The Haskell HOP:
Higher-order Programming

COS 441 Slides 6

Slide content credits:
Ranjit Jhala, UCSD

Agenda

e Haskell so far:
— First-order functions

e This time:
— Higher-order functions:
* Functions as data, arguments & results
* Reuseable abstractions
* Capturing recursion patterns

— Functional programming really starts to differentiate itself!

FUNCTIONS AS FIRST CLASS VALUES

A Perspective on Java

* InlJava, you can do lots of things with integers:
— create them whereever you want, in any bit of code
— operate on them (add, subtract, etc)
— pass them to functions, return them as results from functions
— store them in data structures

* InJava, you can do barely anything at all with a method:

— all you can do is declare a method inside a pre-existing class
* you can't pass them to functions
e you can't return them as results
* you can't store them in data structures
* you can't define them locally where you need them
— of course, you can declare an entire new class (at the top level)
and put the one method you are interested in inside it
* this is incredibly heavy weight and still isn't very flexible!!
* you still can't define methods locally where you want them

Functions as First-Class Data

 Haskell treats functions as first-class data. So does:
— SML, OCaml, Scala (an OO language)

* "First-class" == all the "privileges" of any other data type:

— you can declare them where ever you want
e declarations can depend upon local variables in the context

— you can pass them as arguments to functions
— you can return them as results
— you can store them in data structures

* This feature makes it easy to create powerful abstractions

* Because it is easy, it encourages a programming style in which
there is great code reuse, many abstractions and clear code

Functions as First-Class Data

* Anexample:

plusl x=x+1
minusl x=x-1

e Storing functions in data structures:

funp :: (Int -> Int, Int -> Int)
funp = (plusl, minus1)

e ..any data structure:

funs :: [Int -> Int]
funs = [plusl, minusl, plusl]

Functions as Inputs

* Anexample:

doTwice f x = f (f x)
* Usingit:

plus2 :: Int -> Int
plus2 = doTwice plusl

Functions as Inputs

* Anexample:

doTwice f x = f (f x)
* Usingit:

plus2 :: Int -> Int
plus2 = doTwice plusl

* Reasoning about it:

plus2 3

Functions as Inputs

* Anexample:

doTwice f x = f (f x)
* Usingit:

plus2 :: Int -> Int
plus2 = doTwice plusl

* Reasoning about it:

plus2 3
= (doTwice plusl) 3 (unfold plus2)

Functions as Inputs

* Anexample:
doTwice f x = f (f x)

¢ USing it: (Fx)y==Ffxy

plus2 :: Int -> Int
plus2 = doTwice plusl

* Reasoning about it:

plus2 3
= (doTwice plusl) 3 (unfold plus2)
= doTwice plusl 3 (parenthesis convention)

Functions as Inputs

* Anexample:

doTwice f x = f (f x)
Using it:

plus2 :: Int -> Int
plus2 = doTwice plusl

Reasoning about it:

plus2 3
= (doTwice plusl) 3
= doTwice plusl 3
= plusl (plusl 3)
= plusl (3 +1)
= plusl 4
=4+1=5

(fx)y==Ffxy

(unfold plus2)
(parenthesis convention)
(unfold doTwice)

(unfold plus1)

(def of +)

(unfold plus1, def of +)

Interlude

e What have we learned?

Interlude

What have we learned? Almost nothing!
— function application is left-associative:
e ((fx)y)z==fxyz
— like + or - is left-associative:
¢« (3-4)-6==3-4-6
— this is useful, but intellectually uninteresting
We have, however, unlearned something important:

— some things one might have thought were fundamental
differences between functions and other data types, turn out
not to be differences at all!

PL researchers (like me!) often work with the theory of
functional languages because they are uniform and elegant

— they don't make unnecessary distinctions
— they get right down to the essentials, the heart of computation
— at the same time, they do not lack expressiveness

Functions as Results

Rather than writing multiple functions "plus1”, "plus2",
"plus3" we can write one:

plusn :: Int -> (Int -> Int)
plusnn=f
where fx=x+n

plusn returns a function -- one that adds n to its argument
any time we need an instance of plus, it is easy to build one:

plusl0 :: Int -> Int
plus10 = plusn 10

we can also use plusn directly:

resultl = (plusn 25) 100

Functions as Results

* More trivial reasoning:

resultl = (plusn 25) 100

= (f) 100 where f x = x + 25 (unfold plusn)
=100 + 25 (unfold f)
=125 (def of +)

plusn :: Int -> (Int -> Int)
plusnn=f
wherefx=x+n

Precedence & Partial Application

Function app is left-assoc.; Function types are right-assoc.

