Proofs About Type Classes

COS 441 Slides 07b
Agenda

• Last time
 – defining and using type classes
• This time:
 – proving properties of type classes
EQUALITY
Equality

• Haskell’s equality type class:

```haskell
class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool
```

• Some basic axioms about equality:
 – Reflexivity: \(x == x \)
 – Transitivity: \(x == y \) and \(y == z \) implies \(x == z \)
Equality

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

• An instance:

data Bit = On | Off deriving (Show)

instance Eq Bit where
 (==) On On = True
 (==) Off Off = True
 (==) On Off = False
 (==) Off On = False
Equality

```haskell
class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool

  -- axiom:  x == x
  -- axiom: x == y and y == z implies x == z
```

data Bit = On | Off deriving (Show)

```haskell
instance Eq Bit where
  (==) On On = True
  (==) Off Off = True
  (==) On Off = False
  (==) Off On = False
```

- Reflexivity Proof *(by cases on x)*:

  ```haskell
  case x = On:
    On == On  (unfold (==) at type Bit)
  
  case x = Off:
    Off == Off (unfold (==) at type Bit)
  ```
Equality

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Bit = On | Off deriving (Show)

instance Eq Bit where
 (==) On On = True
 (==) Off Off = True
 (==) On Off = False
 (==) Off On = False

• Transitivity Proof (by cases on x):

 case x = On:
 (0) x = On (assumption for this case)
 (1) x == y (by assumption)
 (2) y == z (by assumption; now must prove x == z)
 (3) y = On (by (0,1) and (==) at type Bit)
 (4) z = On (by (2,1) and (==) at type Bit)
 (5) x == z (by (0,3) and (==) at type Bit)

 case x is Off: Similar to the case for x = Off.
class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

-- axiom: x == x
-- axiom: x == y and y == z implies x == z

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b) where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)
Equality

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b) where
 (==) (Pair x1 y1) (Pair x2 y2) = (x1 == x2) && (y1 == y2)

• Reflexivity Proof (By Calculation):

 Must prove: p == p for any Pair a b such that Eq a and Eq b.
 What do such pairs look like?
Equality

class Eq a where

- (==) :: a -> a -> Bool
- (/=) :: a -> a -> Bool

- axiom: \(x == x \)
- axiom: \(x == y \) and \(y == z \) implies \(x == z \)

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b) where

- (==) (Pair x1 y1) (Pair x2 y2) = (x1 == x2) && (y1 == y2)

Reflexivity Proof (By Calculation):

Must prove: \(p == p \) for any Pair a b such that Eq a and Eq b.

What do such pairs look like?
They must have the form \(p = \text{Pair } x \ y \) where \(x :: a \) and \(y :: b \)

Hence, we must prove:

- Pair x y == Pair x y
Equality

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

-- axiom: x == x
-- axiom: x == y and y == z implies x == z

instance (Eq a, Eq b) => Eq (Pair a b) where

(==) (Pair x1 y1) (Pair x2 y2) = (x1 == x2) && (y1 == y2)

• Reflexivity Proof (By Calculation):

Must prove: p == p for any Pair a b such that Eq a and Eq b.
What do such pairs look like?
They must have the form p = Pair x y where x :: a and y :: b
Hence, we must prove:

Pair x y == Pair x y
= (x == x) && (y == y)
(unfold == at type Pair a b)
Equality

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b)
 where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

• Reflexivity Proof (By Calculation):

Must prove: p == p for any Pair a b such that Eq a and Eq b.
What do such pairs look like?
They must have the form p = Pair x y where x :: a and y :: b
Hence, we must prove:
 Pair x y == Pair x y
= (x == x) && (y == y) (unfold == at type Pair a b)
= True && (y == y) (by Eq reflexivity at type a)

use axioms
at types
for which
Eq already
proven
Equality

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b) where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

• Reflexivity Proof (By Calculation):

 Must prove: p == p for any Pair a b such that Eq a and Eq b.
 What do such pairs look like?
 They must have the form p = Pair x y where x :: a and y :: b
 Hence, we must prove:
 Pair x y == Pair x y
 = (x == x) && (y == y) (unfold == at type Pair a b)
 = True && (y == y) (by Eq reflexivity at type a)
 = True && True (by Eq reflexivity at type b)
Equality

