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Agenda 

• The last few weeks 

– reasoning about functional programming 

• It’s very simple and very uniform:  substitution of equal 
expressions for equal expressions 

• It works for any kind of data structure:  Integers, lists, strings, 
trees; arbitrary user-defined data types; even actions that describe 
I/O effects 

 

• The next few lectures 

– reasoning about imperative programs 

• It’s fundamentally more complicated 

• In a very practical sense, this means it is fundamentally more 
difficult to write correct imperative programs 

• In addition to having to worry about what is true, you have to 
worry about when it is true 



THE PROBLEM 



A Simple Haskell Program 

pair x y = (x,y) 
 
sum (x1, y1) (x2, y2) = (x1+y1, x2+y2) 
 
x = pair 2 3 
 
y = x 

some Haskell definitions: 



A Simple Haskell Program 

pair x y = (x,y) 
 
sum (x1, y1) (x2, y2) = (x1+y1, x2+y2) 
 
x = pair 2 3 
 
y = x 

some Haskell definitions: 

what is sum x y equal to? 



A Simple Haskell Program 

pair x y = (x,y) 
 
sum (x1, y1) (x2, y2) = (x1+y1, x2+y2) 
 
x = pair 2 3 
 
y = x 

some Haskell definitions: 

   sum x y  
= sum x x 
= sum (pair 2 3) (pair 2 3) 
= (2+2, 3+3) 
= (4, 6) 
 

what is sum x y equal to? 

you should be able to 
verify this in your sleep 



A Somewhat Similar Java Program 

class Pair {  
   int x, y; 
 
   Pair (int a1, int a2) { 
       x = a1; 
       y = a2; 
  } 
 
   static void sum (Pair p1, Pair p2) { 
      p2.x = p1.x + p2.x; 
      p2.y = p1.y + p2.y; 
   } 
} 
 
Pair p1 = new Pair (2, 3); 
   
Pair p2 = p1;  

the Java definitions: 



A Somewhat Similar Java Program 

class Pair {  
   int x, y; 
 
   Pair (int a1, int a2) { 
       x = a1; 
       y = a2; 
  } 
 
   static void sum (Pair p1, Pair p2) { 
      p2.x = p1.x + p2.x; 
      p2.y = p1.y + p2.y; 
   } 
} 
 
Pair p1 = new Pair (2, 3); 
   
Pair p2 = p1;  

the Java definitions: 

(an aside:  notice how much more verbose Java is than Haskell!) 

a big departure from the Haskell program; 
we are imperatively updating the contents of 
the pair data structure with the sum! 



A Somewhat Similar Java Program 

class Pair {  
   int x, y; 
 
   Pair (int a1, int a2) { 
       x = a1; 
       y = a2; 
  } 
 
   static void sum (Pair p1, Pair p2) { 
      p2.x = p1.x + p2.x; 
      p2.y = p1.y + p2.y; 
   } 
} 
 
Pair p1 = new Pair (2, 3); 
   
Pair p2 = p1;  

the Java definitions: 

Is p3.x == p1.x + p2.x     ? 
Is p3.y == p1.y + p2.y     ?  

consider the statement: 
 
     sum(p1, p2); 
     Pair p3 = p2;  
 
what is p3 equal to? 



A Somewhat Similar Java Program 

class Pair {  
   int x, y; 
 
   Pair (int a1, int a2) { 
       x = a1; 
       y = a2; 
  } 
 
   static void sum (Pair p1, Pair p2) { 
      p2.x = p1.x + p2.x; 
      p2.y = p1.y + p2.y; 
   } 
} 
 
Pair p1 = new Pair (2, 3); 
   
Pair p2 = p1;  

the Java definitions: 

Is p3.x == p1.x + p2.x     ? 
Is p3.y == p1.y + p2.y     ?  

consider the statement: 
 
     sum(p1, p2); 
     Pair p3 = p2;  
 
what is p3 equal to? 

p2.x actually takes on 
different values at different times  
during the computation 
 
Reasoning by simple equality,  
ignoring state changes completely 
breaks down 



A Little Bit More Java 

consider these statements: 
 
     Pair p1 = new Pair(2, 3); 
     Pair p2 = p1 
 
     .... 
 
