0) => Q

then { P } while (e > 0) do C { Q }

loop invariant I

{ i = N & a = 0 }
while (i > 0) do
 a = a + K;
 i = i - 1;
{ a = N * K }

{ i > 0 & I}
 a = a + K;
 i = i - 1;
{ I }

What works as I?
• true initially
• true before/after each
 iteration
• must imply Q when
 loop terminates

While Statements

• While rule:

If P => I and { e > 0 & I } C { I } and I & ~(e > 0) => Q

then { P } while (e > 0) do C { Q }

loop invariant I

{ i = N & a = 0 }
while (i > 0) do
 a = a + K;
 i = i - 1;
{ a = N * K }

{ i > 0 & I}
 a = a + K;
 i = i - 1;
{ I }

Invariant is:
a = (N-i) * K & i >= 0

What works as I?
• true initially
• true before/after each
 iteration
• must imply Q when
 loop terminates

While Statements

• Checking the invariant:

– True initially:

i = N & a = 0 => a = (N-i) * K & i >= 0

{ i = N & a = 0 }
while (i > 0) do
 a = a + K;
 i = i - 1;
{ a = N * K }

Invariant is:
a = (N-i) * K & i >= 0

precondition

invariant

While Statements

• Checking the invariant:

– True initially:

– True before/after each loop:

{ a = (N-i) * K & i >= 0 & i > 0 }

 a = a + K;

 i = i - 1;
{ a = (N-i) * K & i >= 0 }

{ i = N & a = 0 }
while (i > 0) do
 a = a + K;
 i = i - 1;
{ a = N * K }

Invariant is:
a = (N-i) * K & i >= 0

i = N & a = 0 => a = (N-i) * K & i >= 0

While Statements

• Checking the invariant:

– True initially:

– True before/after each loop:

{ a = (N-i) * K & i >= 0 & i > 0 }

 a = a + K;
{ a = (N - (i - 1)) * K & (i - 1) >= 0 }
 i = i - 1;
{ a = (N-i) * K & i >= 0 }

{ i = N & a = 0 }
while (i > 0) do
 a = a + K;
 i = i - 1;
{ a = N * K }

Invariant is:
a = (N-i) * K & i >= 0

i = N & a = 0 => a = (N-i) * K & i >= 0

While Statements

• Checking the invariant:

– True initially:

– True before/after each loop:

{ a = (N-i) * K & i >= 0 & i > 0 }
{ a + K = (N - (i - 1)) * K & (i - 1) >= 0 }
 a = a + K;
{ a = (N - (i - 1)) * K & (i - 1) >= 0 }
 i = i - 1;
{ a = (N-i) * K & i >= 0 }

{ i = N & a = 0 }
while (i > 0) do
 a = a + K;
 i = i - 1;
{ a = N * K }

Invariant is:
a = (N-i) * K & i >= 0

i = N & a = 0 => a = (N-i) * K & i >= 0

While Statements

• Checking the invariant:

– True initially:

– True before/after each loop:

– Implies post-condition:

{ a = (N-i) * K & i >= 0 & i > 0 }
{ a + K = (N - (i - 1)) * K & (i - 1) >= 0 }
 a = a + K;
{ a = (N - (i - 1)) * K & (i - 1) >= 0 }
 i = i - 1;
{ a = (N-i) * K & i >= 0 }

{ i = N & a = 0 }
while (i > 0) do
 a = a + K;
 i = i - 1;
{ a = N * K }

Invariant is:
a = (N-i) * K & i >= 0 a = (N-i) * K & i >= 0 & ~(i > 0)

=> a = N * K

invariant

post condition

i = N & a = 0 => a = (N-i) * K & i >= 0

negation of while
condition

While Statements: Summary

• Given a Hoare triple for a while loop:

– { P } while (e > 0) do C { Q }

• We prove it correct by:

– guessing an invariant I (this is the hard part)

– proving I holds initially: P => I

– showing the loop body preserves I:

