
Abstraction++

COS 441 Slides 09

Agenda

• Last week

– Defining and using type classes

– Proofs about type classes

• Induction on the structure of types

– Case study: A domain-specific language for animation

• This time:

– More abstraction: Higher-order type classes

– Kinds: Types for Types

HIGHER-ORDER TYPE CLASSES

A Map For All

• We can map over lists:

map f [] = []
map f (x:xs) = f x : map f xs

A Map For All

• We can map over lists:

• We can map over trees:

map f [] = []
map f (x:xs) = f x : map f xs

data Tree a = Leaf a | Branch (Tree a) (Tree a)

treemap f (Leaf x) = Leaf (f x)
treemap f (Branch l r) = Branch (treemap f l) (treemap f r)

A Map For All

• We can map over lists:

• We can map over trees:

• Intuitively, we map over any container data structure.

map f [] = []
map f (x:xs) = f x : map f xs

data Tree a = Leaf a | Branch (Tree a) (Tree a)

treemap f (Leaf x) = Leaf (f x)
treemap f (Branch l r) = Branch (treemap f l) (treemap f r)

A Map For All

• We can map over Maybe types:

mmap f Nothing = Nothing
mmap f (Just x) = Just (f x)

A Map For All

• We can map over Maybe types:

• Maps over Maybes can be useful for error handling:

mmap f Nothing = Nothing
mmap f (Just x) = Just (f x)

type Filename = String

readfile :: Filename -> IO (Maybe String)
toUpperString :: String -> String

echo = do
 s <- readfile “myfile.txt”
 return (mmap toUpperString s)

A Map For All

• We can map over Maybe types:

• Maps over Maybes can be useful for error handling:

mmap f Nothing = Nothing
mmap f (Just x) = Just (f x)

type Filename = String

readfile :: Filename -> IO (Maybe String)
toUpperString :: String -> String

echo = do
 s <- readfile “myfile.txt”
 return (mmap toUpperString s)

echo = do
 s <- readfile “myfile.txt”
 return (
 case s of
 Nothing -> Nothing
 Just x -> Just (toUpperString x)
)

IO as a Container

• We can think of actions with type IO a as containers as well

– containers that hold a computation producing a value of type a

iomap :: (a -> b) -> IO a -> IO b
iomap f io = do
 x <- io
 return (f x)

IO as a Container

• We can think of actions with type IO a as containers as well

– containers that hold a computation producing a value of type a

• Using iomap:

iomap :: (a -> b) -> IO a -> IO b
iomap f io = do
 x <- io
 return (f x)

getline :: IO string

main = do
 line <- iomap (intersperse ‘-’ . reverse . map toUpper) getline
 putStrLn line

$./io
hello there
E-R-E-H-T- -O-L-L-E-H

Functions as Containers

• Even functions can be considered containers:

– a function with type c -> a “contains” its result (with type a)

funmap :: (a -> b) -> (c -> a) -> (c -> b)

funmap f g = f . g

A Map for All

• Any container can (and probably should!) support a map:

• What’s the common structure?

map :: (a -> b) -> [a] -> [b]
treemap :: (a -> b) -> Tree a -> Tree b
mmap :: (a -> b) -> Maybe a -> Maybe b
iomap :: (a -> b) -> IO a -> IO b
funmap :: (a -> b) -> (c -> a) -> (c -> b)

eomap :: (a -> b) -> Either a -> Either b
bstmap :: (a -> b) -> BST c a -> BST c b

A Map for All

• Any container can (and probably should!) support a map:

• What’s the common structure?

map :: (a -> b) -> [a] -> [b]
treemap :: (a -> b) -> Tree a -> Tree b
mmap :: (a -> b) -> Maybe a -> Maybe b
iomap :: (a -> b) -> IO a -> IO b
funmap :: (a -> b) -> (c -> a) -> (c -> b)

eomap :: (a -> b) -> Either a -> Either b
bstmap :: (a -> b) -> BST c a -> BST c b

fmap :: (a -> b) -> f a -> f b

A Second Viewpoint

• we can also think of fmap as a function “lifts” another Haskell
function in to a new domain:

– the domain of animations:

– the domain of error-processors:

– the domain of music:

– moral: a map is an extremely general, reuseable idea

fmap :: (a -> b) -> (Behavior a -> Behavior b)

fmap :: (a -> b) -> (Maybe a -> Maybe b)

fmap :: (a -> b) -> (Music a -> Music b)

Type Constructors

• What is f?

• f isn’t a type – types describe values

– Int, Bool, [Char], Tree Int … are all types

– there is no value v such that v :: f

– there are values v such that v :: f Int

• f is actually a new sort of function

– a function from types to types

– such functions are often called type constructors

fmap :: (a -> b) -> f a -> f a

Type Constructors

• What is f?

