
A Domain-Specific Language
for Animation

COS 441 Slides 8

Slide content credits:
Paul Hudak's School of Expression

Ranjit Jhala (UCSD)

Agenda

• The last few weeks

– the principles of functional programming

• defining new functions: functional abstraction for code reuse

• defining new types: type abstraction

• higher-order programming: using functions as data

• the same algorithm over different data: parametric polymorphism

• related operations over different types: ad hoc polymorphism via
type classes

• This time:

– Bringing it all together: developing a domain-specific language
for functional animation

SHAPES, REGIONS & PICTURES

Shapes

data Shape =
 Rectangle Side Side
 | Ellipse Radius Radius
 | RtTriangle Side Side
 | Polygon [Vertex]
 deriving (Show)

type Side = Float
type Radius = Float
type Vertex = (Float, Float)

r1

s2

r2

s1
Rectangle s1 s2 =

Ellipse r1 r2 =

s2
s1 RtTriangle s1 s2 =

v2

v1 v3

v4 v5

Polygon [v1, ...,v5] =

Shapes

data Shape =
 Rectangle Side Side
 | Ellipse Radius Radius
 | RtTriangle Side Side
 | Polygon [Vertex]
 deriving (Show)

type Side = Float
type Radius = Float
type Vertex = (Float, Float)

r1

s2

r2

s1
Rectangle s1 s2 =

Ellipse r1 r2 =

s2
s1 RtTriangle s1 s2 =

v2

v1 v3

v4 v5

Polygon [v1, ...,v5] =

 s1 = Rectangle 3 2
 s2 = Ellipse 1 1.5
 s3 = RtTriangle 3 2
 s4 = Polygon [(-2.5, 2.5)
 ,(-3, 0)
 ,(-1.7,-1.0)
 ,(-1.1,0.2)
 ,(-1.5,2.0)]

Regions

• Regions are compositions of basic shapes:

data Region =
 Shape Shape -- primitive shape
| Translate Vector Region -- translated region
| Scale Vector Region -- scaled region
| Complement Region -- inverse of region
| Region `Union` Region -- union of regions
| Region `Intersect` Region -- intersection of regions
| Region `Xor` Region -- XOR of regions
| Empty -- empty region
deriving Show

type vector = (Int, Int)

Regions

• Regions are compositions of basic shapes:

data Region =
 Shape Shape -- primitive shape
| Translate Vector Region -- translated region
| Scale Vector Region -- scaled region
| Complement Region -- inverse of region
| Region `Union` Region -- union of regions
| Region `Intersect` Region -- intersection of regions
| Region `Xor` Region -- XOR of regions
| Empty -- empty region
deriving Show

type vector = (Int, Int)

r1 = Shape s1
r2 = Shape s2
r3 = Shape s3
r4 = Shape s4

reg0 = (Complement r2) `Union` r4

reg1 = r3 `Union` (r1 `Intersect` r0)

Regions

• Notice that regions are recursive data structures;
consequently, they can be arbtrarily complex:

step = Shape (Rectangle 50 50)

stairs k =
 if k <= 0 then Empty
 else Translate (k*20, k*20) (step `Union` stairs (k-1))

stairs 4 =

Pictures

• Pictures add color to regions

• Some pictures:

data Picture =
 Region Color Region
| Picture `Over` Picture
| EmptyPic
deriving Show

type Color = Red | Yellow | ...

pic1 = Region Red reg1

r5 = Shape $ Rectangle 1 1
r6 = Shape $ Ellipse 0.5 0.5
reg2 = (Scale (2,2) r6) `Union` (Translate (2,1) r6) `Union` (Translate (-2,0) r5)
pic2 = Region Yellow reg2
pic3 = pic2 `Over` pic1

Drawing Pictures

• the SOE libraries have implemented a draw function for us:

• try it:

• go to demo

main1 = draw "Picture 1" pic1

main2 = draw "Picture 2" pic2

main3 = draw "Picture 3" pic3

type Title = String
draw :: Title -> Picture -> IO ()