(plusn 25) 100 == plusn 25 100

Int -> (Int -> Int) == Int -> Int -> Int _
partial

We've seen two uses of plusn: / application

plus20 = plusn 20
oneTwentyFive = plusn 25 100

Whenever we have a function f with type T1 -> T2 -> T3, we can
choose:
— apply f to both arguments right now, giving a T3
— partially applying f, ie: applying f to one argument, yielding new
function with type T2 -> T3 and a chance to apply the new function
to a second argument later

Defining higher-order functions

* The following was a stupid way to define plusn --- but it made it
clear plusn was indeed returning a function:

plusn :: Int -> Int -> Int
plusnn=f
wherefx=x+n

 This is more beautiful code:

plusn' :: Int -> Int -> Int
plusn'nx=x+n

* We can prove them equivalent for all argumentsaand b

plusnab =fbwherefx=x+a (unfold plusn)
=b+a (unfold f)
=plusn'ab (fold plusn')

* So of course we can partially apply plusn' just like plusn

ANONYMOUS FUNCTIONS

Anonymous Numbers

* You are all used to writing down numbers inside expressions
— This:

2+3

— |s way more compact than this:

two =2
three =3
sum = two + three

— Why can't functions play by the same rules?

Anonymous Numbers

* Compare:
plusl x =x+1 doTwice f x = f (f x)
minuslx =x-1
doTwice f x = f (f x) baz' = doTwice (\x ->x+1) 3

bar' = doTwice (\x ->x-1) 7

baz = doTwice plusl 3
bar = doTwice minusl 7

* When are anonymous functions a good idea? function with

: argument x
— When functions are small and not reused.

 Why is this a good language feature?
— It encourages the definition of abstractions like doTwice

— Why? Without anonymous functions, doTwice would be a little
harder to use -- heavier weight; programmers would do it less

— Moreover, why make different rules for numbers vs. functions?

More useful abstractions

* Do you like shell scripting? Why not build your own pipeline
operator in Haskell?

([>)xf=Ffx
define an infix operator arguments, body
by putting a name made are the same as
of symbols inside parens usual

* Useit:
dothricefx=x |>f |>f |>f

transmute x = x |> plusn 4
|> minusl
|> even
|> not

More useful abstractions

Do you like shell scripting? Why not build your own pipeline
operator in Haskell?

Use it:

(|>)xf="fx

T T

define an infix operator
by putting a name made
of symbols inside parens

dothricefx=x |>f |>f |>f

transmute x = x |> (plusn 4) T

|> minusl
|> even
|> not

arguments, body
are the same as
usual

by defaullt:
function application
has the highest
precedence

\ by default: operators

left associative

More useful abstractions

* Do you like shell scripting? Why not build your own pipeline
operator in Haskell?

([>)xf=Ffx
define an infix operator arguments, body
by putting a name made are the same as
of symbols inside parens usual

* Useit:
dothricefx=x |>f |>f |>f

transmute x = ((((x |> plusn 4)
|> minusl)
|> even)
|> not)

\

by default: operators
left associative

More useful abstractions

Understanding functions in Haskell often boils down to
understanding their type

What type does the pipeline operator have?

(|>)xf="fx

(|>)::a->(a->b)->b

Read it like this: "for all types a and all types b, |> takes a
value of type a and a function from a to b and returns a b"

Hence:
(3> plusl) ::Int (a was Int, b was Int)

(3 |>even) :: Bool (a was Int, b was Bool)

("hello" |> putStrLn) ::10() (a was String, b was 10 ())

More useful abstractions

* Another heavily-used operator, function composition:

(.)fgx="1(gx)

More useful abstractions

* Another heavily-used operator, function composition:
(.)fgx="F(gx)
* What type does it have?

()::(b->c)->(a->b)->(a->c)

A TN

type of f type of g typeoff.g

More useful abstractions

* Another heavily-used operator, function composition:
(.)fgx="F(gx)
* What type does it have?

()::(b->c)->(a->b)->(a->c)

A TN

type of f type of g typeoff.g

 Examples:
plus2 = plusl . plusl

odd = even . plusl

_ . . PR Exercise: prove
bof = doTW|-ce plusl. do‘TW|ce W equivalence
baz = doTwice (plusl . minusl)

ABSTRACTING RECURSION
PATTERNS

Abstracting Computation Patterns

* Higher-order functions and polymorphism are the "secret
sauce" that really makes functional programming fun

 They make it not only possible but easy and delightful* for
programmers to factor out repeated patterns in their code
into highly reuseable routines

* It's especially effective in recursive routines -- one can
sometimes eliminate the explicit recursion to be left with
simple, non-recursive and abundantly clear code.

