Haskell 1/0
and Pure Computation

COS 441 Slides 5

Slide content credits:
Paul Hudak's Haskell School of Expression

Agenda

e Haskell so far
— Pure computation
— Reasoning about programs by substitution of equals for equals

e This time:
— 1/0

SUBSTITUTION OF
EQUALS FOR EQUALS

Substitution of Equals for Equals

* A key law about Haskell programs:

let x = <exp>in
e X Xl

... <EXP> ... <exp> ...

* For example:

letx=4 "div 2in — (1 gy 2) 45+ (4 div 2)
X+5+Xx

|l
o

Substitution of Equals for Equals

 We'd also like to use functional abstraction without penalty

halve :: Int -> Int
halve n =n ‘div’ 2

* And instead of telling clients about all implementation details,

simply expose key laws:

Lemma 1: for all n, if nis even then (halve n + halve n) =n

* Now we can reason locally within the client:

let x = halve 4 in x + x (halve 4) + 5 + (halve 4)

(halve 4) + (halve 4) + 5

4+5

9

(substitution)

(arithmetic)

(Lemma 1)

(arithmetic)

Computational Effects

 What happens when we add mutable data structures?
e Consider this C program:
intx=0;
int foo (int arg) {
X=X+1;

return arg + x;

}

 We lose a lot of reasoning power!

inty =foo (3); ¢

. int z = foo (3) + foo (3);
Intz=y+y;

Computational Effects

 What happens when we add mutable data structures?
e Consider this C program:
intx=0;
int foo (int arg) {
X=X+1;

return arg + x;

}

 We lose a lot of reasoning power!

inty =foo (3); ¢
intz=y+y;

l l

8 S

int z = foo (3) + foo (3);

Computational Effects

 What happens about I/O?

int foo (int arg) {
printint arg
return arg;

}

 We lose a lot of reasoning power!

inty =foo (3); ¢
intz=y+y;

l l

6 printing "3" 6 printing "33"

int z = foo (3) + foo (3);

Computational Effects

A function has an effect if its behavior cannot be specified
exclusively as a relation between its input and its output

— 1/O is an effect
— An update of a data structure is an effect

When functions can no longer be described exclusively in
terms of the relationship between arguments and results

— many, many fewer equational laws hold:

let x = <exp>in...x... X ... ¢ . <EXP> ... <EXP> ...

Rats! What does Haskell do?

— we need effects like reading and writing files, displaying
graphics, playing music, etc...

— we want equational reasoning

HASKELL EFFECTS
INPUT AND OUTPUT

1/0 in Haskell

Haskell has a special kind of value called an action that
describes an effect on the world

Pure actions, which just do something and have no interesting
result are values of type 10 ()

Eg: putStr takes a string and yields an action describing the
act of displaying this string on stdout

-- writes string to stdout
putStr :: String -> 10 ()

-- writes string to stdout followed by newline
putStrLn :: String -> 10 ()

1/0 in Haskell

* When do actions actually happen?

* Actions happen under two circumstances:*

1. the action defined by main happens when your program is
executed

* je: you compile your program using ghc; then you execute the
resulting binary

2. the action defined by any expression happens when that
expression is written at the ghci prompt

* there is one other circumstance: Haskell contains some special, unsafe functions
that will perform 1/O, most notably System.|O.Unsafe.unsafePerformlO

/0O in Haskell

hello.hs:

main :: 10 ()
main = putStrLn “Hello world”

in my shell:

dpw@schenn ~/cos441/code/Trial

S ghc hello.hs

[1 of 1] Compiling Main (hello.hs, hello.o)

Linking hello.exe ...

dpw@schenn ~/cos441/code/Trial

S ./hello.exe
hello world!

bar.hs:

in my shell:

bar :: Int->10 ()
barn =
putStrLn (show n ++ “is a super number”)

main :: 10 ()
main = bar 6

dpw@schenn ~/cos441/code/Trial

S ghcii.sh

GHCi, version 7.0.3: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

Prelude> :| bar

[1 of 1] Compiling Main (bar.hs, interpreted)
Ok, modules loaded: Main.

*Main> bar 17

17 is a super number

*Main> main

6 is a super number

*Main>

Actions

e Actions are descriptions of effects on the world. Simply
writing an action does not, by itself cause anything to happen

bar.hs: hellos :: [10 ()]
hellos = [putStrLn “Hi”,
putStrLn “Hey”,
putStrLn “Top of the morning to you”]

main = hellos !1 2

in my shell: Prelude> :| hellos

*Main> main
Top of the morning to you
*Main>

Actions

Actions are just like any other value -- we can store them, pass
them to functions, rearrange them, etc:

sequence_ :: [0 ()] > 10 ()

baz.hs: hellos :: [10 ()]
hellos = [putStrLn “Hi”,
putStrLn “Hey”,
putStrLn “Top of the morning to you”]

main = sequence_ (reverse hellos)

in my shell: Prelude> :| hellos

*Main> main

Top of the morning to you
Hey

HI

Combining Actions

* The infix operator >> takes two actions a and b and yields an

action that describes the effect of executing a then executing
b afterward

howdy :: 10 ()
howdy = putStr “how” >> putStrLn “dy”

* To combine many actions, use do notation:

bonjour :: 10 ()
bonjour = do putStr “Bonjour!”
putStr “ ”
putStrLn “Comment ca va?”

