Reasoning About Imperative Programs

COS 441 Slides 10
Agenda

• The last few weeks
 – reasoning about functional programming
 • It’s very simple and very uniform: substitution of equal expressions for equal expressions
 • It works for any kind of data structure: Integers, lists, strings, trees; arbitrary user-defined data types; even actions that describe I/O effects

• The next few lectures
 – reasoning about imperative programs
 • It’s fundamentally more complicated
 • In a very practical sense, this means it is fundamentally more difficult to write correct imperative programs
 • In addition to having to worry about what is true, you have to worry about when it is true
THE PROBLEM
some Haskell definitions:

```haskell
pair x y = (x,y)

sum (x1, y1) (x2, y2) = (x1+y1, x2+y2)

x = pair 2 3

y = x
```
some Haskell definitions:

pair \(x \) \(y \) = (x, y)

\[\text{sum} \ (x1, y1) \ (x2, y2) = (x1+y1, x2+y2) \]

\(x = \text{pair} \ 2 \ 3 \)

\(y = x \)

what is \(\text{sum} \ x \ y \) equal to?
some Haskell definitions:

\[
pair \ x \ y = (x,y)
\]

\[
sum \ (x1, y1) \ (x2, y2) = (x1+y1, x2+y2)
\]

\[
x = pair \ 2 \ 3
\]

\[
y = x
\]

what is \(sum \ x \ y\) equal to?

\[
\begin{align*}
sum \ x \ y \\
= sum \ x \ x \\
= sum \ (pair \ 2 \ 3) \ (pair \ 2 \ 3) \\
= (2+2, \ 3+3) \\
= (4, \ 6)
\end{align*}
\]

you should be able to verify this in your sleep
A Somewhat Similar Java Program

the Java definitions:

```java
class Pair {
    int x, y;

    Pair (int a1, int a2) {
        x = a1;
        y = a2;
    }

    static void sum (Pair p1, Pair p2) {
        p2.x = p1.x + p2.x;
        p2.y = p1.y + p2.y;
    }
}

Pair p1 = new Pair (2, 3);
Pair p2 = p1;
```
class Pair {
 int x, y;

 Pair (int a1, int a2) {
 x = a1;
 y = a2;
 }

 static void sum (Pair p1, Pair p2) {
 p2.x = p1.x + p2.x;
 p2.y = p1.y + p2.y;
 }
}

Pair p1 = new Pair (2, 3);
Pair p2 = p1;

(a aside: notice how much more verbose Java is than Haskell!)
class Pair {
 int x, y;

 Pair (int a1, int a2) {
 x = a1;
 y = a2;
 }

 static void sum (Pair p1, Pair p2) {
 p2.x = p1.x + p2.x;
 p2.y = p1.y + p2.y;
 }
}

Pair p1 = new Pair (2, 3);

Pair p2 = p1;

consider the statement:
sum(p1, p2);
Pair p3 = p2;

what is p3 equal to?
Is p3.x == p1.x + p2.x ?
Is p3.y == p1.y + p2.y ?
the Java definitions:

```java
class Pair {
    int x, y;

    Pair (int a1, int a2) {
        x = a1;
        y = a2;
    }

    static void sum (Pair p1, Pair p2) {
        p2.x = p1.x + p2.x;
        p2.y = p1.y + p2.y;
    }
}
```

Pair p1 = new Pair (2, 3);
Pair p2 = p1;

consider the statement:

```java
sum(p1, p2);
Pair p3 = p2;
```

what is p3 equal to?

Is p3.x == p1.x + p2.x
Is p3.y == p1.y + p2.y

p2.x actually takes on different values at different times during the computation

Reasoning by simple equality, ignoring state changes completely breaks down
consider these statements:

```java
Pair p1 = new Pair(2, 3);
Pair p2 = p1
```

... suppose p2 does not show up anywhere else in the code...

what is p2 equal to?
consider these statements:

```java
Pair p1 = new Pair(2, 3);
Pair p2 = p1
```

....

suppose p2 does not show up anywhere else in the code

what is p2 equal to? **Who knows!?!?**

Example:
```java
Pair p1 = new Pair(2, 3);
Pair p2 = p1
p1.x = 17;
p1.y = 23;
// p2 != (2,3)
```
consider these statements:

```java
Pair p1 = new Pair (2, 3);
Pair p2 = p1
```

what is p2 equal to? Isn’t it equal to p1 at least?

suppose p2 does not show up anywhere else in the code
consider these statements:

```java
Pair p1 = new Pair (2, 3);
Pair p2 = p1

....
```

Suppose `p2` does not show up anywhere else in the code.

what is `p2` equal to? Isn’t it equal to `p1` at least?

