
Haskell: Types!

COS 441 Slides 4

Slide content credits:
Ranjit Jhala (UCSD)

Benjamin Pierce (UPenn)

Agenda

• Last time:

– intro to Haskell

• basic values: Int, Char, String, [a], ...

• simple function definitions

– key principle: abstract out repeated code

– key principle: design for reuse

– reasoning about Haskell programs

• unfolding definitions

• using simple laws of arithmetic or other facts/lemmas

• induction for recursive programs

• (re)folding definitions

• This time:

– Haskell type definitions

• key principle: a powerful way to define new abstractions

DEFINING NEW HASKELL TYPES

Type Synonyms

• It is often convenient (and helps document a program) to give
names to types:

type SquareT = (Float, Float, Float)

all type names
(but not type variables)
are capitalized

(x,y)

s

x y s

Type Synonyms

• It is often convenient (and helps document a program) to give
names to types:

• Using type names does not change the meaning of a program

– SquareT is everywhere interchangeable with (Float, Float, Float)

type SquareT = (Float, Float, Float)

aSquare :: SquareT
aSquare = (2.0, 1.5, 3)

area :: SquareT -> Float
area (_, _, s) = s * s

all type names
(but not type variables)
are capitalized

(x,y)

s

x y s

Type Synonyms

• Adding circles:

type SquareT = (Float, Float, Float)

area :: SquareT -> Float
area (_, _, s) = s * s

type CircleT = (Float, Float, Float)

circ :: CircleT
circ = (3.0, 4.0, 6)

(x,y)

s

(x,y)

r

Type Synonyms

• Adding circles:

type SquareT = (Float, Float, Float)

area :: SquareT -> Float
area (_, _, s) = s * s

type CircleT = (Float, Float, Float)

circ :: CircleT
circ = (3.0, 4.0, 6)

circA = area circ

(x,y)

s

(x,y)

r

Type Synonyms

• Adding circles:

type SquareT = (Float, Float, Float)

area :: SquareT -> Float
area (_, _, s) = s * s

type CircleT = (Float, Float, Float)

circ :: CircleT
circ = (3.0, 4.0, 6)

circA = area circ

(x,y)

s

(x,y)

r oops! meant to work on squares!
the type checker doesn’t alert us
that we have violated our abstraction

said another way: type synonyms don’t
create enforced abstractions

Data Types

• Data types create enforced data abstractions

• These declarations do three things:

– create a new types called CircleDataType and SquareDataType

• these types are different from any other type (and eachother)

– create constructors Circle and Square

• the constructors are used to build new values with the type

– create new patterns for deconstructing Circles and Squares

data CircleDataType = Circle (Float, Float, Float)

data SquareDataType = Square (Float, Float, Float)

Data Types

data CircleDataType = Circle (Float, Float, Float)

data SquareDataType = Square (Float, Float, Float)

sq :: SquareDataType
sq= Square (2.0, 1.5, 3)

circ :: CircleDataType
circ = Circle (2.0, 1.5, 3)

area :: SquareDataType -> Float
area (Square (_, _, s)) = s * s

constructor

pattern

type

Constructors create protective wrappers.
Patterns unwrap data structures, allowing their contents to be used.

Data Types

data CircleDataType = Circle (Float, Float, Float)

data SquareDataType = Square (Float, Float, Float)

sq :: SquareDataType
sq= Square (2.0, 1.5, 3)

circ :: CircleDataType
circ = Circle (2.0, 1.5, 3)

area :: SquareDataType -> Float
area (Square (_, _, s)) = s * s

circArea = area circ

myArea = area (3.0, 4.0, 5.0)

type mismatch:
 CircleDataType vs
 SquareDataType

type mismatch:
 (Float, Float, Float) vs
 SquareDataType

Data Types

• Computing area properly:

• That’s ok, but circles and squares are similar. There may be a
lot of operations that are defined for both: area, grow, shrink,
draw, move, ... can we define a new, combined abstraction for
shapes that are either Circles or Squares?