FROM STATIC PICTURES
TO DYNAMIC ANIMATIONS

Animation

• We create animations by exploiting persistence of vision and
rendering a series of images:

1. Initialize image

2. Render image

3. Pause

4. Change image

5. Go to 1.

• At a low level, this is what will happen, but we'd like to build
a library of combinators (ie: functions) that can be reused
and that allow us to build complex animations from simpler
parts

Key Idea

• We are going to represent an animation using a function

• At every instant in time, the animation function generates an
object with type a

• Since the animation type is polymorphic, we'll be able to
animate many different kinds of things

type Animation a = Time -> a
type Time = Float

type PictureAnimation = Time -> Picture
type ShapeAnimation = Time -> Shape
type StringAnimation = Time -> String

A first animation

• Once you've thought of the right type, defining basic
animations is easy:

rubberBall :: Animation Shape
rubberBall = \t -> Ellipse (sin t) (cos t)

time

More Animations

revolvingBall :: Animation Region

revolvingBall = \t -> Translate (sin t, cos t) ball
 where ball = Shape (Ellipse 0.2 0.2)

More Animations

• Composition at work!

• By making animations functions, we can compose them using
ordinary function application or function composition:

rubberBall :: Animation Shape
rubberBall = \t -> Ellipse (sin t) (cos t)

revolvingBall :: Animation Region
revolvingBall = \t -> Translate (sin t, cos t) ball
 where ball = Shape (Ellipse 0.2 0.2)

planets :: Animation Picture
planets t = p1 `Over` p2
 where p1 = Region Red $ Shape (rubberBall t)
 p2 = Region Yellow $ revolvingBall t

More Animations

• We can animate anything:

• An animation is any time-varying value

ticker :: Animation String

ticker t = "The time is :" ++ show t

Rendering Animations

• A Graphic is a data structure representing a static picture that
can be rendered efficiently

• To render any animation, we need two things:

– a function to convert an Animation a to an Animation Graphic

– a function to render any Animation Graphic

• The second is supplied by the SOE library:

• The first can be developed provided we have some basic
Graphic generators:

animate :: Title -> Animation Graphic -> IO ()

shapeToGraphic :: Shape -> Graphic
regionToGraphic :: Region -> Graphic
pictureToGraphic :: Picture -> Graphic
text :: Point -> String -> Graphic
withColor :: Color -> Graphic -> Graphic

Rendering Animations

• A simple example:

• Check: does it have the right type?

• Let's try to run it

blueBall :: Animation Graphic
blueBall = withColor Blue . shapeToGraphic . rubberBall

rubberBall :: Time -> Shape
shapeToGraphic :: Shape -> Graphic
withColor Blue :: Graphic -> Graphic
withColor Blue . shapeToGraphic . rubberBall :: Time -> Graphic
 = Animation Graphic

Rendering Animations

• Let's look at some more:

main4 = animate "Shape" $ withColor Blue . shapeToGraphic . rubberBall

main5 = animate "Text" $ text (100,200) . ticker

main6 = animate "Region" $ withColor Yellow . regionToGraphic . revolvingBall

main7 = animate "Picture" $ picToGraphic . planets

Implementing Animate

• Some details of the animator (see script for more):

animate title anim = runGraphics $ do
 w <- openWindowEx title (Just (0,0)) (Just (xWin, yWin)) drawBufferedGraphic
 t0 <- timeGetTime
 animateLoop w t0 anim

animateLoop w t0 anim = do
 t <- timeGetTime
 let ft = intToFloat (fromInteger (toInteger (t - t0))) / 1000
 setGraphic w (anim ft)
 spaceCloseEx w $ animateLoop w t0 anim

set up window

begin animation loop with initial time

compute
next
time

draw the
picture at the
computed time

check for termination signal continue

GOING FURTHER:
A DSL FOR ANIMATIONS

An Embedded DSL for Animations
• So far, we've built animations bottom-up with Time -> a functions

• But:

– we can't (easily) transform or modify existing animations

– we can't (easily) compose existing, fully-formed animations

– we don't treat animations as abstract objects

• The next step:

– Treat animations as abstract objects and define canonical
transformers for them

– Work entirely at the level of animations, hiding the implementation
details

– Our implementation might be called "a cool library" but ... we hide
the underlying details so thoroughly we'll call the library an
embedded, domain-specific language.

