
Haskell I/0
and Pure Computation

COS 441 Slides 5

Slide content credits:
Paul Hudak's Haskell School of Expression

Agenda

• Haskell so far

– Pure computation

– Reasoning about programs by substitution of equals for equals

• This time:

– I/O

SUBSTITUTION OF
EQUALS FOR EQUALS

Substitution of Equals for Equals

• A key law about Haskell programs:

• For example:

let x = <exp> in
... x ... x ...

... <exp> ... <exp> ...

let x = 4 `div` 2 in
x + 5 + x

(4 `div` 2) + 5 + (4 `div` 2)

9

=

=

=

Substitution of Equals for Equals

• We'd also like to use functional abstraction without penalty

• And instead of telling clients about all implementation details,
simply expose key laws:

• Now we can reason locally within the client:

halve :: Int -> Int
halve n = n `div` 2

(halve 4) + 5 + (halve 4) let x = halve 4 in x + x =
=

Lemma 1: for all n, if n is even then (halve n + halve n) = n

(halve 4) + (halve 4) + 5

4 + 5

9

=
=

(substitution)

(arithmetic)

(Lemma 1)

(arithmetic)

Computational Effects

• What happens when we add mutable data structures?

• Consider this C program:

• We lose a lot of reasoning power!

int x = 0;

int foo (int arg) {
 x = x + 1;
 return arg + x;
}

int y = foo (3);
int z = y + y; ≠ int z = foo (3) + foo (3);

Computational Effects

• What happens when we add mutable data structures?

• Consider this C program:

• We lose a lot of reasoning power!

int x = 0;

int foo (int arg) {
 x = x + 1;
 return arg + x;
}

int y = foo (3);
int z = y + y; ≠ int z = foo (3) + foo (3);

8 9

Computational Effects

• What happens about I/O?

• We lose a lot of reasoning power!

int foo (int arg) {
 printInt arg
 return arg;
}

int y = foo (3);
int z = y + y; ≠ int z = foo (3) + foo (3);

6 printing "3" 6 printing "33"

Computational Effects

• A function has an effect if its behavior cannot be specified
exclusively as a relation between its input and its output

– I/O is an effect

– An update of a data structure is an effect

• When functions can no longer be described exclusively in
terms of the relationship between arguments and results

– many, many fewer equational laws hold:

• Rats! What does Haskell do?

– we need effects like reading and writing files, displaying
graphics, playing music, etc...

– we want equational reasoning

let x = <exp> in ... x ... x <exp> ... <exp> ... ≠

HASKELL EFFECTS
INPUT AND OUTPUT

I/O in Haskell

• Haskell has a special kind of value called an action that
describes an effect on the world

• Pure actions, which just do something and have no interesting
result are values of type IO ()

• Eg: putStr takes a string and yields an action describing the
act of displaying this string on stdout

-- writes string to stdout
putStr :: String -> IO ()

-- writes string to stdout followed by newline
putStrLn :: String -> IO ()

I/O in Haskell

• When do actions actually happen?

• Actions happen under two circumstances:*

1. the action defined by main happens when your program is
executed

• ie: you compile your program using ghc; then you execute the
resulting binary

2. the action defined by any expression happens when that
expression is written at the ghci prompt

* there is one other circumstance: Haskell contains some special, unsafe functions
that will perform I/O, most notably System.IO.Unsafe.unsafePerformIO

I/O in Haskell

main :: IO ()
main = putStrLn “Hello world”

hello.hs:

dpw@schenn ~/cos441/code/Trial
$ ghc hello.hs
[1 of 1] Compiling Main (hello.hs, hello.o)
Linking hello.exe ...

dpw@schenn ~/cos441/code/Trial
$./hello.exe
hello world!

in my shell:

bar :: Int -> IO ()
bar n =
 putStrLn (show n ++ “ is a super number”)

main :: IO ()
main = bar 6

bar.hs:

dpw@schenn ~/cos441/code/Trial
$ ghcii.sh
GHCi, version 7.0.3: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Loading package ffi-1.0 ... linking ... done.
Prelude> :l bar
[1 of 1] Compiling Main (bar.hs, interpreted)
Ok, modules loaded: Main.
*Main> bar 17
17 is a super number
*Main> main
6 is a super number
*Main>

in my shell:

Actions

• Actions are descriptions of effects on the world. Simply
writing an action does not, by itself cause anything to happen

hellos :: [IO ()]
hellos = [putStrLn “Hi”,
 putStrLn “Hey”,
 putStrLn “Top of the morning to you”]

main = hellos !! 2

Prelude> :l hellos
...
*Main> main
Top of the morning to you
*Main>

bar.hs:

in my shell:

Actions

• Actions are just like any other value -- we can store them, pass
them to functions, rearrange them, etc:

hellos :: [IO ()]
hellos = [putStrLn “Hi”,
 putStrLn “Hey”,
 putStrLn “Top of the morning to you”]

main = sequence_ (reverse hellos)

Prelude> :l hellos
...
*Main> main
Top of the morning to you
Hey
HI

baz.hs:

in my shell:

sequence_ :: [IO ()] -> IO ()

Combining Actions

• The infix operator >> takes two actions a and b and yields an
action that describes the effect of executing a then executing
b afterward

• To combine many actions, use do notation:

howdy :: IO ()
howdy = putStr “how” >> putStrLn “dy”

bonjour :: IO ()
bonjour = do putStr “Bonjour!”
 putStr “ ”
 putStrLn “Comment ca va?”

