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Agenda 

• Last week 

– Defining and using type classes 

– Proofs about type classes 

• Induction on the structure of types 

– Case study:  A domain-specific language for animation 

• This time: 

– More abstraction:  Higher-order type classes 

– Kinds: Types for Types 



HIGHER-ORDER TYPE CLASSES 



A Map For All 

• We can map over lists: 

 

 

 

map f [ ] = [ ] 
map f (x:xs) = f x : map f xs  



A Map For All 

• We can map over lists: 

 

 

 

• We can map over trees: 

 

 

 

 

map f [ ] = [ ] 
map f (x:xs) = f x : map f xs  

data Tree a = Leaf a | Branch (Tree a) (Tree a)  
 
treemap f (Leaf x) = Leaf (f x) 
treemap f (Branch l r) = Branch (treemap f l) (treemap f r)  



A Map For All 

• We can map over lists: 

 

 

 

• We can map over trees: 

 

 

 

 

 

• Intuitively, we map over any container data structure. 

map f [ ] = [ ] 
map f (x:xs) = f x : map f xs  

data Tree a = Leaf a | Branch (Tree a) (Tree a)  
 
treemap f (Leaf x) = Leaf (f x) 
treemap f (Branch l r) = Branch (treemap f l) (treemap f r)  



A Map For All 

• We can map over Maybe types: 

 

 
mmap f Nothing = Nothing 
mmap f (Just x)   = Just (f x)  



A Map For All 

• We can map over Maybe types: 

 

 

 

• Maps over Maybes can be useful for error handling:  

mmap f Nothing = Nothing 
mmap f (Just x)   = Just (f x)  

type Filename = String 
 
readfile             :: Filename -> IO (Maybe String) 
toUpperString :: String -> String  
 
 
echo = do 
    s <- readfile “myfile.txt”   
    return (mmap toUpperString s)  



A Map For All 

• We can map over Maybe types: 

 

 

 

• Maps over Maybes can be useful for error handling:  

mmap f Nothing = Nothing 
mmap f (Just x)   = Just (f x)  

type Filename = String 
 
readfile             :: Filename -> IO (Maybe String) 
toUpperString :: String -> String  
 
 
echo = do 
    s <- readfile “myfile.txt”   
    return (mmap toUpperString s)  

echo = do 
    s <- readfile “myfile.txt” 
    return ( 
       case s of 
         Nothing -> Nothing 
         Just x      -> Just (toUpperString x) 
    ) 



IO as a Container 

• We can think of actions with type IO a as containers as well 

– containers that hold a computation producing a value of type a 

 

 

 

 

iomap :: (a -> b) -> IO a -> IO b 
iomap f io = do 
   x <- io 
   return (f x) 



IO as a Container 

• We can think of actions with type IO a as containers as well 

– containers that hold a computation producing a value of type a 

 

 

 

 

• Using iomap: 

iomap :: (a -> b) -> IO a -> IO b 
iomap f io = do 
   x <- io 
   return (f x) 

getline :: IO string 
 
main = do  
    line <- iomap (intersperse ‘-’ . reverse .  map toUpper) getline 
    putStrLn line 
 
$ ./io 
hello there 
E-R-E-H-T- -O-L-L-E-H 



Functions as Containers 

• Even functions can be considered containers: 

– a function with type c -> a “contains” its result (with type a) 

funmap :: (a -> b) -> (c -> a) -> (c -> b) 
 
funmap f g = f . g 



A Map for All 

• Any container can (and probably should!) support a map: 

 

 

 

 

 

 

 

 

• What’s the common structure? 

 

 

 

 

 

 

 

 

 

map  :: (a -> b) -> [a] -> [b] 
treemap  :: (a -> b) -> Tree a -> Tree b 
mmap  :: (a -> b) -> Maybe a -> Maybe b 
iomap  :: (a -> b) -> IO a -> IO b 
funmap  :: (a -> b) -> (c -> a) -> (c -> b) 
 
eomap   :: (a -> b) -> Either a -> Either b 
bstmap  :: (a -> b) -> BST c a -> BST c b  
 



A Map for All 

• Any container can (and probably should!) support a map: 

 

 

 

 

 

 

 

 

• What’s the common structure? 