– Haskell, with it's lightweight syntax and facilities for reuse and
abstraction, is a terrific platform for developing new DSLs

DSL Design Strategy

• Choose primary abstract objects

– define special types to represent them

– in our case: a special abstract Behavior type

• Define operations over the abstract objects

– make the above abstract objects instances of well-chosen type
classes where appropriate so we can use compact, intuitive
notation for manipulating our objects

– in our case: make behaviors instances of type classes for
graphical and numeric manipulation

A Taste of the DSL: Everything is a Behavior

type Behavior a
type Coordinates = (Behavior Float, Behavior Float)

run :: Behavior Picture -> IO ()

red :: Behavior Color
ell :: Behavior Radius -> Behavior Radius -> Behavior Shape
shape :: Behavior Shape -> Behavior Region
reg :: Behavior Color -> Behavior Region -> Behavior Picture
over :: Behavior Picture -> Behavior Picture -> Behavior Picture

sin :: Behavior Float -> Behavior Float
tx :: Coordinates -> Behavior Picture -> Behavior Picture
timeTx :: Behavior Time -> Behavior a -> Behavior a
rewind :: Behavior a -> Behavior a

lift0 :: a -> Behavior a
lift1 :: (a -> b) -> Behavior a -> Behavior b
lift2 :: (a -> b -> c) -> Behavior a -> Behavior b -> Behavior c

primary
abstract
type

selected
operations
over
abstract
objects

bootstrapping

Examples

• A stationary ball:

• Bouncing the ball:

• Bouncing a triangle:

• Bouncing anything yellow:

demo1 = run $ reg yellow $ ballB

demo2 = run $ reg yellow $ tx (0, sin time) ballB

demo2 = run $ reg yellow $ tx (0, sin time) pentaB

bounce b = reg yellow $ tx (0, sin time) b

Examples

• Colors can vary with time. Why stick with constant yellow?

• Any animation can be composed with any other

flash :: Behavior Color

demo4 = run $ reg flash $ tx (0, sin time) ballB

demo5 = run $ a1 `over` a2
 where a1 = reg red $ tx (0, sin time) ballB
 a2 = reg yellow $ tx (sin time, 0) pentaB

Examples

• We can define new kinds of motions and apply them to many
different kinds of objects

turn :: (Deformable a) => Float -> a -> a
lift2 :: (a -> b -> c) -> Behavior a -> Behavior b -> Behavior c
lift2 turn :: Behavior Float -> Behavior a -> Behavior a

demo6 = run $ a1 `over` a2
 where a1 = reg red $ tx (0, sin time) ballB
 a2 = reg yellow $ lift2 turn angle pentaB
 angle = pi * sin time

angle is a
behavior.
notice the
overloading:
type classes!

Examples

• We can manipulate time itself! Thereby delaying, slowing
down or speeding up animations.

demo7 = run $ a1 `over` a2
 where a1 = reg red $ tx (sin time, cos time) ballB
 a2 = timeTx (2 + time) a1

demo8 = run $ a1 `over` a2
 where a1 = reg red $ tx (sin time, cos time) ballB
 a2 = timeTx (2 * time) a1

a delayed animation
composed with
itself

notice the
overloading:
type classes!

a fast-forwarded
animation

Examples

• We can even put time in reverse and run an animation
backwards. (Makes me wonder if we could do some DVR
programming in Haskell ...)

demo0 = run $ a1 `over` a2
 where a1 = reg red $ tx (sin time, cos time) ballB
 a2 = timeTx (-1 * time) a1

run backwards

BUILDING THE DSL

The Behavior Type

• Whereas an animation was just a synonym for a function type,
a behavior is abstract:

• There are a couple of reasons:

– we would like to control the invariants governing Behaviors

– we would like to hide implementation details from clients

– we will be using some type classes, and type classes don't work
properly with type synonyms

• why? Intuitively because a synonym is completely interchangeable
with its definition. Hence, we can't define a different behavior for
the synonym than its definition. (If we could, they wouldn't be
interchangeable.)

