Proofs About Type Classes

COS 441 Slides 07b

Agenda

- Last time
 - defining and using type classes
- This time:
 - proving properties of type classes

EQUALITY

• Haskell's equality type class:

class Eq a where (==) :: a -> a -> Bool (/=) :: a -> a -> Bool

- Some basic axioms about equality:
 - Reflexivity: x == x
 - Transitivity: x == y and y == z implies x == z

class Eq a where (==) :: a -> a -> Bool (/=) :: a -> a -> Bool

-- axiom: x == x
-- axiom: x == y and y == z implies x == z

• An instance:

data Bit = On | Off deriving (Show)

instance Eq Bit where
(==) On On = True
(==) Off Off = True
(==) On Off = False
(==) Off On = False

data Bit = On Off deriving (Show)
instance Eq Bit where
(==) On On = True
(==) Off Off = True
(==) On Off = False
(==) Off On = False

• Reflexivity Proof (by cases on x):

case x = On: On == On (unfold (==) at type Bit) case x = Off: Off == Off (unfold (==) at type Bit)

class Eq a where	data Bit = On Off deriving (Show)
(==) :: a -> a -> Bool	
(/=) :: a -> a -> Bool	instance Eq Bit where
	(==) On On = True
axiom: x == x	(==) Off Off = True
axiom: x == y and y == z implies x == z	(==) On Off = False
	(==) Off On = False

• Transitivity Proof (by cases on x):

case x = On:	
(0) x = On	(assumption for this case)
(1) x == y	(by assumption)
(2) y == z	(by assumption; now must prove x == z)
(3) y = On	(by (0,1) and (==) at type Bit)
(4) z = On	(by (2,1) and (==) at type Bit)
(5) x == z	(by (0,3) and (==) at type Bit)

case x is Off: Similar to the case for x = Off.

class Eq a where	data Pair a b = Pair a b deriving (Show)
(==) :: a -> a -> Bool	
(/=) :: a -> a -> Bool	instance (Eq a, Eq b) => Eq (Pair a b)
	where
axiom: x == x	(==) (Pair x1 y1) (Pair x2 y2) =
axiom: x == y and y == z implies x == z	(x1 == x2) && (y1 == y2)

class Eq a where	data Pair a b = Pair a b deriving (Show)
(==) :: a -> a -> Bool	
(/=) :: a -> a -> Bool	instance (Eq a, Eq b) => Eq (Pair a b)
	where
axiom: x == x	(==) (Pair x1 y1) (Pair x2 y2) =
axiom: x == y and y == z implies x == z	(x1 == x2) && (y1 == y2)

• Reflexivity Proof (By Calculation):

Must prove: p == p for any Pair a b such that Eq a and Eq b. What do such pairs look like?

class Eq a where	data Pair a b = Pair a b deriving (Show)
(==) :: a -> a -> Bool	
(/=) :: a -> a -> Bool	instance (Eq a, Eq b) => Eq (Pair a b)
	where
axiom: x == x	(==) (Pair x1 y1) (Pair x2 y2) =
axiom: x == y and y == z implies x == z	(x1 == x2) && (y1 == y2)

• Reflexivity Proof (By Calculation):

Must prove: p == p for any Pair a b such that Eq a and Eq b. What do such pairs look like? They must have the form p = Pair x y where x :: a and y :: b Hence, we must prove: Pair x y == Pair x y

class Eq a where	data Pair a b = Pair a b deriving (Show)
(==) :: a -> a -> Bool	
(/=) :: a -> a -> Bool	instance (Eq a, Eq b) => Eq (Pair a b)
	where
axiom: x == x	(==) (Pair x1 y1) (Pair x2 y2) =
axiom: x == y and y == z implies x == z	(x1 == x2) && (y1 == y2)

• Reflexivity Proof (By Calculation):

Must prove: p == p for any Pair a b such that Eq a and Eq b. What do such pairs look like? They must have the form p = Pair x y where x :: a and y :: b Hence, we must prove: Pair x y == Pair x y = (x == x) && (y == y) (unfold == at type Pair a b)

class Eq a where	data Pair a b = Pair a b deriving (Show)
(==) :: a -> a -> Bool	
(/=) :: a -> a -> Bool	instance (Eq a, Eq b) => Eq (Pair a b)
	where
axiom: x == x	(==) (Pair x1 y1) (Pair x2 y2) =
axiom: x == y and y == z implies x == z	(x1 == x2) && (y1 == y2)