• Instances of f:

– f might be Tree

– f might be Maybe

– f might be [] -- list constructor

– f might be “(->) c” -- function constructor with arg c

• Since type constructors are quite different from types, some
constructions don’t make any sense:

fmap :: (a -> b) -> f a -> f a

(a -> b) -> IO -> IO vs (a -> b) -> IO a -> IO b

nonsense, a type constructor used in place of a type

Type Constructors

• What is f?

• We need some discipline to avoid nonsensical uses of types
and type constructors

• This discipline is typically called a kind system

– a kind system is like a type system, only “one level up”

– types describe sets of values (eg: Int describes 1, 2, 3, …)

– kinds describe sets of types!

fmap :: (a -> b) -> f a -> f a

Type Constructors

• What is f?

• ghci can tell you the kind of a type or type constructor:

• The kind * describes all types (those things that describe values)

• The kind * -> * describes all functions from types to types

• Overall, kinds are types for types – they describe and constrain
the way types are used to ensure there’s no nonsense

– Aside: without kinds, a language of types and type functions will
be Turing-complete and type checking will be undecidable

fmap :: (a -> b) -> f a -> f a

Prelude> :k Int
Int :: *
Prelude> :k Maybe
Maybe :: * -> *

The next question

• Can kinds themselves be classified? Perhaps by super-kinds?

• Yes (though they aren’t typically called super-kinds)

• NuPrl (a sophisticated theorem prover) has infinite hierarchy
of classifiers!

• But most languages stop at 3 levels (values, types, kinds)

• A few go to 4

• There may be one I’ve ever heard of with 5

• The space of reasonable type systems with 6+ is probably
pretty empty (until you go right up to infinity)

• But, 3 levels is more than enough for this class … and it is
sufficient for almost any programming language that one
wouldn’t call a theorem prover

Back to fmap

• Where there is a pattern:

• We should create an abstraction:

• Some instances:

treemap :: (a -> b) -> Tree a -> Tree b
funmap :: (a -> b) -> (c -> a) -> (c -> b)
mmap :: (a -> b) -> Maybe a -> Maybe b
…

class Functor f where
 fmap :: (a -> b) -> f a -> f b

instance Functor Tree where
 fmap f (Leaf x) = Leaf (f x)
 fmap f (Tree l r) = Tree (fmap f l) (fmap f l)

instance Functor ((->) c) where
 fmap f g = f . g

Functor Laws

• The functor laws capture the idea that “all” fmap can do is
map a function over each element in a container

• A functor can’t do some funny business on the side

id = \x -> x

fmap id = id

nothing happens when
we map the identity function
over the elements of a functor

Functor Laws

• The functor laws capture the idea that “all” fmap can do is
map a function over each element in a container

• A functor can’t do some funny business on the side

id = \x -> x

fmap id = id

fmap (f . g) = fmap f . fmap g

nothing happens when
we map the identity function
over the elements of a functor

fmap “preserves” function
composition

function composition
“commutes” with fmap

Maybe a Functor

LAW 1: fmap id = id
SAME AS: for all x::Maybe a, fmap id x = id x

Proof: ?

instance Functor Maybe where
 fmap f Nothing = Nothing
 fmap f (Just x) = Just (f x)

Maybe a Functor

LAW 1: fmap id = id
SAME AS: for all x::Maybe a, fmap id x = id x

Proof: By cases on x.
case x = Nothing
 fmap id Nothing (RHS of equation)
 = Nothing (unfold fmap at Maybe a)
= id Nothing (fold id)

case x = Just y
 fmap id (Just y) (RHS of equation)
 = Just (id y) (unfold fmap at Maybe a)
 = Just y (unfold id)
 = id (Just y) (fold id)

instance Functor Maybe where
 fmap f Nothing = Nothing
 fmap f (Just x) = Just (f x)

a special
case of
induction

Maybe a Functor

LAW 2: fmap (f . g) x = (fmap f . fmap g) x

Proof: By cases on x.
case x = Nothing
 …

case x = Just y
 …

Exercise!

instance Functor Maybe where
 fmap f Nothing = Nothing
 fmap f (Just x) = Just (f x)

APPLICATIVE FUNCTORS

Mapping Multi-Argument Functions

• So far, we have used fmap with single-argument functions:

• What happens if we map multi-argument functions?

• We get a Maybe function

– recall (7+) is the add7 function

– so is (+7)

– if you’ve read LYAHFGG, you know these are called “sections”

 fmap (\x -> x + 1) (Just 7)
= Just 8

fmap (+) (Just 7) = Just (7+)

Mapping Multi-Argument Functions
• What can we do with a container of functions?