* Some people find delight from different sources than | do.

Recall: Polymorphic Lists

e Lists are heavily used in Haskell and other functional
programming languages because they are light-weight, built-in
"collection" data structure

* However, every major idea we present using lists applies
similarly to any collection data structure we might define

* Recall some of the basic operations:

[] :[a]

cool! / (:) ::a->[a] ->[a]

The empty list

is a polymorphic (++) + [a] ->[a] -> [a]
data structure

head . [a] -> a

tail . [a] -> a

length ::[a] -> Int

[Computation Pattern: "Apply to all”]

* Recall that strings are lists:
type String = [Char]

* Suppose we want to convert all characters to upper case:

toUpperString :: String -> String
toUpperString [] =[]
toUpperString (x:xs) = toUpper x : toUpperString xs

* Here I've applied toUpper to all elements of the list

Comment: try finding functions like "toUpper" by searching by type on http://haskell.org/hoogle

Computation Pattern: "Apply to all”

e Similar idioms come up often, even in completely different
applications:

type Point= (Int, Int)
type Vector = (Int, Int)
type Polygon = [XY]

* Itis easy to move a single point:

shiftPoint :: Vector -> Point -> Point
shiftPoint (dx, dy) (x, y) = (x + dx, y + dy)

* And with more work, entire polygon:

shift :: Vector -> Polygon -> Polygon
shiftd[] =]
shift d (x:xs) = shiftPoint d x : shift d xs

Computation Pattern: "Apply to all”

 How to extract the pattern?

shift :: Vector -> Polygon -> Polygon
shiftd[] =[]
shift d (x:xs) = shiftPoint d x : shift d xs

toUpperString :: String -> String
toUpperString [] =[]
toUpperString (x:xs) = toUpper x : toUpperString xs

Computation Pattern: "Apply to all”

How to extract the pattern?

shift :: Vector -> Polygon -> Polygon
shiftd[] =[]
shift d (x:xs) = shiftPoint d x : shift d xs

VS

toUpperString :: String -> String
toUpperString [] =[]
toUpperString (x:xs) = toUpper x : toUpperString xs

Here's the common pattern:

map :: (a->b)->[a] -> [b]

mapf[] =[]
map f (x:xs) =f x : map f xs

map applies f to all elements of the list in place

Computation Pattern: "Apply to all”

Rewriting:

toUpperString s = map toUpper s

and

shift d polygon = map (shiftPoint d) polygon

Now that's delightful!
Compare:

toUpperString [] =[]
toUpperString (x:xs) = toUpper x : toUpperString xs

shiftd[] =[]
shift d (x:xs) = shiftPoint d x : shift d xs

partial
application

A step further

e Rewrite this:

toUpperString s = map toUpper s

shift d polygon = map (shiftPoint d) polygon

 To this:

toUpperString = map toUpper
shift d = map (shiftPoint d)

A step further

Rewrite this:

toUpperString s = map toUpper s

shift d polygon = map (shiftPoint d) polygon

To this:

toUpperString = map toUpper

shift d = map (shiftPoint d) =
this is quite common but

. | actually find it harder to read
In general, rewrite:
the syntactic redundancy with
argument "x" gives me a hint

To about the type
f=e (whenxdoes not appear in e)

fx=ex

Computation Pattern: Iteration

e Two more functions:

listAdd []=0
listAdd (x:xs) = x + (listAdd xs)

listMul[]=1
listMul (x:xs) = x * (listMul xs)

* You can see the syntactic pattern. How do | capture it?

Computation Pattern: Iteration

e Two more functions:

listAdd []=0
listAdd (x:xs) = x + (listAdd xs)

listMul[]=1
listMul (x:xs) = x * (listMul xs)

* You can see the syntactic pattern. How do | capture it?

foldr op base [] = base
foldr op base (x:xs) = x ‘op” (foldr op base xs)

Computation Pattern: Iteration

e Two more functions:

listAdd []=0
listAdd (x:xs) = x + (listAdd xs)

listMul[]=1
listMul (x:xs) = x * (listMul xs)

* You can see the syntactic pattern. How do | capture it?

foldr op base [] = base
foldr op base (x:xs) = x ‘op” (foldr op base xs)

listAdd = foldr O (+)

listMul = foldr 1 (*)

Computation Pattern: Iteration]

e Some more folds:

length[] =0 length xs =
length (x:xs) = 1 + (length xs)

factorial 0=1 factorial n =
factorial n = n * (factorial (n-1))

sequence_:: [IO ()] ->10() sequence as =
sequence_ [] = null
sequence_ (a:as) =a >>sequence_ as

foldr op base [] = base
foldr op base (x:xs) = x ‘op” (foldr op base xs)

