
Reasoning About
Imperative Programs

COS 441 Slides 10

Agenda

• The last few weeks

– reasoning about functional programming

• It’s very simple and very uniform: substitution of equal
expressions for equal expressions

• It works for any kind of data structure: Integers, lists, strings,
trees; arbitrary user-defined data types; even actions that describe
I/O effects

• The next few lectures

– reasoning about imperative programs

• It’s fundamentally more complicated

• In a very practical sense, this means it is fundamentally more
difficult to write correct imperative programs

• In addition to having to worry about what is true, you have to
worry about when it is true

THE PROBLEM

A Simple Haskell Program

pair x y = (x,y)

sum (x1, y1) (x2, y2) = (x1+y1, x2+y2)

x = pair 2 3

y = x

some Haskell definitions:

A Simple Haskell Program

pair x y = (x,y)

sum (x1, y1) (x2, y2) = (x1+y1, x2+y2)

x = pair 2 3

y = x

some Haskell definitions:

what is sum x y equal to?

A Simple Haskell Program

pair x y = (x,y)

sum (x1, y1) (x2, y2) = (x1+y1, x2+y2)

x = pair 2 3

y = x

some Haskell definitions:

 sum x y
= sum x x
= sum (pair 2 3) (pair 2 3)
= (2+2, 3+3)
= (4, 6)

what is sum x y equal to?

you should be able to
verify this in your sleep

A Somewhat Similar Java Program

class Pair {
 int x, y;

 Pair (int a1, int a2) {
 x = a1;
 y = a2;
 }

 static void sum (Pair p1, Pair p2) {
 p2.x = p1.x + p2.x;
 p2.y = p1.y + p2.y;
 }
}

Pair p1 = new Pair (2, 3);

Pair p2 = p1;

the Java definitions:

A Somewhat Similar Java Program

class Pair {
 int x, y;

 Pair (int a1, int a2) {
 x = a1;
 y = a2;
 }

 static void sum (Pair p1, Pair p2) {
 p2.x = p1.x + p2.x;
 p2.y = p1.y + p2.y;
 }
}

Pair p1 = new Pair (2, 3);

Pair p2 = p1;

the Java definitions:

(an aside: notice how much more verbose Java is than Haskell!)

a big departure from the Haskell program;
we are imperatively updating the contents of
the pair data structure with the sum!

A Somewhat Similar Java Program

class Pair {
 int x, y;

 Pair (int a1, int a2) {
 x = a1;
 y = a2;
 }

 static void sum (Pair p1, Pair p2) {
 p2.x = p1.x + p2.x;
 p2.y = p1.y + p2.y;
 }
}

Pair p1 = new Pair (2, 3);

Pair p2 = p1;

the Java definitions:

Is p3.x == p1.x + p2.x ?
Is p3.y == p1.y + p2.y ?

consider the statement:

 sum(p1, p2);
 Pair p3 = p2;

what is p3 equal to?

A Somewhat Similar Java Program

class Pair {
 int x, y;

 Pair (int a1, int a2) {
 x = a1;
 y = a2;
 }

 static void sum (Pair p1, Pair p2) {
 p2.x = p1.x + p2.x;
 p2.y = p1.y + p2.y;
 }
}

Pair p1 = new Pair (2, 3);

Pair p2 = p1;

the Java definitions:

Is p3.x == p1.x + p2.x ?
Is p3.y == p1.y + p2.y ?

consider the statement:

 sum(p1, p2);
 Pair p3 = p2;

what is p3 equal to?

p2.x actually takes on
different values at different times
during the computation

Reasoning by simple equality,
ignoring state changes completely
breaks down

A Little Bit More Java

consider these statements:

 Pair p1 = new Pair(2, 3);
 Pair p2 = p1

what is p2 equal to?

suppose p2 does not show up
anywhere else in the code

A Little Bit More Java

consider these statements:

 Pair p1 = new Pair(2, 3);
 Pair p2 = p1

what is p2 equal to? Who knows!?!?

 Example:
 Pair p1 = new Pair(2, 3);
 Pair p2 = p1
 p1.x = 17;
 p1.y = 23;

 // p2 != (2,3)

suppose p2 does not show up
anywhere else in the code

A Little Bit More Java

consider these statements:

 Pair p1 = new Pair (2, 3);
 Pair p2 = p1

what is p2 equal to? Isn’t it equal to p1 at least?

suppose p2 does not show up
anywhere else in the code

A Little Bit More Java

consider these statements:

 Pair p1 = new Pair (2, 3);
 Pair p2 = p1

what is p2 equal to? Isn’t it equal to p1 at least?