Nope. Example:

```java
Pair p1 = new Pair (2, 3);
Pair p2 = p1
p1 = new Pair (7,13)

// p1 != p2
```
<table>
<thead>
<tr>
<th>Haskell</th>
<th>Java</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables are constant</td>
<td>Variables are updated</td>
</tr>
<tr>
<td>Data structures are immutable</td>
<td>Data structures are mutable</td>
</tr>
<tr>
<td>Properties of data are stable</td>
<td>Properties of data are unstable</td>
</tr>
<tr>
<td>Local reasoning is easy</td>
<td>Local reasoning is hard</td>
</tr>
<tr>
<td>– if p1 = (2,3) now, no intermittent code “…” changes that fact</td>
<td>– if p1 = (2,3) now, who knows what it will be after some intermittent code “…”</td>
</tr>
<tr>
<td>Code is more modular</td>
<td>Code is less modular</td>
</tr>
<tr>
<td>Order of definitions is irrelevant (provided names don’t clash)</td>
<td>Order of statements is crucial</td>
</tr>
<tr>
<td>Except when there are explicit dependencies, program parts can be run in parallel</td>
<td>Program parts generally cannot be run in parallel</td>
</tr>
</tbody>
</table>
FLOYD-HOARE LOGIC: AN OVERVIEW
• We can’t count on stable properties of data, so what we will do instead is analyze the state of the computation in between every statement:
Hoare Logic: An Overview

We can’t count on stable properties of data, so what we will do instead is analyze the state of the computation in between every statement:

- {precondition} statement {assertion} statement {assertion} statement
 - describes requirements on initial state -- usually with some kind of logic
 - each statement may have some effect on the state
 - describes the new state at exactly this program point
 - guarantees properties of final state

{postcondition}
• We can’t count on stable properties of data, so what we will do instead is analyze the state of the computation in between every statement:

\[
\begin{align*}
 z &= x + y; \\
 x &= x - 1;
\end{align*}
\]
Hoare Logic: An Example

• We can’t count on stable properties of data, so what we will do instead is analyze the state of the computation in between every statement:

\{ x > 0 & y > 0 \}

\texttt{z = x + y;}

\texttt{x = x - 1;}

• We can’t count on stable properties of data, so what we will do instead is analyze the state of the computation in between every statement:

\[
\begin{align*}
\{ x > 0 & \land y > 0 \} \\
z &= x + y; \\
\{ z = x + y & \land x > 0 & \land y > 0 \} \\
x &= x - 1;
\end{align*}
\]
We can’t count on stable properties of data, so what we will do instead is analyze the state of the computation in between every statement:

\[\{ x > 0 \land y > 0 \} \]

\[z = x + y; \]

\[\{ z = x + y \land x > 0 \land y > 0 \} \]

\[x = x - 1; \]

\[\{ z = x + 1 + y \land x \geq 0 \land y > 0 \} \]
Hoare Logic: An Example

• We can’t count on stable properties of data, so what we will do instead is analyze the state of the computation in between every statement:

\[
\{ x > 0 \& y > 0 \} \\
\]

\[
z = x + y; \\
\]

\[
\{ z = x + y \& x > 0 \& y > 0 \} \\
\]

\[
x = x - 1; \\
\]

\[
\{ z = x + 1 + y \& x >= 0 \& y > 0 \} \\
\]

\[
\{ z > x + y \& x >= 0 \& y > 0 \} \\
\]
Hoare Logic: An Example

- We can’t count on stable properties of data, so what we will do instead is analyze the state of the computation in between every statement:

\[
\{ x > 0 \land y > 0 \} \\
\text{z} = \text{x} + \text{y}; \\
\{ z = \text{x} + \text{y} \land \text{x} > 0 \land y > 0 \} \\
\text{x} = \text{x} - 1; \\
\{ z = \text{x} + 1 + \text{y} \land x \geq 0 \land y > 0 \} \\
\{ z > \text{x} + \text{y} \land x \geq 0 \land y > 0 \}
\]
Hoare Triples

- A (partial) Hoare triple has the form \{ P \} C \{ Q \} where
 - P is a **precondition** that describes allowed initial states
 - C is a (possibly compound C-like or Java-like) statement
 - Q is a **postcondition** that describes allowed final states