• We can use fmap to compose them with other functions:

Just (7+)

fmap (\f -> f 3) (Just (7+))

Mapping Multi-Argument Functions
• What can we do with a container of functions?

• We can use fmap to compose them with other functions:

• What can’t we do?

• fmap does not help us put them together

• We can’t *compute* in the domain of Maybes

Just (7+)

fmap (\f -> f 3) (Just (7+))

x : Maybe Int f : Maybe (Int -> Int)

fmap :: (a -> b) -> Maybe a -> Maybe b

Computing with Behaviors
• Maybe you don’t care about computing in the domain of

Maybes?

• What about the domain of Behaviors?

• It would be nice to use those together.

ball :: Behavior Region
translate :: Behavior (Region -> Region)

or:

staticBall :: Region
stretch :: Behavior (Region -> Region)

Applicative Functors
• Applicative functors allow you to “lift” computation in to

some new domain

class Functor f => Applicative f where
 pure :: a -> f a -- lift an normal object into the domain
 <*> :: f (a -> b) -> f a -> f b -- compute in the domain

Applicative Functors
• Applicative functors allow you to “lift” computation in to

some new domain

ball :: Behavior Region
translate :: Behavior (Region -> Region)

translatedBall = translate <*> ball

class Functor f => Applicative f where
 pure :: a -> f a -- lift an normal object into the domain
 <*> :: f (a -> b) -> f a -> f b -- compute in the domain

Applicative Functors
• Applicative functors allow you to “lift” computation in to

some new domain

ball :: Behavior Region
translate :: Behavior (Region -> Region)

translatedBall = translate <*> ball

class Functor f => Applicative f where
 pure :: a -> f a -- lift an normal object into the domain
 <*> :: f (a -> b) -> f a -> f b -- compute in the domain

staticBall :: Region
stretch :: Behavior (Region -> Region)

stretchedBall =
 stretch <*> pure staticBall

Maybe the Applicative Functor

instance Applicative Maybe where
 pure x = Maybe x
 f <*> x =
 case (f, x) of
 (Just f’, Just x’) -> Just (f’ x’)
 (_, _) -> Nothing

Maybe the Applicative Functor

x, y, w :: Maybe String
f :: Maybe (String -> String -> String)

x = pure “hi ”
y = pure “there”
f = pure (++)
w = f <*> x <*> y
 = Maybe “hi there”

instance Applicative Maybe where
 pure x = Maybe x
 f <*> x =
 case (f, x) of
 (Just f’, Just x’) -> Just (f’ x’)
 (_, _) -> Nothing

Maybe the Applicative Functor

x, y, w :: Maybe String
f :: Maybe (String -> String -> String)

x = pure “hi ”
y = pure “there”
f = pure (++)
w = f <*> x <*> y
 = Maybe “hi there”

instance Applicative Maybe where
 pure x = Maybe x
 f <*> x =
 case (f, x) of
 (Just f’, Just x’) -> Just (f’ x’)
 (_, _) -> Nothing

x, y, w :: Maybe String
f :: Maybe (String -> String -> String)

x = pure “hi”
y = Nothing -- an error
f = pure (++)
w = f <*> x <*> y
 = Nothing

Applicative Laws

• pure should do nothing but put an element in a container

• <*> should do nothing but apply a function in a container to
an object in a container

• the laws:

pure id <*> v = v

pure f <*> pure x = pure (f x)

pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

u <*> pure y = pure (\f -> f y) <*> u

analogous to:
(u . v) w = u (v w)

lifting the identify function has no effect

<*> is just function application
in the lifted domain

applying u to a lifted an argument
== extracting the underlying function from u and applying it to the unlifted argument

Applicative Laws

• pure should do nothing but put an element in a container

• <*> should do nothing but apply a function in a container to
an object in a container

• connecting fmap to applicative functors:

fmap f x = pure f <*> x

fmap simply applies a pure function to an encapsulated object

Summary

• Haskell has some very general abstraction mechanisms

– polymorphic functions like map and foldr can be reused on
container data structures (like lists) that contain different sorts
of elements

– type classes make it possible to define one interface to be used
over different sorts of containers

• This works out because Haskell has a kind system

– kinds control the way types and type constructors are used

• without them, Haskell’s type system would be undecidable

– types control the way values are used

– * is the kind of types

– * -> * is the kind of functions (like Maybe) from types to types

• Applicative functors “lift” computation to a new domain

• Read LYAHFGG Chap 7, pg 146 -152, Chap 11
• http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Applicative.html

