
Proofs About Type Classes

COS 441 Slides 07b

Agenda

• Last time

– defining and using type classes

• This time:

– proving properties of type classes

EQUALITY

Equality

• Haskell’s equality type class:

• Some basic axioms about equality:

– Reflexivity: x == x

– Transitivity: x == y and y == z implies x == z

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

Equality

• An instance:

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Bit = On | Off deriving (Show)

instance Eq Bit where
 (==) On On = True
 (==) Off Off = True
 (==) On Off = False
 (==) Off On = False

Equality

• Reflexivity Proof (by cases on x):

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Bit = On | Off deriving (Show)

instance Eq Bit where
 (==) On On = True
 (==) Off Off = True
 (==) On Off = False
 (==) Off On = False

case x = On:
 On == On (unfold (==) at type Bit)

case x = Off:
 Off == Off (unfold (==) at type Bit)

Equality

• Transitivity Proof (by cases on x):

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Bit = On | Off deriving (Show)

instance Eq Bit where
 (==) On On = True
 (==) Off Off = True
 (==) On Off = False
 (==) Off On = False

case x = On:
 (0) x = On (assumption for this case)
 (1) x == y (by assumption)
 (2) y == z (by assumption; now must prove x == z)
 (3) y = On (by (0,1) and (==) at type Bit)
 (4) z = On (by (2,1) and (==) at type Bit)
 (5) x == z (by (0,3) and (==) at type Bit)

case x is Off: Similar to the case for x = Off.

Equality

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

Equality

• Reflexivity Proof (By Calculation):

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

Must prove: p == p for any Pair a b such that Eq a and Eq b.
What do such pairs look like?

Equality

• Reflexivity Proof (By Calculation):

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

Must prove: p == p for any Pair a b such that Eq a and Eq b.
What do such pairs look like?
They must have the form p = Pair x y where x :: a and y :: b
Hence, we must prove:
 Pair x y == Pair x y

Equality

• Reflexivity Proof (By Calculation):

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

Must prove: p == p for any Pair a b such that Eq a and Eq b.
What do such pairs look like?
They must have the form p = Pair x y where x :: a and y :: b
Hence, we must prove:
 Pair x y == Pair x y
= (x == x) && (y == y) (unfold == at type Pair a b)

Equality

• Reflexivity Proof (By Calculation):

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

Must prove: p == p for any Pair a b such that Eq a and Eq b.
What do such pairs look like?
They must have the form p = Pair x y where x :: a and y :: b
Hence, we must prove:
 Pair x y == Pair x y
= (x == x) && (y == y) (unfold == at type Pair a b)
= True && (y == y) (by Eq reflexivity at type a)

use axioms
at types
for which
Eq already
proven

Equality

• Reflexivity Proof (By Calculation):

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

Must prove: p == p for any Pair a b such that Eq a and Eq b.
What do such pairs look like?
They must have the form p = Pair x y where x :: a and y :: b
Hence, we must prove:
 Pair x y == Pair x y
= (x == x) && (y == y) (unfold == at type Pair a b)
= True && (y == y) (by Eq reflexivity at type a)
= True && True (by Eq reflexivity at type b)

use axioms
at types
for which
Eq already
proven

Equality

• Reflexivity Proof (By Calculation):

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

data Pair a b = Pair a b deriving (Show)

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

Must prove: p == p for any Pair a b such that Eq a and Eq b.
What do such pairs look like?
They must have the form p = Pair x y where x :: a and y :: b
Hence, we must prove:
 Pair x y == Pair x y
= (x == x) && (y == y) (unfold == at type Pair a b)
= True && (y == y) (by Eq reflexivity at type a)
= True && True (by Eq reflexivity at type b)
= True (by unfold &&)

use axioms
at types
for which
Eq already
proven

Equality

• Transitivity Proof (By Calculation):

class Eq a where ...
 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3
implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

Equality

• Transitivity Proof (By Calculation):

class Eq a where ...
 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

(1) Pair x1 y1 == Pair x2 y2 (by assumption)
(2) Pair x2 y2 == Pair x3 y3 (by assumption)
(3) x1, x2, x3 :: a and Eq a (by assumption)
(4) y1, y2, y3 :: b and Eq b (by assumption)

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3
implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

Equality

• Transitivity Proof (By Calculation):

class Eq a where ...
 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

(1) Pair x1 y1 == Pair x2 y2 (by assumption)
(2) Pair x2 y2 == Pair x3 y3 (by assumption)
(3) x1, x2, x3 :: a and Eq a (by assumption)
(4) y1, y2, y3 :: b and Eq b (by assumption)
(5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b)
(6) (x2 == x3) && (y2 == y3) (by (2), (==) at type Pair a b)