- A (partial) Hoare triple is **valid** if whenever we start in a state that satisfies the pre-condition P and execution of C terminates, we wind up in a state that satisfies Q

- A fully annotated program \{P_1\} C_1 \{P_2\} C_2 ... C_K \{P_{K+1}\} serves as a proof of validity for the triple \{P_1\} C_1 C_2 ... C_K \{P_{K+1}\} provided each individual components \{P_i\} C_i \{P_{i+1}\} obeys the Rules of Hoare Logic
Partial vs. Total Hoare Triples

• **Partial Hoare Triples** are valid even when a program does not terminate
• **Total Hoare Triples** are valid if the partial triple is valid and the program does terminate

Partial triples are good for establishing **safety properties**
 – ie: certain “bad things” never happen
 – eg: an array is never indexed out of bounds
 – eg: a null pointer is never dereferenced

Total triples are good for establishing **liveness properties**:
 – ie: eventually “something good” happens
 – eg: the program terminates and produces an answer

Total triples are even more of a pain in the neck than partial ones so we are going to ignore them; fewer people use them
DESCRIBING PROGRAM STATES
• What is a program state?
 – It is a finite partial map from program variables to integer values
What is a program state?

- It is a **finite partial map** from program variables to integer values.

A finite number of elements in the domain of the map.

Partial: not all variables are necessarily present (typically there are infinitely many possible variables).
What is a program state?

- It is a **finite partial map** from program variables to integer values
 - a finite number of elements in the domain of the map
 - partial: not all variables are necessarily present (typically there are infinitely many possible variables)

Example: \([x = 2, y = 17, z = 3]\)
Program States

• What is a program state?
 – It is a finite partial map from program variables to integer values

 a finite number of elements in the domain of the map
 partial: not all variables are necessarily present (typically there are infinitely many possible variables)

 Example: \[x = 2, \ y = 17, \ z = 3\]

 Finite partial maps \(E\) typically support several operations:

 • lookup: \(E(x)\)
 • update: \(E[x = N]\)
 • domain: \(\text{dom}(E)\)

 a new map in which \(x\) is mapped to \(N\) but is otherwise the same as \(E\)

 the set of variables in the domain of \(E\)
module State where

 type Var = String
 type State = [(Var, Int)]

look :: State -> Var -> Maybe Int
look [] v = Nothing
look ((v',i):xs) v =
 if v == v'
 then Just i
 else look xs v

up :: State -> Var -> Int -> State
up [] v i = [(v,i)]
up ((v',i'):xs) v i =
 if v == v'
 then (v,i):xs
 else (v',i'):up xs v i

dom :: State -> [Var]
dom = map (\(v,i) -> v)
We are going to use logic to describe program states. For example, this formula:

\[(x = 3 & y = 0) \lor (x = 2 & y = 1)\]

Describes this state:

\[\{ x = 3, y = 0 \}\]

And all of these:

\[\{ x = 2, y = 1 \}\]

\[\{ x = 2, y = 1, z = 0 \}\]

\[\{ x = 2, y = 1, z = 1 \}\]

\[\ldots\]

The formula does not necessarily have to constrain all the variables.
Math

integer variables
\(x := x_1 | x_2 | x_3 | \ldots | y | z | \ldots \)

integer expressions
\(e ::= N | x | e + e | e * e \)

predicates
\(p ::= e = e | e < e \)

formulae
\(f ::= \text{true} \)
 | \(\text{false} \)
 | \(p \)
 | \(f & f \)
 | \(f || f \)
 | \(\sim f \)

I will also use \(P, Q, F \) for formulae
Formulae

Math

integer variables
x := x₁ | x₂ | x₃ | ... | y | z | ...

integer expressions
e ::= N | x | e + e | e * e

predicates
p ::= e = e | e < e

formulae
f ::= true
 | false
 | p
 | f & f
 | f || f
 | ~f

Haskell

type Var = String

data Exp =
 Const Int
 | Var Var
 | Add Exp Exp
 | Mult Exp Exp

data Pred =
 Eq Exp Exp
 | Less Exp Exp

data Form =
 Tru
 | Fal
 | Pred Pred
 | And Form Form
 | Or Form Form
 | Not Form
Math vs. Haskell

• Denotational semantics: Math notation or Haskell notation?

