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Agenda 

• Last time:  Introducing Haskell 

– It’s a functional language with  

• a sophisticated type system, including type inference 

• immutable data structures 

• pure computation 

• lazy evaluation 

– Reasoning about Haskell programs occurs via 

• “substitution of equals for equals” 

• this law always applies in Haskell, rarely in C or Java 

– Good Haskell programmers use functional abstraction often 

– Haskell tools 

• ghci: the top-level interpreter 

– :l to load a file; :t to discover a type; :info discover more info 

• ghc: the Haskell compiler 

• Today:  More Haskell Basics 



HASKELL BASICS:   
DEFINITIONS & BUILT-IN TYPES 



Local Definitions 

• We often want to define small helper function within the 
scope of other, larger functions: 

 

 

 

 

 

• Or: 

foo1 z = 
    let triple x = x*3 
    in triple z 
 
 
 
 
 
foo2 z = triple z 
    where triple x = x*3 
 



Haskell Indentation 

• Haskell, like Python, but unlike Java, C or math written in a 
notebook, has semantically meaningful indentation 

• Wrong: 

 

 

 

copies k n =  
if n == 0 then [] 
else k : copies k (n-1) 
 

zap z =  
     let x = z 
     y = z + z 
     in x + y 
 

must indent 
function 
body 

zap z =  
     let x = z 
           y =  
           z + z 
     in  
       x + y 
 indent y = ... 

indent z + z 



Haskell Indentation 

• Haskell, like Python, but unlike Java, C or math written in a 
notebook, has semantically meaningful indentation 

• Right: 

 

 

 

 

 

• Golden rules:  

– let (and where and do) indentation: 

• the first non-whitespace character after let defines the indentation 
level; subsequent definitions must start at that level 

– Code which is part of some expression should be indented 
further than the line containing the beginning of that expression  

zap z = 
    let  
       x = z 
       y = z + z 
    in x + y 
 

copies k n =  
       if n == 0 then  
          [] 
       else  
          k :  copies k (n-1) 
 

zap z = 
    let x = z 
          y = z + z 
    in  
       x + y 
 

beginning of x defines indentation level 



Tuples 

• Java uses objects to collect up several different kinds of 
values; C uses structs 

– both, especially Java objects, are incredibly heavy weight 

• Haskell uses tuples 

– constructed by enclosing a sequence of values in parens: 

 

 

– deconstructed (used) via pattern matching: 

 

 

(‘b’, 4) :: (Char, Integer) 

easytoo :: (Integer, Integer, Integer) -> Integer 
easytoo (x, y, z) = x + y * z 



Lists 

• Lists in Java look very similar to the mathematical list notation 
we introduced in previous lectures 

 

 

 

 

• [ ] is the empty list (called nil) 

• String is a synonym for [Char] 

• We can build lists of lists: 

 

 

• For every type T, we can build lists of type [ T ]  

 

 

 

 

[1, 2, 3] :: [Integer] 
 
*‘a’, ‘b’, ‘c’+ :: *Char+ 

[ [1, 2], [3], [8, 9, 10] ] :: [ [ Integer ] ] 



Lists 

• Lists are homogenous; all elements must be the same type 

Prelude> [ True, 'a' ] 
 
<interactive>:1:9: 
    Couldn't match expected type `Bool' with actual type `Char’ 
    In the expression: 'a' 
    In the expression: [True, 'a'] 
    In an equation for `it': it = [True, 'a'] 

actually a character 

expecting a boolean 



Constructing Lists 

• What do you know, constructing lists in Haskell resembles the 
mathematical notation we used earlier! 