Combining Actions

* The infix operator >> takes two actions a and b and yields an

action that describes the effect of executing a then executing
b afterward

howdy :: 10 ()
howdy = putStr “how” >> putStrLn “dy”

* To combine many actions, use do notation:

bonjour :: 10 ()
bonjour = dolputStr “Bonjour!”
iputStr
P iputStan “Comment ca va?”

layout: first non-space after do defines indentation level

[Combining Actions

* The infix operator >> takes two actions a and b and yields an

action that describes the effect of executing a then executing
b afterward

howdy :: 10 ()
howdy = putStr “how” >> putStrLn “dy”

* To combine many actions, use do notation:

bonjour :: 10 ()
bonjour =do

iputStan “Bonjour!”
71 putStrLn “”

/ ipUtStan “Comment ca va?”

layout: first non-space after do defines indentation level

Quick Aside: Back to SEQEQ*

e Do we still have it? Yes!

let a = PutStrLn "hello" in
do do

PutStrLn "hello"
PutStrLn "hello"

* SEQEQ = substitution of equals for equals

Input Actions

 Some actions have an effect and yield a result:

-- get a line of input
getLine :: 10 String

-- get all of standard input until end-of-file encountered
getContents :: 10 String

-- get command line argument list
getArgs :: 10 [String]

 What can we do with these kinds of actions?
— we can extract the value and sequence the effect with another:

Input Actions

 Some actions have an effect and yield a result:

-- get a line of input
getLine :: 10 String

-- get all of standard input until end-of-file encountered
getContents :: 10 String

-- get command line argument list
getArgs :: 10 [String]

 What can we do with these kinds of actions?
— we can extract the value and sequence the effect with another:

do
s <- getlLine
putStrLn s

Input Actions

 Some actions have an effect and yield a result:

-- get a line of input
getLine :: 10 String

-- get all of standard input until end-of-file encountered
getContents :: 10 String

-- get command line argument list
getArgs :: 10 [String]

 What can we do with these kinds of actions?
— we can extract the value and sequence the effect with another:

do

s <- getlLine
/ DUtStan S \

s has type string getlLine has type IO string

Input Actions

* A whole program:

main :: 10 ()
main = do
putStrLn “What’s your name?”
s <- getlLine
putStr “Hey, “
putStr s
putStrLn “ cool name!”

/ contains readFile
import System.|O

import System.Environment Ss——__ contains getArgs
getProgName

import modules {

processArgs :: [String] -> String
processArgs [a] = a
processArgs =""

echo :: String -> 10 ()

echo "" = putStrLn "Bad Args!"

echo fileName = do
s <- readFile fileName
putStrLn "Here it is:"
pUtStan Tk skkskskskskskskkkN
putStr s

n kokskokkokkokkkk
putStrLn "\n <- notation:

main :: 10 () RHS has type IO T
main = do LHS has type T
args <- getArgs

let fileName = processArgs args let notation:
echo fileName — RHS has type T

LHS has type T

SEQEQ (Again!)

* Recall: s1 ++ s2 concatenates String s1 with String s2
* Avalid reasoning step:

let s = "hello" in
do do
putStrLn (s ++ s) putStrLn ("hello" ++ "hello")

SEQEQ (Again!)

* Recall: s1 ++ s2 concatenates String s1 with String s2
* Avalid reasoning step:

let s = "hello" in
do do
putStrLn (s ++ s) putStrLn ("hello" ++ "hello")

* Avalid reasoning step:

do
let s = "hello" do
putStrLn (s ++ s) - putStrLn ("hello" ++ "hello")

SEQEQ (Again!)

Recall: s1 ++ s2 concatenates String s1 with String s2
A valid reasoning step:

let s = "hello" in
do do
putStrLn (s ++ s) putStrLn ("hello" ++ "hello")

A valid reasoning step:

do
let s = "hello" do
putStrLn (s ++ s) putStrLn ("hello" ++ "hello")

Wait, what about this: _
wrong type:

getLine :: 10 String

do / \
s <- getLine do

putStrLn (s ++ s) ¢ putStrLn (getlLine ++ getLine)

SEQEQ (Again!)

* Invalid reasoning step?

let s = getlLine in ?
do —
putStrLn (s ++ s)

do
putStrLn (getLine ++ getLine)

SEQEQ (Again!)