• Note: A newtype is a data type with just 1 constructor and no
performance overhead for using it

newtype Behavior a = Beh (Time -> a)

Implementing the Animator

newtype Behavior a = Beh Time -> a

animateB :: String -> Behavior Picture -> IO ()
animateB s (Beh f) = animate s (picToGraphic . f)

run = animateB "Animation Window"

Bootstrapping

• Recall the map function: It took an ordinary function and
made it into a function over lists:

• One might say that map "lifts" an ordinary function up in to
the domain of list-processing functions

• Likewise, we will want to "lift" ordinary functions up in to the
domain of behavior-processing functions:

• Lift is a way to include all of Haskell's powerful function-
definition facilities within our newly developed DSL

map :: (a -> b)-> ([a] -> [b])

lift1 :: (a -> b) -> Behavior a -> Behavior b
lift1 f (Beh g) = Beh (\t -> f (g t))

Bootstrapping

• Lift1 works with single-argument functions. We may need to
do heavier lifting:

• You can think of a constant, like the color Red, as a 0-
argument function. We'll want to lift constants too:

lift2 :: (a -> b -> c) -> Behavior a -> Behavior b -> Behavior c
lift2 f (Beh a) (Beh b) = Beh $ \t -> f (a t) (b t)

lift3 :: (a -> b -> c -> d) -> Behavior a -> Behavior b -> Behavior c -> Behavior d
lift3 f (Beh a) (Beh b) (Beh c) = Beh $ \t -> f (a t) (b t) (c t)

lift0 :: a -> Behavior a
lift0 x = Beh $ \t -> x

a constant function; it returns x all the time

Bootstrapping

• Since lists are so common in Haskell, we'll lift list-processing
functions too

• Explore the details in your spare time:

• But notice, even without looking at the code, how much
information you get out of the type of the function:

• There's really only 1 reasonable thing that liftXs could do,
given its type

liftXs :: ([t] -> a) -> [Behavior t] -> Behavior a
liftXs f bs = Beh (\t -> f (map (\(Beh b) -> b t) bs))

liftXs :: ([t] -> a) -> ([Behavior t] -> Behavior a)

Numeric Behaviors

• Our examples involve managing coordinates, scaling factors
and timewarp; we need support for numeric behaviors

• Let's define standard numeric operations over behaviors by
making it an instance of the Num Class

instance Num a => Num (Behavior a) where
 (+) = lift2 (+)
 (*) = lift2 (*)
 negate = lift1 negate
 abs = lift1 abs
 signum = lift1 signum
 fromInteger = lift0 . fromInteger

Numeric Behaviors

• Unsure what (+) on Behaviors does? Run through an example
using computation by calculation

 (+) time one
= lift2 (+) time one
= lift2 (+) (Beh (\t -> t)) (Beh (\t -> 1))
= Beh (\t -> (+) ((\t -> t) t) ((\t -> 1) t))
= Beh (\t -> (+) t 1)
= Beh (\t -> t + 1)

instance Num a => Num (Behavior a) where
 (+) = lift2 (+) ...

lift2 :: (a -> b -> c) -> Behavior a -> Behavior b -> Behavior c
lift2 f (Beh a) (Beh b) = Beh $ \t -> f (a t) (b t)

lift0 :: a -> Behavior a
lift0 x = Beh $ \t -> x

one = Beh (\t -> 1)
time = Beh (\t -> t)

It just adds
the numbers
from the same
time instant!