 

 

 

 

 

 

 

 

 

map  :: (a -> b) -> [a] -> [b] 
treemap  :: (a -> b) -> Tree a -> Tree b 
mmap  :: (a -> b) -> Maybe a -> Maybe b 
iomap  :: (a -> b) -> IO a -> IO b 
funmap  :: (a -> b) -> (c -> a) -> (c -> b) 
 
eomap   :: (a -> b) -> Either a -> Either b 
bstmap  :: (a -> b) -> BST c a -> BST c b  
 

fmap   :: (a -> b) -> f a -> f b 



A Second Viewpoint 

• we can also think of fmap as a function “lifts” another Haskell 
function in to a new domain: 

– the domain of animations: 

 

 

– the domain of error-processors: 

 

 

 

– the domain of music: 

 

 

 

– moral:  a map is an extremely general, reuseable idea  

fmap :: (a -> b) -> (Behavior a -> Behavior b) 

fmap :: (a -> b) -> (Maybe a -> Maybe b) 

fmap :: (a -> b) -> (Music a -> Music b) 



Type Constructors 

• What is f? 

 

 

• f isn’t a type – types describe values 

– Int, Bool, [Char], Tree Int … are all types 

– there is no value v such that v :: f 

– there are values v such that v :: f Int 

 

• f is actually a new sort of function 

– a function from types to types 

– such functions are often called type constructors  

 

 

 

 

 

 

 

 

 

 

fmap :: (a -> b) -> f a -> f a 



Type Constructors 

• What is f? 

 

 

• Instances of f: 

– f might be Tree 

– f might be Maybe 

– f might be [ ]      -- list constructor 

– f might be “(->)  c” -- function constructor with arg c 

 

• Since type constructors are quite different from types, some 
constructions don’t make any sense: 

 

 

 

 

 

 

 

 

fmap :: (a -> b) -> f a -> f a 

(a -> b) -> IO -> IO      vs        (a -> b) -> IO a -> IO b 

nonsense, a type constructor used in place of a type 



Type Constructors 

• What is f? 

 

 

• We need some discipline to avoid nonsensical uses of types 
and type constructors 

• This discipline is typically called a kind system 

– a kind system is like a type system, only “one level up” 

– types describe sets of values (eg: Int describes 1, 2, 3, …) 

– kinds describe sets of types! 

 

 

 

 

 

 

 

 

 

fmap :: (a -> b) -> f a -> f a 



Type Constructors 

• What is f? 

 

 

• ghci can tell you the kind of a type or type constructor: 

 

 

 

 

• The kind * describes all types (those things that describe values) 

• The kind * -> * describes all functions from types to types 

• Overall, kinds are types for types – they describe and constrain 
the way types are used to ensure there’s no nonsense 

– Aside:  without kinds, a language of types and type functions will 
be Turing-complete and type checking will be undecidable 

 

 

 

 

 

 

 

 

 

fmap :: (a -> b) -> f a -> f a 

Prelude> :k Int 
Int :: * 
Prelude> :k Maybe 
Maybe :: * -> * 



The next question 

• Can kinds themselves be classified?  Perhaps by super-kinds? 

• Yes (though they aren’t typically called super-kinds) 

• NuPrl (a sophisticated theorem prover) has infinite hierarchy 
of classifiers! 

• But most languages stop at 3 levels (values, types, kinds) 

• A few go to 4 

• There may be one I’ve ever heard of with 5 

• The space of reasonable type systems with 6+ is probably 
pretty empty (until you go right up to infinity) 

 

 

• But, 3 levels is more than enough for this class … and it is 
sufficient for almost any programming language that one 
wouldn’t call a theorem prover 



Back to fmap 

• Where there is a pattern: 

 

 

 

• We should create an abstraction: 

 

 