Combining Actions

• The infix operator >> takes two actions a and b and yields an
action that describes the effect of executing a then executing
b afterward

• To combine many actions, use do notation:

howdy :: IO ()
howdy = putStr “how” >> putStrLn “dy”

bonjour :: IO ()
bonjour = do putStr “Bonjour!”
 putStr “ ”
 putStrLn “Comment ca va?”

layout: first non-space after do defines indentation level

Combining Actions

• The infix operator >> takes two actions a and b and yields an
action that describes the effect of executing a then executing
b afterward

• To combine many actions, use do notation:

howdy :: IO ()
howdy = putStr “how” >> putStrLn “dy”

bonjour :: IO ()
bonjour = do
 putStrLn “Bonjour!”
 putStrLn “”
 putStrLn “Comment ca va?”

layout: first non-space after do defines indentation level

Quick Aside: Back to SEQEQ*

• Do we still have it? Yes!

 let a = PutStrLn "hello" in
 do
 a
 a

 do
 PutStrLn "hello"
 PutStrLn "hello"

=

* SEQEQ = substitution of equals for equals

Input Actions

• Some actions have an effect and yield a result:

• What can we do with these kinds of actions?

– we can extract the value and sequence the effect with another:

-- get a line of input
getLine :: IO String

-- get all of standard input until end-of-file encountered
getContents :: IO String

-- get command line argument list
getArgs :: IO [String]

Input Actions

• Some actions have an effect and yield a result:

• What can we do with these kinds of actions?

– we can extract the value and sequence the effect with another:

-- get a line of input
getLine :: IO String

-- get all of standard input until end-of-file encountered
getContents :: IO String

-- get command line argument list
getArgs :: IO [String]

do
 s <- getLine
 putStrLn s

Input Actions

• Some actions have an effect and yield a result:

• What can we do with these kinds of actions?

– we can extract the value and sequence the effect with another:

-- get a line of input
getLine :: IO String

-- get all of standard input until end-of-file encountered
getContents :: IO String

-- get command line argument list
getArgs :: IO [String]

do
 s <- getLine
 putStrLn s

s has type string getLine has type IO string

Input Actions

main :: IO ()
main = do
 putStrLn “What’s your name?”
 s <- getLine
 putStr “Hey, “
 putStr s
 putStrLn “, cool name!”

• A whole program:

import System.IO
import System.Environment

processArgs :: [String] -> String
processArgs [a] = a
processArgs _ = ""

echo :: String -> IO ()
echo "" = putStrLn "Bad Args!"
echo fileName = do
 s <- readFile fileName
 putStrLn "Here it is:"
 putStrLn "***********"
 putStr s
 putStrLn "\n***********"

main :: IO ()
main = do
 args <- getArgs
 let fileName = processArgs args
 echo fileName

import modules

contains readFile

contains getArgs,
 getProgName

<- notation:
RHS has type IO T
LHS has type T

let notation:
RHS has type T
LHS has type T

SEQEQ (Again!)

• Recall: s1 ++ s2 concatenates String s1 with String s2

• A valid reasoning step:

let s = "hello" in
 do
 putStrLn (s ++ s) = do

 putStrLn ("hello" ++ "hello")

SEQEQ (Again!)

• Recall: s1 ++ s2 concatenates String s1 with String s2

• A valid reasoning step:

• A valid reasoning step:

let s = "hello" in
 do
 putStrLn (s ++ s) = do

 putStrLn ("hello" ++ "hello")

=
do
 let s = "hello"
 putStrLn (s ++ s)

do
 putStrLn ("hello" ++ "hello")

SEQEQ (Again!)

• Recall: s1 ++ s2 concatenates String s1 with String s2

• A valid reasoning step:

• A valid reasoning step:

• Wait, what about this:

let s = "hello" in
 do
 putStrLn (s ++ s) = do

 putStrLn ("hello" ++ "hello")

=
do
 let s = "hello"
 putStrLn (s ++ s)

do
 putStrLn ("hello" ++ "hello")

do
 s <- getLine
 putStrLn (s ++ s)

do
 putStrLn (getLine ++ getLine) ≠

wrong type:
getLine :: IO String

SEQEQ (Again!)

• Invalid reasoning step?

let s = getLine in
do
 putStrLn (s ++ s)

do
 putStrLn (getLine ++ getLine) =

?

SEQEQ (Again!)