• Building a list: 

 

 

• Building a list inside a function: 

 

 

• Calculating: 

3 : [ 4, 5 ]  

add123 xs = 1 : 2 : 3 : xs 

add123 [ ] 
= 1 : 2 : 3 : [ ]  
 

add123 (3 : [ 4, 5 ]) 
= 1 : 2 : 3 : (3 : [ 4, 5 ] 
= 1 : 2 : 3 : 3 : 4 : 5 : [ ] 
 



Functions building lists 

-- A list of n copies of k 
 
copies :: Integer -> Integer -> [Integer] 
copies k n =  
    if n == 0 then [] 
    else k : copies k (n-1) 
 



Functions building lists 

-- A list of n copies of k 
 
copies :: Integer -> Integer -> [Integer] 
copies k n =  
    if n == 0 then [] 
    else k : copies k (n-1) 
 

copies 4 12 
=> [12, 12, 12, 12] 

instead of using “=“  
I’ll sometimes use the symbol “=>” which means “evaluates to” 



Functions building lists 

-- A list of n copies of k 
 
copies :: Integer -> Integer -> [Integer] 
copies k n =  
    if n == 0 then [] 
    else k : copies k (n-1) 
 

-- A list of the numbers from m to n 
 
fromTo :: Integer -> Integer -> [Integer] 
fromTo m n =  
    if n < m then [] 
    else m : fromTo (m+1) n 
 

copies 4 12 
=> [12, 12, 12, 12] 



Functions building lists 

-- A list of n copies of k 
 
copies :: Integer -> Integer -> [Integer] 
copies k n =  
    if n == 0 then [] 
    else k : copies k (n-1) 
 

-- A list of the numbers from m to n 
 
fromTo :: Integer -> Integer -> [Integer] 
fromTo m n =  
    if n < m then [] 
    else m : fromTo (m+1) n 
 

copies 4 12 
=> [12, 12, 12, 12] 

fromTo 9 13 
=> [ 9, 10, 11, 12, 13 ] 



Functions deconstructing lists 

-- Sum the elements of a list 
 
listSum :: [ Integer ] -> Integer  
 
listSum [ ] = 0 
listSum (x:xs) = x + listSum xs  
 



Functions deconstructing lists 

-- Sum the elements of a list 
 
listSum :: [ Integer ] -> Integer  
 
listSum [ ] = 0 
listSum (x:xs) = x + listSum xs  
 

length :: [a] -> Int 
 
length [ ] = 0 
length (x:xs) = 1 + length xs 

lower case letter = 
any type at all 
(a type variable) 

upper case letter = 
a concrete type 



Functions deconstructing lists 

-- Sum the elements of a list 
 
listSum :: [ Integer ] -> Integer  
 
listSum [ ] = 0 
listSum (x:xs) = x + listSum xs  
 

length :: [a] -> Int 
 
length [ ] = 0 
length (x:xs) = 1 + length xs 

cat :: [a] -> [a] -> [a] 
 
cat [ ] xs2 = xs2 
cat (x:xs) xs2 = x:(cat xs xs2) 



Functions deconstructing lists 

-- Sum the elements of a list 
 
listSum :: [ Integer ] -> Integer  
 
listSum [ ] = 0 
listSum (x:xs) = x + listSum xs  
 

length :: [a] -> Int 
 
length [ ] = 0 
length (x:xs) = 1 + length xs 

(++) :: [a] -> [a] -> [a] 
 
(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

cat :: [a] -> [a] -> [a] 
 
cat [ ] xs2 = xs2 
cat (x:xs) xs2 = x:(cat xs xs2) 



INDUCTIVE PROOFS 
ABOUT HASKELL PROGRAMS 



Recall:  Proofs by simple calculation 

• Some proofs are very easy and can be done by: 

– unfolding definitions  

– using lemmas or facts we already know 

– folding definitions back up 

• Eg: 

Theorem:  easy a b c == easy a c b 
 
Proof: 
 
easy a b c 
 
=  a * (b + c) (by unfold) 
 
=  a * (c + b) (by commutativity of add) 
 
=  easy a c b (by fold) 

Definition: 
easy x y z = x * (y + z) 

given this 

we do this proof 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
 
 
 