      
 
what is p2 equal to? 

suppose p2 does not show up 
anywhere else in the code 



A Little Bit More Java 

consider these statements: 
 
     Pair p1 = new Pair(2, 3); 
     Pair p2 = p1 
 
     .... 
 
      
 
what is p2 equal to?   Who knows!?!?   
 
  Example: 
     Pair p1 = new Pair(2, 3); 
     Pair p2 = p1 
     p1.x = 17; 
     p1.y = 23; 
 
     // p2 != (2,3) 

suppose p2 does not show up 
anywhere else in the code 



A Little Bit More Java 

consider these statements: 
 
     Pair p1 = new Pair (2, 3); 
     Pair p2 = p1 
 
     .... 
 
      
 
what is p2 equal to?   Isn’t it equal to p1 at least?   
 
 

suppose p2 does not show up 
anywhere else in the code 



A Little Bit More Java 

consider these statements: 
 
     Pair p1 = new Pair (2, 3); 
     Pair p2 = p1 
 
     .... 
 
      
 
what is p2 equal to?   Isn’t it equal to p1 at least? 
 
  Nope.  Example: 
     Pair p1 = new Pair (2, 3); 
     Pair p2 = p1 
     p1 = new Pair (7,13) 
 
     // p1 != p2 

suppose p2 does not show up 
anywhere else in the code 



Haskell 

• Variables are constant 

• Data structures are immutable 

• Properties of data are stable 

• Local reasoning is easy 
– if p1 = (2,3) now, no intermittent 

code “...” changes that fact 

• Code is more modular 

• Order of definitions is 
irrelevant (provided names 
don’t clash) 

• Except when there are explicit 
dependencies, program parts 
can be run in parallel 

 

 

Java 

• Variables are updated 

• Data structures are mutable 

• Properties of data are unstable 

• Local reasoning is hard 
– if p1 = (2,3) now, who knows 

what it will be after some 
intermittent code “...” 

• Code is less modular 

• Order of statements is crucial 

• Program parts generally 
cannot be run in parallel 

 

Dramatic Differences 



FLOYD-HOARE LOGIC: 
AN OVERVIEW 



Hoare Logic:  An Overview 

• We can’t count on stable properties of data, so what we will 
do instead is analyze the state of the computation in between 
every statement: 



Hoare Logic:  An Overview 

• We can’t count on stable properties of data, so what we will 
do instead is analyze the state of the computation in between 
every statement: 

{ precondition }  
 
statement 
 
{ assertion } 
 
statement 
 
{ assertion }  
 
statement 
 
{ postcondition } 

describes requirements 
on initial state -- 
usually with some 
kind of logic 

guarantees properties 
of final state 

each statement 
may have some 
effect on the  
state 

describes 
the new  
state at  
exactly 
this program 
point 



Hoare Logic:  An Example 

• We can’t count on stable properties of data, so what we will 
do instead is analyze the state of the computation in between 
every statement: 

  
 
z = x + y; 
 
 
 
x = x - 1; 
 
 
 
 
 



Hoare Logic:  An Example 

• We can’t count on stable properties of data, so what we will 
do instead is analyze the state of the computation in between 
every statement: 

{ x > 0 & y > 0 }  
 
z = x + y; 
 
 
 
x = x - 1; 
 
 
 
 
 



Hoare Logic:  An Example 

• We can’t count on stable properties of data, so what we will 
do instead is analyze the state of the computation in between 
every statement: 

{ x > 0 & y > 0 }  
 
z = x + y; 
 
{ z = x + y & x > 0 & y > 0 } 
 
x = x - 1; 
 
  
 
 
 



Hoare Logic:  An Example 

• We can’t count on stable properties of data, so what we will 
do instead is analyze the state of the computation in between 
every statement: 

{ x > 0 & y > 0 }  
 
z = x + y; 
 
{ z = x + y & x > 0 & y > 0 } 
 
x = x - 1; 
 
{ z = x + 1 + y & x >= 0 & y > 0}  
 
 
 



Hoare Logic:  An Example 

• We can’t count on stable properties of data, so what we will 
do instead is analyze the state of the computation in between 
every statement: 

{ x > 0 & y > 0 }  
 
z = x + y; 
 
{ z = x + y & x > 0 & y > 0 } 
 
x = x - 1; 
 