• Reflexivity Proof (By Calculation):

use axiomsMust prove: p == p for any Pair a b such that Eq a and Eq b.use axiomsWhat do such pairs look like?for whichThey must have the form p = Pair x y where x :: a and y :: bEq alreadyHence, we must prove:provenPair x y == Pair x y(unfold == at type Pair a b)= True && (y == y)(by Eq reflexivity at type a)

class Eq a where	data Pair a b = Pair a b deriving (Show)
(==) :: a -> a -> Bool	
(/=) :: a -> a -> Bool	instance (Eq a, Eq b) => Eq (Pair a b)
	where
axiom: x == x	(==) (Pair x1 y1) (Pair x2 y2) =
axiom: x == y and y == z implies x == z	(x1 == x2) && (y1 == y2)

• Reflexivity Proof (By Calculation):

use axiomsMust prove: p == p for any Pair a b such that Eq a and Eq b.at typesWhat do such pairs look like?for whichThey must have the form p = Pair x y where x :: a and y :: bEq alreadyHence, we must prove:provenPair x y == Pair x y(unfold == at type Pair a b)= True && (y == y)(by Eq reflexivity at type a)= True && True(by Eq reflexivity at type b)

class Eq a where	data Pair a b = Pair a b deriving (Show)
(==) :: a -> a -> Bool	
(/=) :: a -> a -> Bool	instance (Eq a, Eq b) => Eq (Pair a b)
	where
axiom: x == x	(==) (Pair x1 y1) (Pair x2 y2) =
axiom: x == y and y == z implies x == z	(x1 == x2) && (y1 == y2)

• Reflexivity Proof (By Calculation):

```
use axioms
Must prove: p == p for any Pair a b such that Eq a and Eq b.
                                                                  at types
What do such pairs look like?
                                                                  for which
They must have the form p = Pair x y where x :: a and y :: b
                                                                  Eq already
Hence, we must prove:
                                                                  proven
  Pair x y == Pair x y
                                     (unfold == at type Pair a b)
= (x == x) \&\& (y == y)
                                    (by Eq reflexivity at type a)
= True && (y == y)
                                     (by Eq reflexivity at type b)
= True && True
                                     (by unfold &&)
= True
```

class Eq a where	instance (Eq a, Eq b) => Eq (Pair a b)
axiom: x == x	where
axiom: x == y and y == z implies x == z	(==) (Pair x1 y1) (Pair x2 y2) =
	(x1 == x2) && (y1 == y2)

• Transitivity Proof (By Calculation):

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

class Eq a where	instance (Eq a, Eq b) => Eq (Pair a b)
axiom: x == x	where
axiom: x == y and y == z implies x == z	(==) (Pair x1 y1) (Pair x2 y2) =
	(x1 == x2) && (y1 == y2)

• Transitivity Proof (By Calculation):

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

(1)	Pair x1 y1 == Pair x2 y2	(by assumption)
(2)	Pair x2 y2 == Pair x3 y3	(by assumption)
(3)	x1, x2, x3 :: a and Eq a	(by assumption)
(4)	y1, y2, y3 :: b and Eq b	(by assumption)

class Eq a where	instance (Eq a, Eq b) => Eq (Pair a b)
axiom: x == x	where
axiom: x == y and y == z implies x == z	(==) (Pair x1 y1) (Pair x2 y2) =
	(x1 == x2) && (y1 == y2)

Transitivity Proof (By Calculation):

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

- (1) Pair x1 y1 == Pair x2 y2 (2) Pair x2 y2 == Pair x3 y3 (3) x1, x2, x3 :: a and Eq a (by assumption) (4) y1, y2, y3 :: b and Eq b (by assumption) (5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b) (6) $(x^2 = x^3) \& (y^2 = y^3)$ (by (2), (==) at type Pair a b)
 - (by assumption) (by assumption)

class Eq a where	instance (Eq a, Eq b) => Eq (Pair a b)
axiom: x == x	where
axiom: x == y and y == z implies x == z	(==) (Pair x1 y1) (Pair x2 y2) =
	(x1 == x2) && (y1 == y2)

Transitivity Proof (By Calculation):

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

(1) Pair x1 y1 == Pair x2 y2 (2) Pair x2 y2 == Pair x3 y3 (3) x1, x2, x3 :: a and Eq a (by assumption) (4) y1, y2, y3 :: b and Eq b (by assumption) (5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b) (6) $(x^2 = x^3) \& (y^2 = y^3)$ (by (2), (==) at type Pair a b)

Pair x1 y1 == Pair x3 y3

- (by assumption) (by assumption)

class Eq a where	instance (Eq a, Eq b) => Eq (Pair a b)
axiom: x == x	where
axiom: x == y and y == z implies x == z	(==) (Pair x1 y1) (Pair x2 y2) =
	(x1 == x2) && (y1 == y2)