Operations over Float Behaviors

instance Floating a => Floating (Behavior a) where
 pi = lift0 pi
 sqrt = lift1 sqrt
 exp = lift1 exp
 log = lift1 log
 sin = lift1 sin
 cos = lift1 cos
 tan = lift1 tan
 asin = lift1 asin
 acos = lift1 acos
 atan = lift1 atan
 sinh = lift1 sinh
 cosh = lift1 cosh
 tanh = lift1 tanh
 asinh = lift1 asinh
 acosh = lift1 acosh
 atanh = lift1 atanh

Once again, check our work by calculating

instance Floating a => Floating (Behavior a) where
 sin = lift1 sin
 ...

lift1 :: (a -> b) -> Behavior a -> Behavior b
lift1 f (Beh g) = Beh (\t -> f (g t))

time :: Behavior Time
time = Beh (\t -> t)

sin time = lift1 sin time
 = lift1 sin (Beh (\t -> t))
 = \t -> sin ((\t -> t) t)
 = \t -> sin t

Add in Operations for Colors, Pictures, Regions

reg = lift2 Region
shape = lift1 Shape
poly = liftXs Polygon
ell = lift2 Ellipse
red = lift0 Red
yellow = lift0 Yellow
green = lift0 Green
blue = lift0 Blue

tx (Beh a1, Beh a2) (Beh r) = Beh (\t -> Translate (a1 t, a2 t) (r t))

• Ok, at this point, you've got to admit that whoever came up
with the concept of "lifting" and the idea of defining the liftN
functions was pretty smart -- they are getting a lot of play!

Creating Behavioral Shapes

• Our basic ball:

• Our basic pentagon:

• A revolving balls and pentagons:

pentaB :: Behavior Region
pentaB = shape $ poly (map lift0 vs)
 where vs = [(0.0, 0.8)
 , (0.3,-0.5)
 , (-0.3,-0.5)]

ballB :: Behavior Region
ballB = shape $ ell 0.2 0.2

revolveRegion = tx (sin time, cos time)

revBallB = revolveRegion ballB
revPentaB = revolveRegion pentaB

Power Tools: Conditional Behaviors

• We can really start building a whole new language when we
start adding conditional behaviors:

• Behavioral comparisons:

• Alternating behaviors:

cond :: Behavior Bool -> Behavior a -> Behavior a -> Behavior a
cond = lift3 $ \b x y -> if b then x else y

(>*) = lift2 (>)
(<*) = lift2 (<)

flash = cond (cos time >* 0) red yellow
flash' = cond (cos time >* 0) green blue

Power Tools: Domain-Specific Type Classes

• Are there operations that apply to several different
abstractions within our DSL?

• What about the concept of “over” – one shape, region,
picture or behavior “over” top of another?

• Write functions to layer all elements of a list:

class Combine a where
 empty :: a
 over :: a -> a -> a

overMany :: Combine a => [a] -> a
overMany = foldr over empty

Power Tools: Domain-Specific Type Classes

• Write instances of the new class for pictures and behaviors

class Combine a where
 empty :: a
 over :: a -> a -> a

instance Combine Picture where
 empty = EmptyPic
 over = Over

instance Combine a => Combine (Behavior a) where
 empty = lift0 empty
 over = lift2 over

Power Tools: Domain-Specific Type Classes

• Play with the new type classes:

overMany = foldr over empty

anim5 = animateB "Many Spheres" $ overMany [b1,b2,b3]
 where b1 = reg flash $ tx ((sin time)-1, cos time) ballB
 b2 = reg flash' $ tx ((sin time)+1, cos time) ballB
 b3 = reg flash'' $ tx (2 * sin time, cos time) pentaB

class Combine a where
 empty :: a
 over :: a -> a -> a

instance Combine Picture where ...

instance Combine a => Combine (Behavior a) where ...

More Demos

• Check out the use of conditional animations and new type
classes in these programs:

• Read through the rest of the animation notes

anim2

anim3

anim4

...

anim9

SUMMARY!

Summary

• Defining a new embedded DSL involves

– defining key abstract types to be used by the client programs

– defining reuseable operations over those abstract types

• Along the way, we saw:

– heavy use of functions as data

– the idea of lifting a Haskell function to a new abstract domain

– the use of type classes

• new instances for existing classes: related operations on new types

• new classes: new domain-specific operations

• Historical note: Programming language researchers from 90s
onward spent years defining and refining the basic principles of
DSL design and looking for the right reusable, modular
abstractions. And the research continues. Moreover, getting
the specifics right is a fun, ongoing challenge in many domains.