• Some instances: 

treemap  :: (a -> b) -> Tree a -> Tree b 
funmap  :: (a -> b) -> (c -> a) -> (c -> b) 
mmap  :: (a -> b) -> Maybe a -> Maybe b 
… 
 

class Functor f where 
    fmap :: (a -> b) -> f a -> f b 

instance Functor Tree where 
    fmap f (Leaf x)   = Leaf (f x) 
    fmap f (Tree l r) = Tree (fmap f l) (fmap f l) 

instance Functor ((->) c) where 
    fmap f g  = f . g 



Functor Laws 

• The functor laws capture the idea that “all” fmap can do is 
map a function over each element in a container 

• A functor can’t do some funny business on the side 

id = \x -> x 
 
fmap id = id 
 
 
 

nothing happens when 
we map the identity function 
over the elements of a functor 



Functor Laws 

• The functor laws capture the idea that “all” fmap can do is 
map a function over each element in a container 

• A functor can’t do some funny business on the side 

id = \x -> x 
 
fmap id = id 
 
 
 
fmap (f . g) = fmap f . fmap g 

nothing happens when 
we map the identity function 
over the elements of a functor 

fmap “preserves” function 
composition 
 
function composition 
“commutes” with fmap 



Maybe a Functor 

LAW 1:       fmap id = id   
SAME AS:  for all x::Maybe a, fmap id x = id x 
 
Proof:  ? 

instance Functor Maybe where 
  fmap f Nothing  = Nothing 
  fmap f (Just x)  = Just (f x) 



Maybe a Functor 

LAW 1:       fmap id = id  
SAME AS:  for all x::Maybe a, fmap id x = id x 
 
Proof: By cases on x. 
case x = Nothing 
    fmap id Nothing (RHS of equation) 
 = Nothing  (unfold fmap at Maybe a) 
=  id Nothing  (fold id) 
 
case x = Just y 
    fmap id (Just y)  (RHS of equation) 
 = Just (id y)  (unfold fmap at Maybe a) 
 = Just y   (unfold id) 
 = id (Just y)   (fold id) 

instance Functor Maybe where 
  fmap f Nothing  = Nothing 
  fmap f (Just x)  = Just (f x) 

a special 
case of 
induction 



Maybe a Functor 

LAW 2:       fmap (f . g) x = (fmap f . fmap g) x 
 
Proof: By cases on x. 
case x = Nothing 
  … 
 
case x = Just y 
  … 
 
Exercise! 

instance Functor Maybe where 
  fmap f Nothing  = Nothing 
  fmap f (Just x)  = Just (f x) 



APPLICATIVE FUNCTORS 



Mapping Multi-Argument Functions 

• So far, we have used fmap with single-argument functions: 

 

 

• What happens if we map multi-argument functions? 

 

 

• We get a Maybe function 

– recall (7+) is the add7 function 

– so is (+7) 

– if you’ve read LYAHFGG, you know these are called “sections” 

    fmap (\x -> x + 1) (Just 7)  
= Just 8 

fmap (+) (Just 7) = Just (7+) 



Mapping Multi-Argument Functions 
• What can we do with a container of functions? 

 

 

• We can use fmap to compose them with other functions: 

 

 

 

 

 

 

 

Just (7+) 

fmap (\f -> f 3) (Just (7+)) 



Mapping Multi-Argument Functions 
• What can we do with a container of functions? 

 

 

• We can use fmap to compose them with other functions: 

 

 

 

• What can’t we do? 

 

 

• fmap does not help us put them together 

 

 

• We can’t *compute* in the domain of Maybes 

 

 

 

 

Just (7+) 

fmap (\f -> f 3) (Just (7+)) 

x : Maybe Int                  f :  Maybe (Int -> Int) 

fmap :: (a -> b) -> Maybe a -> Maybe b 



Computing with Behaviors 
• Maybe you don’t care about computing in the domain of 

Maybes? 

 

• What about the domain of Behaviors? 

 

 

 

 

 

 

 

• It would be nice to use those together. 

