Abstraction++

COS 441 Slides 09

Agenda

- Last week
 - Defining and using type classes
 - Proofs about type classes
 - Induction on the structure of types
 - Case study: A domain-specific language for animation
- This time:
 - More abstraction: Higher-order type classes
 - Kinds: Types for Types

HIGHER-ORDER TYPE CLASSES

• We can map over lists:

map f [] = []
map f (x:xs) = f x : map f xs

• We can map over lists:

map f [] = []
map f (x:xs) = f x : map f xs

• We can map over trees:

```
data Tree a = Leaf a | Branch (Tree a) (Tree a)
```

```
treemap f (Leaf x) = Leaf (f x)
treemap f (Branch | r) = Branch (treemap f l) (treemap f r)
```

• We can map over lists:

map f [] = []
map f (x:xs) = f x : map f xs

• We can map over trees:

```
data Tree a = Leaf a | Branch (Tree a) (Tree a)
```

```
treemap f (Leaf x) = Leaf (f x)
treemap f (Branch I r) = Branch (treemap f I) (treemap f r)
```

• Intuitively, we map over any container data structure.

• We can map over Maybe types:

mmap f Nothing = Nothing
mmap f (Just x) = Just (f x)

We can map over Maybe types:

mmap f Nothing = Nothing
mmap f (Just x) = Just (f x)

• Maps over Maybes can be useful for error handling:

```
type Filename = String
```

```
readfile :: Filename -> IO (Maybe String)
toUpperString :: String -> String
```

```
echo = do
    s <- readfile "myfile.txt"
    return (mmap toUpperString s)</pre>
```

We can map over Maybe types:

```
mmap f Nothing = Nothing
mmap f (Just x) = Just (f x)
```

• Maps over Maybes can be useful for error handling:

```
type Filename = String
```

```
readfile :: Filename -> IO (Maybe String)
toUpperString :: String -> String
echo = do
s <- readfile "myfile.txt"
return (mmap toUpperString s)
</pre>
echo = do
S <- readfile "myfile.txt"
S <- readfile "myf
```

IO as a Container

- We can think of actions with type IO a as containers as well
 - containers that hold a computation producing a value of type a

```
iomap :: (a -> b) -> IO a -> IO b
iomap f io = do
x <- io
return (f x)
```

IO as a Container

• We can think of actions with type IO a as containers as well

- containers that hold a computation producing a value of type a

iomap :: (a -> b) -> IO a -> IO b iomap f io = do x <- io return (f x)

• Using iomap:

getline :: IO string

main = do
line <- iomap (intersperse '-' . reverse . map toUpper) getline
putStrLn line</pre>

\$./io hello there E-R-E-H-T- -O-L-L-E-H

Functions as Containers

• Even functions can be considered containers:

a function with type c -> a "contains" its result (with type a)

funmap :: (a -> b) -> (c -> a) -> (c -> b)

funmap f g = f . g

• Any container can (and probably should!) support a map:

map :: $(a \rightarrow b) \rightarrow [a] \rightarrow [b]$ treemap :: $(a \rightarrow b) \rightarrow$ Tree a \rightarrow Tree b mmap :: $(a \rightarrow b) \rightarrow$ Maybe a \rightarrow Maybe b iomap :: $(a \rightarrow b) \rightarrow$ IO a \rightarrow IO b funmap :: $(a \rightarrow b) \rightarrow (c \rightarrow a) \rightarrow (c \rightarrow b)$

eomap :: (a -> b) -> Either a -> Either b bstmap :: (a -> b) -> BST c a -> BST c b

• What's the common structure?

• Any container can (and probably should!) support a map:

map :: $(a \rightarrow b) \rightarrow [a] \rightarrow [b]$ treemap :: $(a \rightarrow b) \rightarrow$ Tree a \rightarrow Tree b mmap :: $(a \rightarrow b) \rightarrow$ Maybe a \rightarrow Maybe b iomap :: $(a \rightarrow b) \rightarrow$ IO a \rightarrow IO b funmap :: $(a \rightarrow b) \rightarrow (c \rightarrow a) \rightarrow (c \rightarrow b)$

eomap :: (a -> b) -> Either a -> Either b bstmap :: (a -> b) -> BST c a -> BST c b

• What's the common structure?

fmap :: (a -> b) -> f a -> f b

A Second Viewpoint

- we can also think of fmap as a function "lifts" another Haskell function in to a new domain:
 - the domain of animations:

fmap :: (a -> b) -> (Behavior a -> Behavior b)