Computation Pattern: Iteration]

e Some more folds:

length[] =0 length xs = foldr 0 (1+) xs
length (x:xs) = 1 + (length xs)

factorial 0=1 factorial n =
factorial n = n * (factorial (n-1))

sequence_:: [IO ()] ->10() sequence as =
sequence_ [] = null
sequence_ (a:as) =a >>sequence_ as

foldr op base [] = base
foldr op base (x:xs) = x ‘op” (foldr op base xs)

Computation Pattern: Iteration]

e Some more folds:

length[] =0 length xs = foldr 0 (1+) xs
length (x:xs) = 1 + (length xs)

factorial 0 =1 factorial n = foldr 1 (*) [1..n]
factorial n = n * (factorial (n-1))

sequence_:: [IO ()] ->10() sequence as =
sequence_ [] = null
sequence_ (a:as) =a >>sequence_ as

foldr op base [] = base
foldr op base (x:xs) = x ‘op” (foldr op base xs)

Computation Pattern: Iteration]

e Some more folds:

length[] =0 length xs = foldr 0 (1+) xs
length (x:xs) = 1 + (length xs)

factorial 0 =1 factorial n = foldr 1 (*) [1..n]
factorial n = n * (factorial (n-1))

sequence_ :: [10 ()] -> 10 () sequence as = foldr null (>>) as

sequence_ [] = null
sequence_ (a:as) =a >>sequence_ as

foldr op base [] = base
foldr op base (x:xs) = x ‘op” (foldr op base xs)

Map and Fold

map :: (a -> b) ->[a] -> [b]
foldr::b->(a->b->b)->[a] >b

 Can we define map in terms of foldr?

Map and Fold

map :: (a -> b) ->[a] -> [b]
foldr::b->(a->b->b)->[a] >b
 Can we define map in terms of foldr?

map f xs = foldr [] (\x ys -> f x : ys) xs

Map and Fold

map :: (a -> b) ->[a] -> [b]
foldr::b->(a->b->b)->[a] >b

* (Can we define foldr in terms of map?

Map and Fold

map :: (a -> b) ->[a] -> [b]
foldr::b->(a->b->b)->[a] >b

* (Can we define foldr in terms of map?
— No. How do we prove it?

— A formal theorem might say:
* forall b, f, xs, there exists g, ys such that foldr b f xs == map g ys

Map and Fold

map :: (a->b)->[a] -> [b]
foldr::b->(a->b->b)->[a] >b

* (Can we define foldr in terms of map?
— No. How do we prove it?

— A formal theorem might say:
* forall b, f, xs, there exists g, ys such that foldr b f xs == map g ys
— To disprove that theorem, find a counter-example. Consider:
e length xs = foldr O (1+) xs

— Does there exist a g and ys such that
e foldO(1+)xs==mapgys ?

Map and Fold

map :: (a->b)->[a] -> [b]
foldr::b->(a->b->b)->[a] >b

* (Can we define foldr in terms of map?

— No. How do we prove it?

— A formal theorem might say:
* forall b, f, xs, there exists g, ys such that foldr b f xs == map g ys

— To disprove that theorem, find a counter-example. Consider:
e length xs = foldr O (1+) xs

— Does there exist a g and ys such that
e foldO(1+)xs==mapgys ?

— Consider the types:

* fold 0 (14)xs ::(Int) incomparable types no matter what b is!
* map gys :: [b]

Exercises

Lists are one kind of container data structure; they support
— map: the "apply all in place" pattern
— fold: "the accumulative iteration" pattern

What about trees?

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Define treeMap and treeFold
Give them appropriate types
Can you define treeMap in terms of treeFold? Vice versa?

A NOTEON /O

A Note on I/O

e What is the null action?

null :: 10 ()
null = return ()

e returnis very (very!) different from return in Java or C

 "return v" creates an action that has no effect but results in v

return "hi" -- action that returns the string "hi" and does nothing else
return () -- action that returns the unit value () and does nothing else

A Note on I/O

We can use return in conjunction with do notation

Example:
do do
s <-return "hi" = putStrLn "hi"
putStrLn s
In general:
do do
X <-return e = ..e..e

X X

This is another powerful law for reasoning about programs
using substitution of equals for equals

The fascinating thing is that it interacts safely with effects
More on this later!

SUMMARY

Summary

 Higher-order programs
— receive functions as arguments
— return functions as results
— store functions in data structures
— use anonymous functions wisely

e Great programmers identify repeated patterns in their code and
devise higher-order functions to capture them

— map and fold are two of the most useful