{ z = x + 1 + y & x >= 0 & y > 0}  
 
{ z > x + y  & x >= 0 & y > 0 } 



Hoare Logic:  An Example 

• We can’t count on stable properties of data, so what we will 
do instead is analyze the state of the computation in between 
every statement: 

{ x > 0 & y > 0 }  
 
z = x + y; 
 
{ z = x + y & x > 0 & y > 0 } 
 
x = x - 1; 
 
{ z = x + 1 + y & x >= 0 & y > 0}  
 
{ z > x +  y  & x >= 0 & y > 0 } 

{ x > 0 & y > 0 }  
z = x + y; 
x = x - 1; 
{ z > x + y & x >= 0 & y > 0} 

A  
Hoare  
Triple 

A proof 
of program 
correctness 

justifies 



Hoare Triples 

• A (partial) Hoare triple has the form { P } C { Q } where 

– P is a precondition that describes allowed initial states 

– C is a (possibly compound C-like or Java-like) statement 

– Q is a postcondition that describes allowed final states 

 

• A (partial) Hoare triple is valid if whenever we start in a state 
that satisfies the pre-condition P and execution of C 
terminates, we wind up in a state that satisfies Q 

 

• A fully annotated program {P1} C1 {P2} C2 ... CK {PK+1} serves 
as a proof of validity for the triple {P1} C1 C2 ... CK {PK+1}  
provided each individual components {Pi} Ci {Pi+1}  obeys the 
Rules of Hoare Logic 



Partial vs. Total Hoare Triples 

• Partial Hoare Triples are valid even when a program does not 
terminate 

• Total Hoare Triples are valid if the partial triple is valid and the 
program does terminate 

• Partial triples are good for establishing safety properties 

– ie:  certain “bad things” never happen 

– eg: an  array is never indexed out of bounds 

– eg: a null pointer is never dereferenced 

• Total triples are good for establishing liveness properties: 

– ie:  eventually “something good” happens 

– eg: the program terminates and produces an answer 

• Total triples are even more of a pain in the neck than partial ones 
so we are going to ignore them;  fewer people use them 

 

 

 



DESCRIBING PROGRAM STATES 



Program States 

• What is a program state? 

– It is a finite partial map from program variables to integer values 

 

 

 

 

 

 

 



Program States 

• What is a program state? 

– It is a finite partial map from program variables to integer values 

 

 

 

 

 

 

 

a finite number of elements 
in the domain of the map 

partial:  not all variables 
are necessarily present 
(typically there are infinitely 
many possible variables) 

ie: function 



Program States 

• What is a program state? 

– It is a finite partial map from program variables to integer values 

 

 

 

 

 

 

– Example:  [x = 2, y = 17, z = 3] 

 

a finite number of elements 
in the domain of the map 

partial:  not all variables 
are necessarily present 
(typically there are infinitely 
many possible variables) 

ie: function 



Program States 

• What is a program state? 

– It is a finite partial map from program variables to integer values 

 

 

 

 

 

 

– Example:  [x = 2, y = 17, z = 3] 

– Finite partial maps E typically support several operations: 

• lookup:  E(x) 

• update:  E[x = N] 

• domain:  dom(E) 

 

a finite number of elements 
in the domain of the map 

partial:  not all variables 
are necessarily present 
(typically there are infinitely 
many possible variables) 

ie: function 

a new map in which  
x is mapped to N but is 
otherwise the same as E 

the set of variables in the domain of E 



Program States in Haskell 
module State where 
 
type Var    = String 
type State = [(Var, Int)] 
 
look :: State -> Var -> Maybe Int 
look [] v = Nothing 
look ((v',i):xs) v =  
  if v == v'  
  then Just i  
  else look xs v  

up :: State -> Var -> Int -> State 
up [] v i = [(v,i)] 
up ((v',i'):xs) v i =  
  if v == v'  
  then (v,i):xs  
  else (v',i'):up xs v i 

dom :: State -> [Var] 
dom = map (\(v,i) -> v) 

finite maps as lists; 
we could implement 
them as search trees 
for greater efficiency 



Describing Program States 

• We are going to use logic to describe program states 

• For example, this formula: 

 

 

• Describes this state: 

 

 

• And all of these: 

(x = 3 & y = 0) || (x = 2 & y = 1)  

[ x = 3, y = 0 ] 