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

-- axiom: x == x
-- axiom: x == y and y == z implies x == z

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b) where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

• Reflexivity Proof (By Calculation):

 Must prove: p == p for any Pair a b such that Eq a and Eq b.
 What do such pairs look like?
 They must have the form p = Pair x y where x :: a and y :: b

 Hence, we must prove:
 Pair x y == Pair x y
 = (x == x) && (y == y) (unfold == at type Pair a b)
 = True && (y == y) (by Eq reflexivity at type a)
 = True && True (by Eq reflexivity at type b)
 = True (by unfold &&)

 use axioms at types for which Eq already proven
Equality

class Eq a where ...
 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

instance (Eq a, Eq b) => Eq (Pair a b) where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

• Transitivity Proof (By Calculation):

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3
implies Pair x1 y1 == Pair x3 y3 at type Pair a b.
• **Transitivity Proof (By Calculation):**

Must prove `Pair x1 y1 == Pair x2 y2` and `Pair x2 y2 == Pair x3 y3` implies `Pair x1 y1 == Pair x3 y3` at type `Pair a b`.

1. \(\text{Pair } x1 \ y1 == \text{Pair } x2 \ y2\) (by assumption)
2. \(\text{Pair } x2 \ y2 == \text{Pair } x3 \ y3\) (by assumption)
3. \(x1, x2, x3 :: a \text{ and } Eq a\) (by assumption)
4. \(y1, y2, y3 :: b \text{ and } Eq b\) (by assumption)
Equality

Transitivity Proof (By Calculation):

Must prove `Pair x1 y1 == Pair x2 y2` and `Pair x2 y2 == Pair x3 y3` implies `Pair x1 y1 == Pair x3 y3` at type `Pair a b`.

<table>
<thead>
<tr>
<th></th>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>Pair x1 y1 == Pair x2 y2</code></td>
<td>(by assumption)</td>
</tr>
<tr>
<td>2</td>
<td><code>Pair x2 y2 == Pair x3 y3</code></td>
<td>(by assumption)</td>
</tr>
<tr>
<td>3</td>
<td><code>x1, x2, x3 :: a</code> and <code>Eq a</code></td>
<td>(by assumption)</td>
</tr>
<tr>
<td>4</td>
<td><code>y1, y2, y3 :: b</code> and <code>Eq b</code></td>
<td>(by assumption)</td>
</tr>
<tr>
<td>5</td>
<td><code>(x1 == x2) && (y1 == y2)</code></td>
<td>(by (1), <code>==</code> at type <code>Pair a b</code>)</td>
</tr>
<tr>
<td>6</td>
<td><code>(x2 == x3) && (y2 == y3)</code></td>
<td>(by (2), <code>==</code> at type <code>Pair a b</code>)</td>
</tr>
</tbody>
</table>
Transitivity Proof (By Calculation):

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

1. Pair x1 y1 == Pair x2 y2
 (by assumption)
2. Pair x2 y2 == Pair x3 y3
 (by assumption)
3. x1, x2, x3 :: a and Eq a
 (by assumption)
4. y1, y2, y3 :: b and Eq b
 (by assumption)
5. (x1 == x2) && (y1 == y2)
 (by (1), (==) at type Pair a b)
6. (x2 == x3) && (y2 == y3)
 (by (2), (==) at type Pair a b)

Pair x1 y1 == Pair x3 y3
• **Transitivity Proof (By Calculation):**

Must prove \(\text{Pair } x_1 \ y_1 == \text{Pair } x_2 \ y_2\) and \(\text{Pair } x_2 \ y_2 == \text{Pair } x_3 \ y_3\) implies \(\text{Pair } x_1 \ y_1 == \text{Pair } x_3 \ y_3\) at type \(\text{Pair } a \ b\).