- the domain of error-processors:

fmap :: (a -> b) -> (Maybe a -> Maybe b)

– the domain of music:

fmap :: (a -> b) -> (Music a -> Music b)

- moral: a map is an extremely general, reuseable idea

• What is f?

fmap :: (a -> b) -> f a -> f a

- f isn't a type types describe values
 - Int, Bool, [Char], Tree Int ... are all types
 - there is no value v such that v :: f
 - there are values v such that v :: f Int
- f is actually a new sort of function
 - a function from types to types
 - such functions are often called type constructors

• What is f?

fmap :: (a -> b) -> f a -> f a

- Instances of f:
 - f might be Tree
 - f might be Maybe
 - f might be []

- -- list constructor
- f might be "(->) c"
- -- function constructor with arg c
- Since type constructors are quite different from types, some constructions don't make any sense:

(a -> b) -> IO -> IO vs (a -> b) -> IO a -> IO b

nonsense, a type constructor used in place of a type

• What is f?

fmap :: (a -> b) -> f a -> f a

- We need some discipline to avoid nonsensical uses of types and type constructors
- This discipline is typically called a *kind system*
 - a kind system is like a type system, only "one level up"
 - types describe sets of values (eg: Int describes 1, 2, 3, ...)
 - kinds describe sets of types!

• What is f?

```
fmap :: (a -> b) -> f a -> f a
```

• ghci can tell you the kind of a type or type constructor:

Prelude> :k Int Int :: * Prelude> :k Maybe Maybe :: * -> *

- The kind * describes all types (those things that describe values)
- The kind * -> * describes all functions from types to types
- Overall, kinds are types for types they describe and constrain the way types are used to ensure there's no nonsense
 - Aside: without kinds, a language of types and type functions will be Turing-complete and type checking will be undecidable

The next question

- Can kinds themselves be classified? Perhaps by super-kinds?
- Yes (though they aren't typically called super-kinds)
- NuPrl (a sophisticated theorem prover) has infinite hierarchy of classifiers!
- But most languages stop at 3 levels (values, types, kinds)
- A few go to 4
- There may be one I've ever heard of with 5
- The space of reasonable type systems with 6+ is probably pretty empty (until you go right up to infinity)

 But, 3 levels is more than enough for this class ... and it is sufficient for almost any *programming language* that one wouldn't call a theorem prover

Back to fmap

• Where there is a pattern:

```
treemap :: (a \rightarrow b) \rightarrow Tree a -> Tree b
funmap :: (a \rightarrow b) \rightarrow (c \rightarrow a) \rightarrow (c \rightarrow b)
mmap :: (a \rightarrow b) \rightarrow Maybe a -> Maybe b
```

We should create an abstraction:

class Functor f where fmap :: (a -> b) -> f a -> f b

• Some instances:

instance Functor Tree where fmap f (Leaf x) = Leaf (f x) fmap f (Tree I r) = Tree (fmap f I) (fmap f I)

```
instance Functor ((->) c) where
fmap f g = f . g
```

Functor Laws

- The functor laws capture the idea that "all" fmap can do is map a function over each element in a container
- A functor can't do some funny business on the side

 $id = \langle x - x \rangle$

fmap id = id ←

nothing happens when we map the identity function over the elements of a functor

Functor Laws

- The functor laws capture the idea that "all" fmap can do is map a function over each element in a container
- A functor can't do some funny business on the side

 $id = \langle x - x \rangle$

fmap id = id <------

nothing happens when we map the identity function over the elements of a functor

fmap (f . g) = fmap f . fmap g \leftarrow

fmap "preserves" function composition

function composition "commutes" with fmap

Maybe a Functor

instance Functor Maybe where fmap f Nothing = Nothing fmap f (Just x) = Just (f x)

LAW 1: fmap id = id SAME AS: for all x::Maybe a, fmap id x = id x

Proof: ?

Maybe a Functor

instance Functor Maybe where fmap f Nothing = Nothing fmap f (Just x) = Just (f x)

Maybe a Functor

instance Functor Maybe where fmap f Nothing = Nothing fmap f (Just x) = Just (f x)

LAW 2: fmap (f.g) x = (fmap f. fmap g) x

```
Proof: By cases on x.
case x = Nothing
```

```
case x = Just y
```

• • •

Exercise!

APPLICATIVE FUNCTORS

Mapping Multi-Argument Functions

• So far, we have used fmap with single-argument functions:

```
fmap (\x -> x + 1) (Just 7)
= Just 8
```

• What happens if we map multi-argument functions?

fmap (+) (Just 7) = Just (7+)

- We get a Maybe function
 - recall (7+) is the add7 function
 - so is (+7)
 - if you've read LYAHFGG, you know these are called "sections"

Mapping Multi-Argument Functions

• What can we do with a container of functions?