• Haskell semantic definitions are clearer
• Haskell gives us an implementation that will evaluate formulae
• Math is more concise, especially in examples:
 – Add (Add (Const 3) (Const 4)) (Const 5) vs (3 + 4) + 5

• If I were writing an academic research paper, I’d do it in math
• For teaching, I’ll give semantics first in Haskell but then show you how to redefine them using the standard mathematical notation
SEMANTICS OF FORMULAE: PRESENTATION I: HASKELL
Denotational Semantics

• Recall: A denotational semantics gives a meaning to newly defined syntactic objects by translating these objects into a better understood language or mathematical object

• Denotational semantics of expressions:
 – esem :: State -> Exp -> Maybe Int

 – esem s e == Just n ===> "expression e in state s has value n"

 – esem s e == Nothing ===> "expression e is not defined in state s"
Semantics of Expressions in Haskell

esem :: State -> Exp -> Maybe Int

esem s (Const i) = Just i

esem s (Var v) = look s v

esem s (Add e1 e2) =
case (esem s e1, esem s e2) of
 (Just i1, Just i2) -> Just (i1 + i2)
 (_, _) -> Nothing

esem s (Mult e1 e2) =
case (esem s e1, esem s e2) of
 (Just i1, Just i2) -> Just (i1 * i2)
 (_, _) -> Nothing
Semantics of Predicates

- Denotational Semantics of Predicates:
 - psem :: State -> Pred -> Maybe Bool

- psem p e == Just True ===> "predicate p in state s is valid"
- psem p e == Just False ===> "predicate p in state s is not valid"
- psem p e == Nothing ===> "predicate p is not defined in state s"
psem :: State -> Pred -> Maybe Bool

psem s (Eq e1 e2) =
 case (esem s e1, esem s e2) of
 (Just i1, Just i2) -> Just (i1 == i2)
 (_, _) -> Nothing

psem s (Less e1 e2) =
 case (esem s e1, esem s e2) of
 (Just i1, Just i2) -> Just (i1 < i2)
 (_, _) -> Nothing
Semantics of Formulae

- Denotational semantics of formulae
 - fsem :: State -> Form -> Maybe Int
 - fsem f e == Just True ===> "formula f in state s is valid"
 ===> "formula f describes state s"
 - fsem f e == Just False ===> "formula f in state s is not valid"
 ===> "formula f does not describe state s"
 - fsem f e == Nothing ===> "formula f is not defined in state s"
Semantics of Formulae in Haskell

\[fsem :: \text{State} \rightarrow \text{Form} \rightarrow \text{Maybe Bool} \]

- \(fsem \ s \ \text{Tru} = \text{Just True} \) \(\text{Tru describes all states s} \)
- \(fsem \ s \ \text{Fal} = \text{Just False} \) \(\text{Fal describes no states s} \)
- \(fsem \ s \ (\text{Pred } p) = psem \ s \ p \)

\[fsem \ s \ (\text{And } f1 \ f2) = \]
\[\quad \text{case (fsem } s \ f1, \ fsem } s \ f2 \text{) of} \]
\[\quad \quad (\text{Just } b1, \ \text{Just } b2) \rightarrow \text{Just (} b1 \land b2 \text{)} \]
\[\quad \quad (_, \ _) \rightarrow \text{Nothing} \]

\[fsem \ s \ (\text{Or } f1 \ f2) = \]
\[\quad \text{case (fsem } s \ f1, \ fsem } s \ f2 \text{) of} \]
\[\quad \quad (\text{Just } b1, \ \text{Just } b2) \rightarrow \text{Just (} b1 \lor b2 \text{)} \]
\[\quad \quad (_, \ _) \rightarrow \text{Nothing} \]

\[fsem \ s \ (\text{Not } f) = \]
\[\quad \text{case fsem } s \ f \text{ of} \]
\[\quad \quad \text{Just } b \rightarrow \text{Just (} \text{not } b \text{)} \]
\[\quad \quad _ \rightarrow \text{Nothing} \]
What can we do with the semantics?

• We can determine which formulae are equivalent
 – Equivalent formulae describe the same set of states
 – \(f_1 == f_2 \) iff for all \(s \), \(f_{\text{sem}}(s, f_1) == f_{\text{sem}}(s, f_2) \)

• Question: Could you define a type class instance that implemented this notion of equality?