 Nope. Example:
 Pair p1 = new Pair (2, 3);
 Pair p2 = p1
 p1 = new Pair (7,13)

 // p1 != p2

suppose p2 does not show up
anywhere else in the code

Haskell

• Variables are constant

• Data structures are immutable

• Properties of data are stable

• Local reasoning is easy
– if p1 = (2,3) now, no intermittent

code “...” changes that fact

• Code is more modular

• Order of definitions is
irrelevant (provided names
don’t clash)

• Except when there are explicit
dependencies, program parts
can be run in parallel

Java

• Variables are updated

• Data structures are mutable

• Properties of data are unstable

• Local reasoning is hard
– if p1 = (2,3) now, who knows

what it will be after some
intermittent code “...”

• Code is less modular

• Order of statements is crucial

• Program parts generally
cannot be run in parallel

Dramatic Differences

FLOYD-HOARE LOGIC:
AN OVERVIEW

Hoare Logic: An Overview

• We can’t count on stable properties of data, so what we will
do instead is analyze the state of the computation in between
every statement:

Hoare Logic: An Overview

• We can’t count on stable properties of data, so what we will
do instead is analyze the state of the computation in between
every statement:

{ precondition }

statement

{ assertion }

statement

{ assertion }

statement

{ postcondition }

describes requirements
on initial state --
usually with some
kind of logic

guarantees properties
of final state

each statement
may have some
effect on the
state

describes
the new
state at
exactly
this program
point

Hoare Logic: An Example

• We can’t count on stable properties of data, so what we will
do instead is analyze the state of the computation in between
every statement:

z = x + y;

x = x - 1;

Hoare Logic: An Example

• We can’t count on stable properties of data, so what we will
do instead is analyze the state of the computation in between
every statement:

{ x > 0 & y > 0 }

z = x + y;

x = x - 1;

Hoare Logic: An Example

• We can’t count on stable properties of data, so what we will
do instead is analyze the state of the computation in between
every statement:

{ x > 0 & y > 0 }

z = x + y;

{ z = x + y & x > 0 & y > 0 }

x = x - 1;

Hoare Logic: An Example

• We can’t count on stable properties of data, so what we will
do instead is analyze the state of the computation in between
every statement:

{ x > 0 & y > 0 }

z = x + y;

{ z = x + y & x > 0 & y > 0 }

x = x - 1;

{ z = x + 1 + y & x >= 0 & y > 0}

Hoare Logic: An Example

• We can’t count on stable properties of data, so what we will
do instead is analyze the state of the computation in between
every statement:

{ x > 0 & y > 0 }

z = x + y;

{ z = x + y & x > 0 & y > 0 }

x = x - 1;

{ z = x + 1 + y & x >= 0 & y > 0}

{ z > x + y & x >= 0 & y > 0 }

Hoare Logic: An Example

• We can’t count on stable properties of data, so what we will
do instead is analyze the state of the computation in between
every statement:

{ x > 0 & y > 0 }

z = x + y;

{ z = x + y & x > 0 & y > 0 }

x = x - 1;

{ z = x + 1 + y & x >= 0 & y > 0}

{ z > x + y & x >= 0 & y > 0 }

{ x > 0 & y > 0 }
z = x + y;
x = x - 1;
{ z > x + y & x >= 0 & y > 0}

A
Hoare
Triple

A proof
of program
correctness

justifies

Hoare Triples

• A (partial) Hoare triple has the form { P } C { Q } where

– P is a precondition that describes allowed initial states

– C is a (possibly compound C-like or Java-like) statement

– Q is a postcondition that describes allowed final states

• A (partial) Hoare triple is valid if whenever we start in a state
that satisfies the pre-condition P and execution of C
terminates, we wind up in a state that satisfies Q

• A fully annotated program {P1} C1 {P2} C2 ... CK {PK+1} serves
as a proof of validity for the triple {P1} C1 C2 ... CK {PK+1}
provided each individual components {Pi} Ci {Pi+1} obeys the
Rules of Hoare Logic

Partial vs. Total Hoare Triples

• Partial Hoare Triples are valid even when a program does not
terminate

• Total Hoare Triples are valid if the partial triple is valid and the
program does terminate

• Partial triples are good for establishing safety properties

– ie: certain “bad things” never happen

– eg: an array is never indexed out of bounds

– eg: a null pointer is never dereferenced

• Total triples are good for establishing liveness properties:

– ie: eventually “something good” happens

– eg: the program terminates and produces an answer

• Total triples are even more of a pain in the neck than partial ones
so we are going to ignore them; fewer people use them

DESCRIBING PROGRAM STATES

Program States

• What is a program state?

– It is a finite partial map from program variables to integer values

Program States

• What is a program state?