* Invalid reasoning step?

let s = getLine in 7
do —_ do
putStrLn (s ++ s) putStrLn (getLine ++ getLine)

7 AN

wrong type: wrong type:
s :: 10 String getline :: O String

SEQEQ (Again!)

* Invalid reasoning step?

let s = getLine in 7
do —_ do
ULStrLN (s ++ s) - putStrLn (getLine ++ getLine)
wrong type: wrong type:
s :: 10 String getLine :: 10 String

* The Haskell type system shows x <- e is different from let x = e
— X has a different type in each case
— let x = e enables substitution of e for x in what follows

— Xx <- e does not enable substitution -- attempting substitution
leaves you with code that won't even type check because x and
e have different types (type T vs. type 10 T)

The Larger Consequences of SEQEQ

SEQEQ is a technical, mathematical property of a
programming language

What can we say about it's effect on programmers in real life?
Personal opinion:

— there's an initial barrier to entry when it comes to functional
programming
e you have to retrain your brain to think in a different way

e but if you like computer science and programming, you'll probably
find that doing the retraining is pretty fun!

* we don't have that much time in this class to do a ton of retraining
so you'll have to continue on your own

— once you get past the hump, for many applications, it's really is
a lot easier to write programs quickly, correctly and conciselyl

— SEQEQ, coupled with a strong type system, is a part of that

SEQEQ & Other Languages

 Haskell has full-blown SEQEQ

 (,Java, Python have none
— functions usually have effects
— functions usually update object state to get their job done
— you usually can't reason like you do in Haskell

e Other functional languages like SML, O'Caml, F# go half way

— data structures are immutable by default (you have to work a
little harder to get mutable data structures)

— functions usually do not have effects

— functions can usually be specified entirely by a relation between
their arguments and their results

— you can often reason like you do in Haskell

— | like these other languages a lot -- it's the immutable data
structures (and the types) that make 90% of the difference

GRAPHICS

Graphics Preliminaries]

type Title = String the types
type Size = (Int, Int)

- are
type Point = (Int, Int) / descriptive!

openWindow :: Title -> Size -> 10 Window
closeWindow :: Window -> 10 ()
drawIinWindow :: Window -> Graphic -> 10 ()
runGraphics 10 () ->10()

text :: Point -> String -> Graphic
getKey :: Window -> |0 Char

Graphics Preliminaries

type Title = String
type Size = (Int, Int)
type Point = (Int, Int)

openWindow :: Title -> Size -> 10 Window
closeWindow :: Window -> 10 ()
drawIinWindow :: Window -> Graphic -> 10 ()

runGraphics 1 10()->10()
text :: Point -> String -> Graphic
getKey :: Window -> |0 Char

* A first program:

main =
runGraphics (
do w <- openWindow "My prog" (300, 300)
drawlnWindow w (text (10, 20) "Hello World")
k <- getKey w
closeWindow w)

Graphics Window

o

origin
(0, 0) y

Recursive functions & do notation

spaceClose :: Window -> 10 ()

spaceClose w = do
k <- getKey w
if k ==""then closeWindow w
else spaceClose w

Recursive functions & do notation

spaceClose :: Window -> 10 ()

spaceClose w = do
k <- getKey w
if k ==""then closeWindow w
else spaceClose w

main =
runGraphics (
do w <- openWindow "My prog" (300, 300)
drawIinWindow w (text (10, 20) "Hello World")
spaceClose w

Other Graphics

ellipse :: Point -> Point -> Graphic
sheartEllipse :: Point -> Point -> Point -> Graphic
line :: Point -> Point -> Graphic
polyline :: [Point] -> Graphic

polygon :: [Point] -> Graphic

polyBezier ::[Point] -> Graphic
withColor :: Color -> Graphic -> Graphic

data Color = Black | Blue | Green | Cyan | Red
| Magenta | Yellow | While

1 2 3
P P P / p2
pl
p2 pl

ellipse p1 p2 shearEllipse p1 p2 p3 line p1 p2

Fractals]

* Fractals are mathematical structures that repeat themselves
infinitely often in successively finer detail

* Fractals are often use to simulate natural phenomena: Snow
flakes, forests, mountains

* Simple fractals repeat geometric shapes

* Sierpinski's triangle, 3 iterations:

Sierpinski's Triangle

* Let's look at the code ... go to demo

Sierpinski's Carpet

* For your assignment, you'll be constructing Sierpinski's carpet
and other fractals:

SUMMARY

Summary

 Haskell I/O
— actions describe effects
— do notation sequences actions

— only the main action (or an action placed at the ghci prompt) is
ever executed

e Haskell enjoys referential transparency

— this powerful reasoning principle allows programmers to
substitute definitions for their names whenever they want to

— C, Java don't have it

— Other functional languages like F#, O'Caml, SML go half way by
making data structures immutable by default

* In my experience, by limiting effects, these functional languages
really do make it easier to write correct code in many domains