[ x = 2, y = 1 ] 

[ x = 2, y = 1, z = 0 ] 

[ x = 2, y = 1, z = 1 ] 

... the formula does not 
necessarily have to 
constrain all the variables 



Formulae 

integer variables 
x := x1 | x2 | x3 | ... | y | z | ... 
 
integer expressions 
e ::= N | x | e + e | e * e 
 
predicates  
p ::= e = e | e < e 
 
formulae 
f ::= true  
      | false   
      | p 
      | f & f  
      | f || f  
      | ~f 

Math 

I will also use P, Q, F for formulae 



Formulae 

integer variables 
x := x1 | x2 | x3 | ... | y | z | ... 
 
integer expressions 
e ::= N | x | e + e | e * e 
 
predicates  
p ::= e = e | e < e 
 
formulae 
f ::= true  
      | false   
      | p 
      | f & f  
      | f || f  
      | ~f 

type Var = String 
 
data Exp = 
    Const Int 
  | Var Var 
  | Add Exp Exp 
  | Mult Exp Exp 
 
data Pred = 
     Eq Exp Exp 
  | Less Exp Exp 
 
data Form = 
    Tru  
  | Fal   
  | Pred Pred 
  | And Form Form  
  | Or Form Form  
  | Not Form 

Math Haskell 



Math vs. Haskell 

• Denotational semantics:  Math notation or Haskell notation? 

 

• Haskell semantic definitions are clearer 

• Haskell gives us an implementation that will evaluate formulae 

• Math is more concise, especially in examples: 

– Add (Add (Const 3) (Const 4)) (Const 5)   vs   (3 + 4) + 5 

 

• If I were writing an academic research paper, I’d do it in math 

• For teaching, I’ll give semantics first in Haskell but then show you 
how to redefine them using the standard mathematical notation 

 

 

 

 



SEMANTICS OF FORMULAE: 
PRESENTATION I:  HASKELL 



Denotational Semantics 

• Recall:  A denotational semantics gives a meaning to newly 
defined syntactic objects by translating these objects in to a 
better understood language or mathematical object 

 

• Denotational semantics of expressions: 

– esem :: State -> Exp -> Maybe Int 

 

– esem s e == Just n ====> "expression e in state s has value n" 

 

– esem s e == Nothing ====> "expression e is not defined in state s" 

 

 

 

 



Semantics of Expressions in Haskell 

esem :: State -> Exp -> Maybe Int 
 
esem s (Const i)  = Just i 
 
esem s (Var v)   = look s v 
 
esem s (Add e1 e2)  =  
  case (esem s e1, esem s e2) of 
    (Just i1, Just i2) -> Just (i1 + i2) 
    (_, _)   -> Nothing 
 
esem s (Mult e1 e2) = 
  case (esem s e1, esem s e2) of 
    (Just i1, Just i2) -> Just (i1 * i2) 
    (_, _)   -> Nothing 



Semantics of Predicates 

• Denotational Semantics of Predicates: 

– psem :: State -> Pred -> Maybe Bool 

 

– psem p e == Just True ====> "predicate p in state s is valid" 

 

– psem p e == Just False ====> "predicate p in state s is not valid" 

 

– psem p e == Nothing ====> "predicate p is not defined in state s" 

 

 

 

 



Semantics of Predicates in Haskell 

psem :: State -> Pred -> Maybe Bool 
 
psem s (Eq e1 e2) =   
  case (esem s e1, esem s e2) of 
    (Just i1, Just i2) -> Just (i1 == i2) 
    (_, _)   -> Nothing    
 
psem s (Less e1 e2) =   
  case (esem s e1, esem s e2) of 
    (Just i1, Just i2) -> Just (i1 < i2) 
    (_, _)   -> Nothing 



Semantics of Formulae 

• Denotational semantics of formulae 

– fsem :: State -> Form -> Maybe Int 

 

– fsem f e == Just True ====> "formula f in state s is valid" 

                                   ====> "formula f describes state s" 

 

– fsem f e == Just False ====> "formula f in state s is not valid" 

                                    ====> "formula f does not describe state s" 

 

– fsem f e == Nothing ====> "formula f is not defined in state s" 

 

 

 

 