 

 

 

 

ball :: Behavior Region                   
translate ::  Behavior (Region -> Region) 
 
or: 
 
staticBall :: Region 
stretch     :: Behavior (Region -> Region) 



Applicative Functors 
• Applicative functors allow you to “lift” computation in to 

some new domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

class Functor f => Applicative f where 
    pure :: a -> f a   -- lift an normal object into the domain 
    <*>   :: f (a -> b) -> f a -> f b -- compute in the domain 



Applicative Functors 
• Applicative functors allow you to “lift” computation in to 

some new domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

ball :: Behavior Region                   
translate ::  Behavior (Region -> Region) 
 
translatedBall = translate <*> ball 

class Functor f => Applicative f where 
    pure :: a -> f a   -- lift an normal object into the domain 
    <*>   :: f (a -> b) -> f a -> f b -- compute in the domain 



Applicative Functors 
• Applicative functors allow you to “lift” computation in to 

some new domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

ball :: Behavior Region                   
translate ::  Behavior (Region -> Region) 
 
translatedBall = translate <*> ball 

class Functor f => Applicative f where 
    pure :: a -> f a   -- lift an normal object into the domain 
    <*>   :: f (a -> b) -> f a -> f b -- compute in the domain 

staticBall :: Region 
stretch     :: Behavior (Region -> Region) 
 
stretchedBall =  
   stretch <*> pure staticBall 



Maybe the Applicative Functor 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

instance Applicative Maybe where 
    pure x = Maybe x 
    f <*> x =  
        case (f, x) of 
          (Just  f’, Just x’) -> Just (f’ x’) 
          (_, _)                   -> Nothing 



Maybe the Applicative Functor 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x, y, w :: Maybe String 
f          :: Maybe (String -> String -> String) 
 
x = pure “hi ” 
y = pure “there” 
f = pure (++) 
w = f <*> x <*> y  
    = Maybe “hi there” 

instance Applicative Maybe where 
    pure x = Maybe x 
    f <*> x =  
        case (f, x) of 
          (Just  f’, Just x’) -> Just (f’ x’) 
          (_, _)                   -> Nothing 



Maybe the Applicative Functor 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x, y, w :: Maybe String 
f          :: Maybe (String -> String -> String) 
 
x = pure “hi ” 
y = pure “there” 
f = pure (++) 
w = f <*> x <*> y  
    = Maybe “hi there” 

instance Applicative Maybe where 
    pure x = Maybe x 
    f <*> x =  
        case (f, x) of 
          (Just  f’, Just x’) -> Just (f’ x’) 
          (_, _)                   -> Nothing 

x, y, w :: Maybe String 
f           :: Maybe (String -> String -> String) 
 
x = pure “hi” 
y = Nothing -- an error 
f = pure (++) 
w = f <*> x <*> y  
    = Nothing 



Applicative Laws 

• pure should do nothing but put an element in a container 

• <*> should do nothing but apply a function in a container to 
an object in a container 

• the laws: 

pure id <*> v = v 
 
pure f <*> pure x = pure (f x) 
 
pure (.) <*> u <*> v <*> w = u <*> (v <*> w) 
 
u <*> pure y = pure (\f -> f y) <*> u 
 

analogous to: 
(u . v) w = u (v w)  

lifting the identify function has no effect 

<*> is just function application 
in the lifted domain 

applying u to a lifted an argument  
== extracting the underlying function from u and applying it to the unlifted argument 



Applicative Laws 

• pure should do nothing but put an element in a container 

• <*> should do nothing but apply a function in a container to 
an object in a container 

• connecting fmap to applicative functors: 

fmap f x = pure f <*> x 

fmap simply applies a pure function to an encapsulated object 



Summary 

• Haskell has some very general abstraction mechanisms 

– polymorphic functions like map and foldr can be reused on 
container data structures (like lists) that contain different sorts 
of elements 

– type classes make it possible to define one interface to be used 
over different sorts of containers 

• This works out because Haskell has a kind system 

– kinds control the way types and type constructors are used 

• without them, Haskell’s type system would be undecidable 

– types control the way values are used 

– * is the kind of types 

– * -> * is the kind of functions (like Maybe) from types to types 

• Applicative functors “lift” computation to a new domain 

• Read LYAHFGG Chap 7, pg 146 -152, Chap 11 
• http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Applicative.html 

 