– It is a finite partial map from program variables to integer values

a finite number of elements
in the domain of the map

partial: not all variables
are necessarily present
(typically there are infinitely
many possible variables)

ie: function

Program States

• What is a program state?

– It is a finite partial map from program variables to integer values

– Example: [x = 2, y = 17, z = 3]

a finite number of elements
in the domain of the map

partial: not all variables
are necessarily present
(typically there are infinitely
many possible variables)

ie: function

Program States

• What is a program state?

– It is a finite partial map from program variables to integer values

– Example: [x = 2, y = 17, z = 3]

– Finite partial maps E typically support several operations:

• lookup: E(x)

• update: E[x = N]

• domain: dom(E)

a finite number of elements
in the domain of the map

partial: not all variables
are necessarily present
(typically there are infinitely
many possible variables)

ie: function

a new map in which
x is mapped to N but is
otherwise the same as E

the set of variables in the domain of E

Program States in Haskell
module State where

type Var = String
type State = [(Var, Int)]

look :: State -> Var -> Maybe Int
look [] v = Nothing
look ((v',i):xs) v =
 if v == v'
 then Just i
 else look xs v

up :: State -> Var -> Int -> State
up [] v i = [(v,i)]
up ((v',i'):xs) v i =
 if v == v'
 then (v,i):xs
 else (v',i'):up xs v i

dom :: State -> [Var]
dom = map (\(v,i) -> v)

finite maps as lists;
we could implement
them as search trees
for greater efficiency

Describing Program States

• We are going to use logic to describe program states

• For example, this formula:

• Describes this state:

• And all of these:

(x = 3 & y = 0) || (x = 2 & y = 1)

[x = 3, y = 0]

[x = 2, y = 1]

[x = 2, y = 1, z = 0]

[x = 2, y = 1, z = 1]

... the formula does not
necessarily have to
constrain all the variables

Formulae

integer variables
x := x1 | x2 | x3 | ... | y | z | ...

integer expressions
e ::= N | x | e + e | e * e

predicates
p ::= e = e | e < e

formulae
f ::= true
 | false
 | p
 | f & f
 | f || f
 | ~f

Math

I will also use P, Q, F for formulae

Formulae

integer variables
x := x1 | x2 | x3 | ... | y | z | ...

integer expressions
e ::= N | x | e + e | e * e

predicates
p ::= e = e | e < e

formulae
f ::= true
 | false
 | p
 | f & f
 | f || f
 | ~f

type Var = String

data Exp =
 Const Int
 | Var Var
 | Add Exp Exp
 | Mult Exp Exp

data Pred =
 Eq Exp Exp
 | Less Exp Exp

data Form =
 Tru
 | Fal
 | Pred Pred
 | And Form Form
 | Or Form Form
 | Not Form

Math Haskell

Math vs. Haskell

• Denotational semantics: Math notation or Haskell notation?

• Haskell semantic definitions are clearer

• Haskell gives us an implementation that will evaluate formulae

• Math is more concise, especially in examples:

– Add (Add (Const 3) (Const 4)) (Const 5) vs (3 + 4) + 5

• If I were writing an academic research paper, I’d do it in math

• For teaching, I’ll give semantics first in Haskell but then show you
how to redefine them using the standard mathematical notation

SEMANTICS OF FORMULAE:
PRESENTATION I: HASKELL

Denotational Semantics

• Recall: A denotational semantics gives a meaning to newly
defined syntactic objects by translating these objects in to a
better understood language or mathematical object

• Denotational semantics of expressions:

– esem :: State -> Exp -> Maybe Int

– esem s e == Just n ====> "expression e in state s has value n"

– esem s e == Nothing ====> "expression e is not defined in state s"

Semantics of Expressions in Haskell

esem :: State -> Exp -> Maybe Int

esem s (Const i) = Just i

esem s (Var v) = look s v

esem s (Add e1 e2) =
 case (esem s e1, esem s e2) of
 (Just i1, Just i2) -> Just (i1 + i2)
 (_, _) -> Nothing

esem s (Mult e1 e2) =
 case (esem s e1, esem s e2) of
 (Just i1, Just i2) -> Just (i1 * i2)
 (_, _) -> Nothing

Semantics of Predicates

• Denotational Semantics of Predicates:

– psem :: State -> Pred -> Maybe Bool

– psem p e == Just True ====> "predicate p in state s is valid"

– psem p e == Just False ====> "predicate p in state s is not valid"

– psem p e == Nothing ====> "predicate p is not defined in state s"