• { e > 0 & I } C { I }

– showing the postcondition holds on loop termination:

• I & ~(e > 0) => Q

• As a rule:

• Note: one often adds I as an annotation on the loop:

– while [I] (e > 0) do C

If P => I and { e > 0 & I } C { I } and I & ~(e > 0) => Q
then { P } while (e > 0) do C { Q }

FRAMING & MODULARITY

Another Issue: Framing

• Another valid triple:

• Proving it using the rules:

{ x = 9 & y = 7 & z = 23} x = x + 1 { x = 10 & y = 7 & z = 23}

Another Issue: Framing

• Another valid triple:

• Proving it using the rules:

(1) { x + 1 = 9 & y = 7 & z = 23 } x = x + 1 { x = 10 & y = 7 & z = 23} (valid assignment rule)

(2) x = 9 & y = 7 & z = 23 => x + 1 = 10 & y =7 & z = 23 (valid strengthening)

(3) { x = 9 & y = 7 & z = 23} x = x + 1 { x = 10 & y = 7 & z = 23} (by (1), (2), consequence)

{ x = 9 & y = 7 & z = 23} x = x + 1 { x = 10 & y = 7 & z = 23}

Another Issue: Framing

• Another valid triple:

• Proving it using the rules:

• Note: Formulae not involving x are just propagated

• More generally, formulae not involving variables that are not
modified are just propagated

• Can we factor those expressions out of most of the proof?

(1) { x + 1 = 9 & y = 7 & z = 23 } x = x + 1 { x = 10 & y = 7 & z = 23} (valid assignment rule)

(2) x = 9 & y = 7 & z = 23 => x + 1 = 10 & y =7 & z = 23 (valid strengthening)

(3) { x = 9 & y = 7 & z = 23} x = x + 1 { x = 10 & y = 7 & z = 23} (by (1), (2), consequence)

{ x = 9 & y = 7 & z = 23} x = x + 1 { x = 10 & y = 7 & z = 23}

The Simple Frame Rule

• The Simple Frame Rule (also called the rule of constancy)

• What counts as “modifying”?

– In our simple language, the only way a variable may be modified
is if it appears on the left in an assignment statement

– In languages with functions or methods, calling one of them
may have a modification effect

– In C, you might be able to intentionally modify variables on the
stack

– In C, you might also have a buffer overflow ... yikes!

• The frame rule is a way of simplifying proofs

• Why are Haskell proofs so easy? Nothing is modified!

if { P } C { Q } and C does not modify the (free) variables of R
then { P & R } C { Q & R }

The Simple Frame Rule

• The Simple Frame Rule (also called the rule of constancy)

• Example:

if { P } C { Q } and C does not modify the (free) variables of R
then { P & R } C { Q & R }

{ x = 6 & y = 7 & z = 23} x = x + 1; x = x * 2; x = x - 4; { x = 10 & y = 7 & z = 23}

The Simple Frame Rule

• The Simple Frame Rule (also called the rule of constancy)

• Example:

if { P } C { Q } and C does not modify the (free) variables of R
then { P & R } C { Q & R }

{ x = 6 & y = 7 & z = 23} x = x + 1; x = x * 2; x = x - 4; { x = 10 & y = 7 & z = 23}

{ x = 9 } x = x + 1; x = x * x; x = x - 5; { x = 10 } x = x + 1; x = x * 2; x = x - 4;
does not modify y or z

SUMMARY!

Summary

• States map variables to values

• Formulae describe states:

– semantics in Haskell: fsem :: State -> Form -> Maybe Bool

– semantics in Math: [[f]]s

– formulae and states we deal with are well-formed

• well-formedness is a very simple syntactic analysis

– P => Q means P is stronger than Q; P describes fewer states

• Hoare Triples characterize program properties

– { P } C { Q } – know when it is valid

– know the statement rules you can use to conclude { P } C { Q }

– understand the structural rules:

• rule of consequence

• frame rule