Semantics of Formulae in Haskell 

fsem :: State -> Form -> Maybe Bool 
fsem s Tru         = Just True 
fsem s Fal          = Just False 
fsem s (Pred p) = psem s p 
 
fsem s (And f1 f2) = 
  case (fsem s f1, fsem s f2) of 
    (Just b1, Just b2) -> Just (b1 && b2) 
    (_, _) -> Nothing    
 
fsem s (Or f1 f2) =   
  case (fsem s f1, fsem s f2) of 
    (Just b1, Just b2) -> Just (b1 || b2) 
    (_, _) -> Nothing 
 
fsem s (Not f) =   
  case fsem s f of 
    Just b -> Just (not b) 
    _         -> Nothing 

Tru describes all states s 

Fal describes no states s 



What can we do with the semantics? 

• We can determine which formulae are equivalent 

– Equivalent formulae describe the same set of states  

– f1 == f2 iff for all s, fsem s f1 == fsem s f2 

• Question:  Could you define a type class instance that 
implemented this notion of equality? 

• Exercises.  Prove the following using the Haskell definitions: 

– Tru == Not Fal 

– Fal == Not Tru 

– Not (Not f) == f 

– And f1 f2 == And f2 f1 

– Or f1 f2 == Or f2 f1 

– Or (Or f1 f2) f3 == Or f1 (Or f2 f3) 

– Not (And f1 f2) == Or (Not f1) (Not f2) 

 

 



What can we do with the semantics? 

Lemma:  Tru == Not Fal 

Proof: 

consider any s, we must prove: fsem s Tru = fsem s (Not Fal). 

      fsem s Tru  

== Just True  (unfold fsem) 

== Just (not False) (fold not) 

== fsem s (Not Fal) (fold fsem s) 

 

 

 

 

 



What can we do with the semantics? 

• We can define the strength of a formula: 

– f1 is stronger than f2 if f1 describes a subset of the states 
described by f2.  Alternatively, f2 is weaker than f1.  

– we write f1 => f2 iff  

   for all s, fsem s f1 == Just True implies fsem s f2 == Just True 

 

• Exercises.  Prove the following using the Haskell definitions: 

– Fal => Tru  

– And f1 f2 => f1     (for any f1, f2) 

 

 

 



A bit of a glitch 

• f1 => Or f1 f2 is not true in general.  Why? 

• Recall: To prove a conjecture isn't true in general, give a 
counter-example.  Here's one: 

– Let f1 = Tru 

– Let f2 = Eq x x 

 

– Tru => Or Tru (Eq x x) iff  

        for all s, fsem s Tru => fsem s (Or Tru (Eq x x)) 

 

– consider s = [ ];  in this case: 

• fsem s Tru = Just True  

• fsem s (Or Tru (Eq x x)) = Nothing  

 



Resolving the glitch 

• We assume there is some (finite) set of variables G that are 
allowed to appear in expressions, formulae and programs 

– An expression, formula, or program is well-formed  if its variables 
are a subset of G 

• ie: the expression/formula/program only uses the allowed variables 

– A state s is well-formed if dom(s) is a superset or equal to G 

• ie: s defines all of the allowed variables 

• New definitions.  Consider any well-formed f1 and f2: 

– f1 == f2 iff for all well-formed s,  

                        fsem s f1 == fsem s f2 

– f1 => f2 iff for all well-formed s,  

                        fsem s f1 == Just True implies fsem s f2 == Just True 

 



Resolving the glitch 

• From now on we will only work with well-formed objects 

– ie: we won’t mention it, but you can assume every state, formula, 
etc., from here on out in these slides is well-formed 

 

• From now on, formulae are either valid or invalid 

– ie: fsem s f == Just True or fsem s f == Just False 

– fsem s f is never Nothing when s and f are well-formed 

– hence, we can start ignoring the “Just” in the result 

– I’ll often simply say “fsem s f is true” or “f is true” (in some state) 

– In this setting f1 => f2 is the classical notion of logical implication 
you are used to 

 



SUMMARY! 



Summary 

• Hoare Triples characterize program properties 

• States map variables to values 

• Formulae describe states: 

– semantics in Haskell: fsem :: State -> Form -> Maybe Bool 

– formulae and states we deal with are well-formed 

• well-formedness is a very simple syntactic analysis 

– P => Q means P is stronger than Q; P describes fewer states 