• Transitivity Proof (By Calculation):

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

(1)	Pair x1 y1 == Pair x2 y2	(by assumption)
(2)	Pair x2 y2 == Pair x3 y3	(by assumption)
(3)	x1, x2, x3 :: a and Eq a	(by assumption)
(4)	y1, y2, y3 :: b and Eq b	(by assumption)
(5)	(x1 == x2) && (y1 == y2)	(by (1), (==) at type Pair a b)
(6)	(x2 == x3) && (y2 == y3)	(by (2), (==) at type Pair a b)
	Pair x1 y1 == Pair x3 y3	
	= (x1 == x3) && (y1 == y3)	(unfold == at type Pair a b)

class Eq a where	instance (Eq a, Eq b) => Eq (Pair a b)
axiom: x == x	where
axiom: x == y and y == z implies x == z	(==) (Pair x1 y1) (Pair x2 y2) =
	(x1 == x2) && (y1 == y2)

• Transitivity Proof (By Calculation):

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

(1) Pair x1 y1 == Pair x2 y2 (by
(2) Pair x2 y2 == Pair x3 y3 (by
(3) x1, x2, x3 :: a and Eq a (by
(4) y1, y2, y3 :: b and Eq b (by
(5)
$$(x1 == x2) \&\& (y1 == y2)$$
 (by
(6) $(x2 == x3) \&\& (y2 == y3)$ (by
Pair x1 y1 == Pair x3 y3
= $(x1 == x3) \&\& (y1 == y3)$ (ur
= True && $(y1 == y3)$ (by

(by assumption) (by assumption) (by assumption) (by assumption) (by (1), (==) at type Pair a b) (by (2), (==) at type Pair a b)

(unfold == at type Pair a b)
(by (5), (6), transitivity at type a)

class Eq a where	instance (Eq a, Eq b) => Eq (Pair a b)
axiom: x == x	where
axiom: x == y and y == z implies x == z	(==) (Pair x1 y1) (Pair x2 y2) =
	(x1 == x2) && (y1 == y2)

Transitivity Proof (By Calculation):

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 implies Pair x1 y1 == Pair x3 y3 at type Pair a b.

```
(1) Pair x1 y1 == Pair x2 y2
(2) Pair x2 y2 == Pair x3 y3
(3) x1, x2, x3 :: a and Eq a (by assumption)
(4) y1, y2, y3 :: b and Eq b (by assumption)
(5) (x1 == x2) \&\& (y1 == y2) (by (1), (==) at type Pair a b)
(6) (x^2 = x^3) \& (y^2 = y^3) (by (2), (==) at type Pair a b)
     Pair x1 y1 == Pair x3 y3
   = (x1 == x3) \&\& (y1 == y3)
   = True && (y1 == y3)
   = True && True = True
```

(by assumption) (by assumption)

```
(unfold == at type Pair a b)
(by (5), (6), transitivity at type a)
(by (5), (6), transitivity at type b; by \&\&)
```

- When proving things about type classes, be specific about the type at which you use a definition
 - eg: unfold == at type Pair a b
 - eg: unfold == at type a

- What specific types have we proven have reflexive and transitive equality?
 - Bit
 - Pair Bit Bit
 - Pair (Pair Bit Bit) Bit
 - Pair (Pair (Pair Bit (Pair Bit Bit)) (Pair Bit Bit)) Bit
 - Pair
- Why?
 - We proved == at type Bit satisfies the axioms
 - We proved that if == at type a and type b satisfies the axioms then == at type Pair a b satisfies the axioms
 - This is a kind of induction!
 - It is induction on the structure of types.

- Type class proofs are often achieved by *induction on the* structure of the type
 - Given: instance (T a) => T (Constructor a) where ...
 - Assume: the axioms for T hold for type a
 - Must prove: the axioms hold for type Constructor a
 - the axioms at the smaller type a are used as *inductive hypotheses* within the proofs of the axioms for Constructor a
 - If all your type classes have the form
 - instance (T a) => T (Constructor a) where ...
 - then your type class is uninhabited! You need some base cases.
 - Base cases arise when types unconditionally belong to the type class

• When proving something with the form:

– If A and B then C

You may structure your proof by assuming A and B, then proving C:

Theorem: If A and B then C. Proof: By calculation, or induction, or whatever else works.

(1)	А	(By assumption)
(2)	В	(By assumption)
(3)	•••	
(4)	•••	
(5)	•••	
(6)	С	(By 2, 3, 5)
QE	Э.	