• Exercises. Prove the following using the Haskell definitions:
 – \(\text{Tru} == \text{Not} \ \text{Fal} \)
 – \(\text{Fal} == \text{Not} \ \text{Tru} \)
 – \(\text{Not} (\text{Not} \ f) == f \)
 – \(\text{And} \ f_1 \ f_2 == \text{And} \ f_2 \ f_1 \)
 – \(\text{Or} \ f_1 \ f_2 == \text{Or} \ f_2 \ f_1 \)
 – \(\text{Or} (\text{Or} \ f_1 \ f_2) \ f_3 == \text{Or} \ f_1 (\text{Or} \ f_2 \ f_3) \)
 – \(\text{Not} (\text{And} \ f_1 \ f_2) == \text{Or} (\text{Not} \ f_1) \ (\text{Not} \ f_2) \)
What can we do with the semantics?

Lemma: Tru == Not Fal

Proof:
consider any s, we must prove: fsem s Tru = fsem s (Not Fal).

\[\text{fsem s Tru} \]
\[= \text{Just True} \quad \text{(unfold fsem)} \]
\[= \text{Just (not False)} \quad \text{(fold not)} \]
\[= \text{fsem s (Not Fal)} \quad \text{(fold fsem s)} \]
What can we do with the semantics?

• We can define the **strength** of a formula:

 – f1 is **stronger than** f2 if f1 describes a subset of the states described by f2. Alternatively, f2 is **weaker than** f1.

 – we write f1 => f2 iff

 for all s, fsem s f1 == Just True implies fsem s f2 == Just True

• Exercises. Prove the following using the Haskell definitions:

 – Fal => Tru

 – And f1 f2 => f1 (for any f1, f2)
A bit of a glitch

• $f_1 \Rightarrow \text{Or } f_1 f_2$ is not true in general. Why?

• Recall: To prove a conjecture isn't true in general, give a counter-example. Here's one:

 – Let $f_1 = \text{Tru}$
 – Let $f_2 = \text{Eq } x \times x$

 – $\text{Tru} \Rightarrow \text{Or } \text{Tru} (\text{Eq } x \times x)$ iff

 for all s, $fsem \ s \ \text{Tru} \Rightarrow fsem \ s \ (\text{Or } \text{Tru} (\text{Eq } x \times x))$

 – consider $s = [\]$; in this case:
 • $fsem \ s \ \text{Tru} = \text{Just True}$
 • $fsem \ s \ (\text{Or } \text{Tru} (\text{Eq } x \times x)) = \text{Nothing}$
Resolving the glitch

• We assume there is some (finite) set of variables G that are allowed to appear in expressions, formulae and programs
 – An expression, formula, or program is **well-formed** if its variables are a subset of G
 • ie: the expression/formula/program only uses the allowed variables
 – A state s is **well-formed** if $\text{dom}(s)$ is a superset or equal to G
 • ie: s defines all of the allowed variables

• New definitions. Consider any well-formed f_1 and f_2:
 – $f_1 == f_2$ iff for all well-formed s,

 \[
 \text{fsem}
 \]

 \[
 s \ f_1 == \text{fsem}
 \]

 \[
 s \ f_2
 \]
 – $f_1 => f_2$ iff for all well-formed s,

 \[
 \text{fsem}
 \]

 \[
 s \ f_1 == \text{Just True implies fsem}
 \]

 \[
 s \ f_2 == \text{Just True}
 \]
Resolving the glitch

• From now on we will only work with well-formed objects
 – ie: we won’t mention it, but you can assume every state, formula, etc., from here on out in these slides is well-formed

• From now on, formulae are either valid or invalid
 – ie: \(\text{fsem } s \ f \equiv \text{Just True} \) or \(\text{fsem } s \ f \equiv \text{Just False} \)
 – \(\text{fsem } s \ f \) is never \(\text{Nothing} \) when \(s \) and \(f \) are well-formed
 – hence, we can start ignoring the “Just” in the result
 – I’ll often simply say “\(\text{fsem } s \ f \) is true” or “\(f \) is true” (in some state)
 – In this setting \(f_1 \Rightarrow f_2 \) is the classical notion of logical implication you are used to
SUMMARY!
• Hoare Triples characterize program properties
• States map variables to values
• Formulae describe states:
 – semantics in Haskell: `fsem :: State -> Form -> Maybe Bool`
 – formulae and states we deal with are well-formed
 • well-formedness is a very simple syntactic analysis
 – `P => Q` means P is stronger than Q; P describes fewer states