data CircleDataType = Circle (Float, Float, Float)
data SquareDataType = Square (Float, Float, Float)

areaSq :: SquareDataType -> Float
areaSq (Square (_, _, s)) = s * s

areaCirc :: CircDataType -> Float
areaCirc (Circle (_, _, r)) = pi * r * r

Variants

• A shape abstraction:

data SimpleShape =
 Circle (Float, Float, Float)
 | Square (Float, Float, Float)

Variants

• A shape abstraction:

data SimpleShape =
 Circle (Float, Float, Float)
 | Square (Float, Float, Float)

sq :: SimpleShape
sq = Square (1.1, 2.2, 3.3)

circ :: SimpleShape
circ = Circle (0.0, 0.0, 24)

Variants

• A shape abstraction:

data SimpleShape =
 Circle (Float, Float, Float)
 | Square (Float, Float, Float)

sq :: SimpleShape
sq = Square (1.1, 2.2, 3.3)

circ :: SimpleShape
circ = Circle (0.0, 0.0, 24)

area :: SimpleShape -> Float
area (Square (_, _, s)) = s * s
area(Circle (_, _, r)) = pi * r * r

More General Shapes

• Let’s develop some
routines over a more
general set of shapes. We
will ignore the position of
the shape for now and
specify it’s dimensions
only.

data Shape =
 Rectangle Float Float
 | Ellipse Float Float
 | RtTriangle Float Float
 | Polygon [(Float, Float)]

r1

s2

r2

s1
Rectangle s1 s2 =

Ellipse r1 r2 =

s2
s1 RtTriangle s1 s2 =

v2

v1 v3

v4 v5

v1 = (1.0, 1.0)
...
v5 = (0.4, 0.4)

Polygon [v1, ...,v5] =

More General Shapes

• Type Synonyms improve
documentation:

data Shape =
 Rectangle Side Side
 | Ellipse Radius Radius
 | RtTriangle Side Side
 | Polygon [Vertex]

type Side = Float
type Radius = Float
type Vertex = (Float, Float)

r1

s2

r2

s1
Rectangle s1 s2 =

Ellipse r1 r2 =

s2
s1 RtTriangle s1 s2 =

v2

v1 v3

v4 v5

v1 = (1.0, 1.0)
...
v5 = (0.4, 0.4)

Polygon [v1, ...,v5] =

Computing Area

• Computing Area:

data Shape =
 Rectangle Side Side
 | Ellipse Radius Radius
 | RtTriangle Side Side
 | Polygon [Vertex]

type Side = Float
type Radius = Float
type Vertex = (Float, Float)

area :: Shape -> Float

area (Rectangle s1 s2) = s1 * s2

area (Ellipse r1 r2) = pi * r1 * r2

area (RtTriangle s1 s2) = s1 * s2 / 2

area (Polygon vs) = ... ?

Computing Area

• How do we compute polygon area?

• For convex polygons:

– Compute the area of the triangle formed by the first three
vertices

– Delete the second vertex to form a new polygon

– Sum the area of the new polygon and the area of the triangle
from the first step

v2

v1 v3

v4 v5

= +

Computing Area

area (Polygon (v1:v2:v3:vs)) = triArea v1 v2 v3 + area (Polygon (v1:v3:vs))
area (Polygon _) = 0

v2

v1 v3

v4 v5

= +

Computing Area

area (Polygon (v1:v2:v3:vs)) = triArea v1 v2 v3 + area (Polygon (v1:v3:vs))
area (Polygon _) = 0

triArea :: Vertex -> Vertex -> Vertex -> Float
triArea v1 v2 v3 =
 let a = dist v1 v2
 b = dist v2 v3
 c = dist v3 v1
 s = 0.5 * (a + b + c)
 in
 sqrt (s * (s - a) * (s - b) * (s - c))

dist :: Vertex -> Vertex -> Float
dist (x1, y1) (x2, y2) =
 sqrt ((x1 - x2)^2 + (y1-y2)^2)

v2

v1 v3

v4 v5

= +

Computing Area: Alternatives

area (Polygon (v1:v2:v3:vs)) = triArea v1 v2 v3 + area (Polygon (v1:v3:vs))

area (Polygon _) = 0

area (Polygon (v1:vs)) = polyArea vs

 where
 polyArea :: [Vertex] -> Float

 polyArea (v2 : v3 : vs’) = triArea v1 v2 v3 + polyArea (v3:vs’)

 polyArea _ = 0

Version 1:

Version 2:

Computing Area: Alternatives

area (Polygon (v1:v2:v3:vs)) = triArea v1 v2 v3 + area (Polygon (v1:v3:vs))

area (Polygon _) = 0

area (Polygon (v1:vs)) = polyArea vs

 where
 polyArea :: [Vertex] -> Float

 polyArea (v2 : v3 : vs’) = triArea v1 v2 v3 + polyArea (v3:vs’)

 polyArea _ = 0

Version 1:

Version 2:

uses Polygon
constructor at
each recursive call

does not use
Polygon
at each
recursive call

Computing Area: Alternatives

area (Polygon (v1:v2:v3:vs)) = triArea v1 v2 v3 + area (Polygon (v1:v3:vs))

area (Polygon _) = 0

area (Polygon (v1:vs)) = polyArea vs

 where
 polyArea :: [Vertex] -> Float

 polyArea (v2 : v3 : vs’) = triArea v1 v2 v3 + polyArea (v3:vs’)

 polyArea _ = 0

Version 1:

Version 2:

prepends v1 on to
list at each recursive call

does not
prepend v1
on to list at
each recursive
call

Computing Area: Alternatives

area (Polygon (v1:v2:v3:vs)) = triArea v1 v2 v3 + area (Polygon (v1:v3:vs))

area (Polygon _) = 0

area (Polygon (v1:vs)) = polyArea vs

 where
 polyArea :: [Vertex] -> Float

 polyArea (v2 : v3 : vs’) = triArea v1 v2 v3 + polyArea (v3:vs’)

 polyArea (Polygon _) = 0

Version 1:

Version 2:

simpler,
easier to read

Computing Areas: Alternatives

• Summary of differences:

– A small decrease in readability for a small increase in efficiency

• Usually, a bad trade!

– Machines are fast

– Programmers are slow

– We should be optimizing for programmer speed first!

– Moreover, programmers are terrible at predicting which
optimizations matter in real programs

• Moral:

– write code that is manifestly correct

– use the scientific method to optimize:

• measure performance

• tune bottlenecks as needed

– if performance is way out of line, you may need completely
different algorithms; minor tweaks won’t get it done

One Last Note

• Consider the following session in the ghci interpreter:

data Foo = Bar | Baz

Prelude> :l badData
[1 of 1] Compiling Main (badData.hs, interpreted)
Ok, modules loaded: Main.
*Main> Bar

<interactive>:1:1:
 No instance for (Show Foo)
 arising from a use of `print'
 Possible fix: add an instance declaration for (Show Foo)
 In a stmt of an interactive GHCi command: print it

badData.hs:

shell:

yikes!!

One Last Note: The Fix

• Write “deriving (Show)” after each data definition to enable
printing (ie, “show”ing):

data Foo = Bar | Baz deriving (Show)

*Main> :l badData
[1 of 1] Compiling Main (badData.hs, interpreted)
Ok, modules loaded: Main.
*Main> Bar
Bar
*Main>

badData.hs:

shell:

hooray!!

SUMMARY!

Summary

• Type definitions

– type T = ... creates a type synonym

• no enforced abstraction, but useful documentation

– data T = ... creates a new abstract type

• enforced abstraction

• defines: new type, new constructors, new patterns

• can include many variants

• Premature optimization may be harmful

– think carefully about your high-level algorithm first

– write the clearest code that implements your algorithm directly

– use the scientific method

• measure performance and optimize if and where necessary