1. \(\text{Pair } x_1 \ y_1 == \text{Pair } x_2 \ y_2\) (by assumption)
2. \(\text{Pair } x_2 \ y_2 == \text{Pair } x_3 \ y_3\) (by assumption)
3. \(x_1, x_2, x_3 :: a\) and \(\text{Eq } a\) (by assumption)
4. \(y_1, y_2, y_3 :: b\) and \(\text{Eq } b\) (by assumption)
5. \((x_1 == x_2) \&\& (y_1 == y_2)\) (by (1), \(==\) at type \(\text{Pair } a \ b\))
6. \((x_2 == x_3) \&\& (y_2 == y_3)\) (by (2), \(==\) at type \(\text{Pair } a \ b\))

\[
\text{Pair } x_1 \ y_1 == \text{Pair } x_3 \ y_3 = (x_1 == x_3) \&\& (y_1 == y_3) \quad \text{(unfold } == \text{ at type } \text{Pair } a \ b\text{)}
\]
Equality

class Eq a where ...
 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

instance (Eq a, Eq b) => Eq (Pair a b) where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

• Transitivity Proof (By Calculation):

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

(1) Pair x1 y1 == Pair x2 y2 (by assumption)
(2) Pair x2 y2 == Pair x3 y3 (by assumption)
(3) x1, x2, x3 :: a and Eq a (by assumption)
(4) y1, y2, y3 :: b and Eq b (by assumption)
(5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b)
(6) (x2 == x3) && (y2 == y3) (by (2), (==) at type Pair a b)

Pair x1 y1 == Pair x3 y3
= (x1 == x3) && (y1 == y3) (unfold == at type Pair a b)
= True && (y1 == y3) (by (5), (6), transitivity at type a)
class Eq a where ...
 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

instance (Eq a, Eq b) => Eq (Pair a b) where
 (==) (Pair x1 y1) (Pair x2 y2) = (x1 == x2) && (y1 == y2)

• Transitivity Proof (By Calculation):

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

(1) Pair x1 y1 == Pair x2 y2 (by assumption)
(2) Pair x2 y2 == Pair x3 y3 (by assumption)
(3) x1, x2, x3 :: a and Eq a (by assumption)
(4) y1, y2, y3 :: b and Eq b (by assumption)
(5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b)
(6) (x2 == x3) && (y2 == y3) (by (2), (==) at type Pair a b)

Pair x1 y1 == Pair x3 y3
= (x1 == x3) && (y1 == y3) (unfold == at type Pair a b)
= True && (y1 == y3) (by (5), (6), transitivity at type a)
= True && True = True (by (5), (6), transitivity at type b; by &&)
Lessons

• When proving things about type classes, be specific about the type at which you use a definition
 – eg: unfold == \textit{at type Pair a b}
 – eg: unfold == \textit{at type a}
Lessons

• What specific types have we proven have reflexive and transitive equality?
 – Bit
 – Pair Bit Bit
 – Pair (Pair Bit Bit) Bit
 – Pair (Pair (Pair Bit (Pair Bit Bit)) (Pair Bit Bit)) Bit
 – Pair

• Why?
 – We proved \(==\) at type Bit satisfies the axioms
 – We proved that if \(==\) at type a and type b satisfies the axioms then \(==\) at type Pair a b satisfies the axioms
 – This is a kind of induction!
 – It is \textit{induction on the structure of types}.
Lessons

• Type class proofs are often achieved by *induction on the structure of the type*
 – Given: instance (T a) => T (Constructor a) where ...
 – Assume: the axioms for T hold for type a
 – Must prove: the axioms hold for type Constructor a
 – the axioms at the smaller type a are used as *inductive hypotheses* within the proofs of the axioms for Constructor a
 – If all your type classes have the form
 • instance (T a) => T (Constructor a) where ...
 • then your type class is uninhabited! You need some base cases.
 – Base cases arise when types unconditionally belong to the type class
Lessons

• When proving something with the form:
 – If A and B then C

• You may structure your proof by assuming A and B, then proving C:

 Theorem: If A and B then C.
 Proof: By calculation, or induction, or whatever else works.

 (1) A (By assumption)
 (2) B (By assumption)
 (3) ...
 (4) ...
 (5) ...
 (6) C (By 2, 3, 5)
 QED.