Just (7+)

• We can use fmap to compose them with other functions:

fmap (\f -> f 3) (Just (7+))

Mapping Multi-Argument Functions

• What can we do with a container of functions?

Just (7+)

• We can use fmap to compose them with other functions:

fmap (\f -> f 3) (Just (7+))

• What can't we do?

x : Maybe Int f : Maybe (Int -> Int)

• fmap does not help us put them together

fmap :: (a -> b) -> Maybe a -> Maybe b

• We can't *compute* in the domain of Maybes

Computing with Behaviors

- Maybe you don't care about computing in the domain of Maybes?
- What about the domain of Behaviors?

```
ball :: Behavior Region
translate :: Behavior (Region -> Region)
or:
staticBall :: Region
stretch :: Behavior (Region -> Region)
```

• It would be nice to use those together.

Applicative Functors

• Applicative functors allow you to "lift" computation in to some new domain

```
class Functor f => Applicative f where

pure :: a -> f a -- lift an normal object into the domain

<*> :: f (a -> b) -> f a -> f b -- compute in the domain
```

Applicative Functors

Applicative functors allow you to "lift" computation in to • some new domain

```
class Functor f => Applicative f where
  pure :: a -> f a
  <*> :: f (a -> b) -> f a -> f b -- compute in the domain
```

- -- lift an normal object into the domain

ball :: Behavior Region translate :: Behavior (Region -> Region)

translatedBall = translate <*> ball

Applicative Functors

Applicative functors allow you to "lift" computation in to • some new domain

```
class Functor f => Applicative f where
  pure :: a -> f a
  <^{*}> :: f (a -> b) -> f a -> f b -- compute in the domain
```

-- lift an normal object into the domain

ball :: Behavior Region translate :: Behavior (Region -> Region)

translatedBall = translate <*> ball

```
staticBall :: Region
stretch :: Behavior (Region -> Region)
```

```
stretchedBall =
 stretch <*> pure staticBall
```

Maybe the Applicative Functor

```
instance Applicative Maybe where
  pure x = Maybe x
  f <*> x =
    case (f, x) of
    (Just f', Just x') -> Just (f' x')
    (_, _)  -> Nothing
```

Maybe the Applicative Functor

```
x, y, w :: Maybe String
f :: Maybe (String -> String -> String)
x = pure "hi "
y = pure "there"
f = pure (++)
w = f <*> x <*> y
= Maybe "hi there"
```

Maybe the Applicative Functor

instance Applicative Maybe where
 pure x = Maybe x
 f <*> x =
 case (f, x) of
 (Just f', Just x') -> Just (f' x')
 (_, _) -> Nothing

x, y, w :: Maybe String	x, y, w :: Maybe String
f :: Maybe (String -> String -> String)	f :: Maybe (String -> String -> String)
x = pure "hi "	x = pure "hi"
y = pure "there"	y = Nothing an error
f = pure (++)	f = pure (++)
w = f <*> x <*> y	$w = f <^* > x <^* > y$
= Maybe "bitbere"	= Nothing

Applicative Laws

- pure should do nothing but put an element in a container
- <*> should do nothing but apply a function in a container to an object in a container
- the laws:

lifting the identify function has no effect

pure id <*> v = v

pure f <*> pure x = pure (f x)

<*> is just function application
in the lifted domain

pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

u <*> pure y = pure (\f -> f y) <*> u

analogous to: (u . v) w = u (v w)

applying u to a lifted an argument

== extracting the underlying function from u and applying it to the unlifted argument

Applicative Laws

- pure should do nothing but put an element in a container
- <*> should do nothing but apply a function in a container to an object in a container
- connecting fmap to applicative functors:

fmap simply applies a pure function to an encapsulated object

Summary

- Haskell has some very general abstraction mechanisms
 - polymorphic functions like map and foldr can be reused on container data structures (like lists) that contain different sorts of elements
 - type classes make it possible to define one interface to be used over different sorts of containers
- This works out because Haskell has a kind system
 - kinds control the way types and type constructors are used
 - without them, Haskell's type system would be undecidable
 - types control the way values are used
 - * is the kind of types
 - * -> * is the kind of functions (like Maybe) from types to types
- Applicative functors "lift" computation to a new domain
- Read LYAHFGG Chap 7, pg 146 -152, Chap 11
- http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Applicative.html