• Invalid reasoning step?

let s = getLine in
do
 putStrLn (s ++ s)

do
 putStrLn (getLine ++ getLine)

wrong type:
s :: IO String

wrong type:
getLine :: IO String

=
?

SEQEQ (Again!)

• Invalid reasoning step?

• The Haskell type system shows x <- e is different from let x = e

– x has a different type in each case

– let x = e enables substitution of e for x in what follows

– x <- e does not enable substitution -- attempting substitution
leaves you with code that won't even type check because x and
e have different types (type T vs. type IO T)

let s = getLine in
do
 putStrLn (s ++ s)

do
 putStrLn (getLine ++ getLine)

wrong type:
s :: IO String

wrong type:
getLine :: IO String

=
?

The Larger Consequences of SEQEQ

• SEQEQ is a technical, mathematical property of a
programming language

• What can we say about it's effect on programmers in real life?

• Personal opinion:

– there's an initial barrier to entry when it comes to functional
programming

• you have to retrain your brain to think in a different way

• but if you like computer science and programming, you'll probably
find that doing the retraining is pretty fun!

• we don't have that much time in this class to do a ton of retraining
so you'll have to continue on your own

– once you get past the hump, for many applications, it's really is
a lot easier to write programs quickly, correctly and conciselyl

– SEQEQ, coupled with a strong type system, is a part of that

SEQEQ & Other Languages

• Haskell has full-blown SEQEQ

• C, Java, Python have none

– functions usually have effects

– functions usually update object state to get their job done

– you usually can't reason like you do in Haskell

• Other functional languages like SML, O'Caml, F# go half way

– data structures are immutable by default (you have to work a
little harder to get mutable data structures)

– functions usually do not have effects

– functions can usually be specified entirely by a relation between
their arguments and their results

– you can often reason like you do in Haskell

– I like these other languages a lot -- it's the immutable data
structures (and the types) that make 90% of the difference

GRAPHICS

Graphics Preliminaries

type Title = String
type Size = (Int, Int)
type Point = (Int, Int)

openWindow :: Title -> Size -> IO Window
closeWindow :: Window -> IO ()
drawInWindow :: Window -> Graphic -> IO ()
runGraphics :: IO () -> IO ()
text :: Point -> String -> Graphic
getKey :: Window -> IO Char

the types
are
descriptive!

Graphics Preliminaries

• A first program:

type Title = String
type Size = (Int, Int)
type Point = (Int, Int)

openWindow :: Title -> Size -> IO Window
closeWindow :: Window -> IO ()
drawInWindow :: Window -> Graphic -> IO ()
runGraphics :: IO () -> IO ()
text :: Point -> String -> Graphic
getKey :: Window -> IO Char

main =
 runGraphics (
 do w <- openWindow "My prog" (300, 300)
 drawInWindow w (text (10, 20) "Hello World")
 k <- getKey w
 closeWindow w)

Graphics Window

origin
(0, 0)

x

y

Recursive functions & do notation

spaceClose :: Window -> IO ()

spaceClose w = do
 k <- getKey w
 if k == ' ' then closeWindow w
 else spaceClose w

Recursive functions & do notation

spaceClose :: Window -> IO ()

spaceClose w = do
 k <- getKey w
 if k == ' ' then closeWindow w
 else spaceClose w

 main =
 runGraphics (
 do w <- openWindow "My prog" (300, 300)
 drawInWindow w (text (10, 20) "Hello World")
 spaceClose w
)

Other Graphics

ellipse :: Point -> Point -> Graphic
shearEllipse :: Point -> Point -> Point -> Graphic
line :: Point -> Point -> Graphic
polyline :: [Point] -> Graphic
polygon :: [Point] -> Graphic
polyBezier :: [Point] -> Graphic

withColor :: Color -> Graphic -> Graphic
data Color = Black | Blue | Green | Cyan | Red
 | Magenta | Yellow | While

p1

p2

ellipse p1 p2 shearEllipse p1 p2 p3

p1

p2 p3

p1

p2

line p1 p2

Fractals

• Fractals are mathematical structures that repeat themselves
infinitely often in successively finer detail

• Fractals are often use to simulate natural phenomena: Snow
flakes, forests, mountains

• Simple fractals repeat geometric shapes

• Sierpinski's triangle, 3 iterations:

Sierpinski's Triangle

• Let's look at the code ... go to demo

Sierpinski's Carpet

• For your assignment, you'll be constructing Sierpinski's carpet
and other fractals:

SUMMARY

Summary

• Haskell I/O

– actions describe effects

– do notation sequences actions

– only the main action (or an action placed at the ghci prompt) is
ever executed

• Haskell enjoys referential transparency

– this powerful reasoning principle allows programmers to
substitute definitions for their names whenever they want to

– C, Java don't have it

– Other functional languages like F#, O'Caml, SML go half way by
making data structures immutable by default

• In my experience, by limiting effects, these functional languages
really do make it easier to write correct code in many domains