Semantics of Predicates in Haskell

psem :: State -> Pred -> Maybe Bool

psem s (Eq e1 e2) =
 case (esem s e1, esem s e2) of
 (Just i1, Just i2) -> Just (i1 == i2)
 (_, _) -> Nothing

psem s (Less e1 e2) =
 case (esem s e1, esem s e2) of
 (Just i1, Just i2) -> Just (i1 < i2)
 (_, _) -> Nothing

Semantics of Formulae

• Denotational semantics of formulae

– fsem :: State -> Form -> Maybe Int

– fsem f e == Just True ====> "formula f in state s is valid"

 ====> "formula f describes state s"

– fsem f e == Just False ====> "formula f in state s is not valid"

 ====> "formula f does not describe state s"

– fsem f e == Nothing ====> "formula f is not defined in state s"

Semantics of Formulae in Haskell

fsem :: State -> Form -> Maybe Bool
fsem s Tru = Just True
fsem s Fal = Just False
fsem s (Pred p) = psem s p

fsem s (And f1 f2) =
 case (fsem s f1, fsem s f2) of
 (Just b1, Just b2) -> Just (b1 && b2)
 (_, _) -> Nothing

fsem s (Or f1 f2) =
 case (fsem s f1, fsem s f2) of
 (Just b1, Just b2) -> Just (b1 || b2)
 (_, _) -> Nothing

fsem s (Not f) =
 case fsem s f of
 Just b -> Just (not b)
 _ -> Nothing

Tru describes all states s

Fal describes no states s

What can we do with the semantics?

• We can determine which formulae are equivalent

– Equivalent formulae describe the same set of states

– f1 == f2 iff for all s, fsem s f1 == fsem s f2

• Question: Could you define a type class instance that
implemented this notion of equality?

• Exercises. Prove the following using the Haskell definitions:

– Tru == Not Fal

– Fal == Not Tru

– Not (Not f) == f

– And f1 f2 == And f2 f1

– Or f1 f2 == Or f2 f1

– Or (Or f1 f2) f3 == Or f1 (Or f2 f3)

– Not (And f1 f2) == Or (Not f1) (Not f2)

What can we do with the semantics?

Lemma: Tru == Not Fal

Proof:

consider any s, we must prove: fsem s Tru = fsem s (Not Fal).

 fsem s Tru

== Just True (unfold fsem)

== Just (not False) (fold not)

== fsem s (Not Fal) (fold fsem s)

What can we do with the semantics?

• We can define the strength of a formula:

– f1 is stronger than f2 if f1 describes a subset of the states
described by f2. Alternatively, f2 is weaker than f1.

– we write f1 => f2 iff

 for all s, fsem s f1 == Just True implies fsem s f2 == Just True

• Exercises. Prove the following using the Haskell definitions:

– Fal => Tru

– And f1 f2 => f1 (for any f1, f2)

A bit of a glitch

• f1 => Or f1 f2 is not true in general. Why?

• Recall: To prove a conjecture isn't true in general, give a
counter-example. Here's one:

– Let f1 = Tru

– Let f2 = Eq x x

– Tru => Or Tru (Eq x x) iff

 for all s, fsem s Tru => fsem s (Or Tru (Eq x x))

– consider s = []; in this case:

• fsem s Tru = Just True

• fsem s (Or Tru (Eq x x)) = Nothing

Resolving the glitch

• We assume there is some (finite) set of variables G that are
allowed to appear in expressions, formulae and programs

– An expression, formula, or program is well-formed if its variables
are a subset of G

• ie: the expression/formula/program only uses the allowed variables

– A state s is well-formed if dom(s) is a superset or equal to G

• ie: s defines all of the allowed variables

• New definitions. Consider any well-formed f1 and f2:

– f1 == f2 iff for all well-formed s,

 fsem s f1 == fsem s f2

– f1 => f2 iff for all well-formed s,

 fsem s f1 == Just True implies fsem s f2 == Just True

Resolving the glitch

• From now on we will only work with well-formed objects

– ie: we won’t mention it, but you can assume every state, formula,
etc., from here on out in these slides is well-formed

• From now on, formulae are either valid or invalid

– ie: fsem s f == Just True or fsem s f == Just False

– fsem s f is never Nothing when s and f are well-formed

– hence, we can start ignoring the “Just” in the result

– I’ll often simply say “fsem s f is true” or “f is true” (in some state)

– In this setting f1 => f2 is the classical notion of logical implication
you are used to

SUMMARY!

Summary

• Hoare Triples characterize program properties

• States map variables to values

• Formulae describe states:

– semantics in Haskell: fsem :: State -> Form -> Maybe Bool

– formulae and states we deal with are well-formed

• well-formedness is a very simple syntactic analysis

– P => Q means P is stronger than Q; P describes fewer states