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3
implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

Equality

• Transitivity Proof (By Calculation):

class Eq a where ...
 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

(1) Pair x1 y1 == Pair x2 y2 (by assumption)
(2) Pair x2 y2 == Pair x3 y3 (by assumption)
(3) x1, x2, x3 :: a and Eq a (by assumption)
(4) y1, y2, y3 :: b and Eq b (by assumption)
(5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b)
(6) (x2 == x3) && (y2 == y3) (by (2), (==) at type Pair a b)

 Pair x1 y1 == Pair x3 y3

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3
implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

Equality

• Transitivity Proof (By Calculation):

class Eq a where ...
 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

(1) Pair x1 y1 == Pair x2 y2 (by assumption)
(2) Pair x2 y2 == Pair x3 y3 (by assumption)
(3) x1, x2, x3 :: a and Eq a (by assumption)
(4) y1, y2, y3 :: b and Eq b (by assumption)
(5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b)
(6) (x2 == x3) && (y2 == y3) (by (2), (==) at type Pair a b)

 Pair x1 y1 == Pair x3 y3
 = (x1 == x3) && (y1 == y3) (unfold == at type Pair a b)

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3
implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

Equality

• Transitivity Proof (By Calculation):

class Eq a where ...
 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

(1) Pair x1 y1 == Pair x2 y2 (by assumption)
(2) Pair x2 y2 == Pair x3 y3 (by assumption)
(3) x1, x2, x3 :: a and Eq a (by assumption)
(4) y1, y2, y3 :: b and Eq b (by assumption)
(5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b)
(6) (x2 == x3) && (y2 == y3) (by (2), (==) at type Pair a b)

 Pair x1 y1 == Pair x3 y3
 = (x1 == x3) && (y1 == y3) (unfold == at type Pair a b)
 = True && (y1 == y3) (by (5), (6), transitivity at type a)

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3
implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

Equality

• Transitivity Proof (By Calculation):

class Eq a where ...
 -- axiom: x == x
 -- axiom: x == y and y == z implies x == z

instance (Eq a, Eq b) => Eq (Pair a b)
where
 (==) (Pair x1 y1) (Pair x2 y2) =
 (x1 == x2) && (y1 == y2)

(1) Pair x1 y1 == Pair x2 y2 (by assumption)
(2) Pair x2 y2 == Pair x3 y3 (by assumption)
(3) x1, x2, x3 :: a and Eq a (by assumption)
(4) y1, y2, y3 :: b and Eq b (by assumption)
(5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b)
(6) (x2 == x3) && (y2 == y3) (by (2), (==) at type Pair a b)

 Pair x1 y1 == Pair x3 y3
 = (x1 == x3) && (y1 == y3) (unfold == at type Pair a b)
 = True && (y1 == y3) (by (5), (6), transitivity at type a)
 = True && True = True (by (5), (6), transitivity at type b; by &&)

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3
implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

Lessons

• When proving things about type classes, be specific about the
type at which you use a definition

– eg: unfold == at type Pair a b

– eg: unfold == at type a

Lessons

• What specific types have we proven have reflexive and
transitive equality?

– Bit

– Pair Bit Bit

– Pair (Pair Bit Bit) Bit

– Pair (Pair (Pair Bit (Pair Bit Bit)) (Pair Bit Bit)) Bit

– Pair … …

• Why?

– We proved == at type Bit satisfies the axioms

– We proved that if == at type a and type b satisfies the axioms
then == at type Pair a b satisfies the axioms

– This is a kind of induction!

– It is induction on the structure of types.

Lessons

• Type class proofs are often achieved by induction on the
structure of the type

– Given: instance (T a) => T (Constructor a) where ...

– Assume: the axioms for T hold for type a

– Must prove: the axioms hold for type Constructor a

– the axioms at the smaller type a are used as inductive
hypotheses within the proofs of the axioms for Constructor a

– If all your type classes have the form

• instance (T a) => T (Constructor a) where ...

• then your type class is uninhabited! You need some base cases.

– Base cases arise when types unconditionally belong to the type
class

Lessons

• When proving something with the form:

– If A and B then C

• You may structure your proof by assuming A and B, then
proving C:

Theorem: If A and B then C.
Proof: By calculation, or induction, or whatever else works.

(1) A (By assumption)
(2) B (By assumption)
(3) ...
(4) ...
(5) ...
(6) C (By 2, 3, 5)
QED.