 
 
case: xs = x:xs’ 
 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
 
 
 
 
case: xs = x:xs’ 
 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
 
 
 
case: xs = x:xs’ 
 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
= 0 + length ( ys )   (simple arithmetic) 
 
 
case: xs = x:xs’ 
 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
= 0 + length ( ys )   (simple arithmetic) 
= length [ ] + length ( ys )  (fold length -- done, we have RHS) 
 
case: xs = x:xs’ 
 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
= 0 + length ( ys )   (simple arithmetic) 
= length [ ] + length ( ys )  (fold length) 
 
case: xs = x:xs’ 
 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
= 0 + length ( ys )   (simple arithmetic) 
= length [ ] + length ( ys )  (fold length) 
 
case: xs = x:xs’ 
   length ((x:xs’) ++ ys)  (LHS of theorem equation) 
= length (x:(xs’ ++ ys))  (unfold ++) 
= 1 + length (xs’ ++ ys))  (unfold length) 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
= 0 + length ( ys )   (simple arithmetic) 
= length [ ] + length ( ys )  (fold length) 
 
case: xs = x:xs’ 
   length ((x:xs’) ++ ys)  (LHS of theorem equation) 
= length (x:(xs’ ++ ys))  (unfold ++) 
= 1 + length (xs’ ++ ys))  (unfold length) 
    subcase xs’ = [ ] 
         
    subcase xs’ = x’:xs’’ [ ] ++ ys       = ys 

(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
= 0 + length ( ys )   (simple arithmetic) 
= length [ ] + length ( ys )  (fold length) 
 
case: xs = x:xs’ 
   length ((x:xs’) ++ ys)  (LHS of theorem equation) 
= length (x:(xs’ ++ ys))  (unfold ++) 
= 1 + length (xs’ ++ ys))  (unfold length) 
    subcase xs’ = [ ] 
        ... 
    subcase xs’ = x’:xs’’ 
     = 1 + length ((x’:xs’’) ++ ys)  (substitution) 
     = 1 + length (x’:(xs’’ ++ ys))  (unfold ++) 
     = 1 + 1 + length (xs’’ ++ ys)  (unfold length) 
         subsubcase xs’’ = * + .... 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

 

Proof strategy: 

• Proof by induction on the length of xs 

– must cover both cases: * + and x:xs’ 

• apply inductive hypothesis to smaller arguments (smaller lists) 

• In general, Haskell has lots of non-inductive data types like 
Integers (as opposed to Natural Numbers) so you have to be 
careful all series of shrinking arguments have base cases 

– use folding/unfolding of Haskell definitions 

– use lemmas/properties you know of basic operations 

 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = [ ]: 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = [ ]: 
    length ([ ] ++ ys)  (LHS of theorem) 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = [ ]: 
    length ([ ] ++ ys)  (LHS of theorem) 
 = length ys   (unfold ++) 
 = 0 + (length ys)   (arithmetic) 
 = (length [ ]) + (length ys)  (fold length) 
 
case done! 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ + length ys 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ + length ys 
 
    length ((x:xs’) ++ ys)  (LHS of theorem) 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ ++ length ys 
 
    length ((x:xs’) ++ ys)  (LHS of theorem) 
= length (x : (xs’ ++ ys))        (unfold ++) 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ + length ys 
 
    length ((x:xs’) ++ ys)  (LHS of theorem) 
= length (x : (xs’ ++ ys))        (unfold ++) 
= 1 + length (xs’ ++ ys)  (unfold length) 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ + length ys 
 
    length ((x:xs’) ++ ys)  (LHS of theorem) 
= length (x : (xs’ ++ ys))        (unfold ++) 
= 1 + length (xs’ ++ ys)  (unfold length) 
= 1 + (length xs’ + length ys) (by IH) 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ + length ys 
 
    length ((x:xs’) ++ ys)  (LHS of theorem) 
= length (x : (xs’ ++ ys))        (unfold ++) 
= 1 + length (xs’ ++ ys)  (unfold length) 
= 1 + (length xs’ + length ys) (by IH) 
= length (x:xs’) + length ys  (reparenthesizing and folding length) 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ + length ys 
 
    length ((x:xs’) ++ ys)  (LHS of theorem) 
= length (x : (xs’ ++ ys))        (unfold ++) 
= 1 + length (xs’ ++ ys)  (unfold length) 
= 1 + (length xs’ + length ys) (by IH) 
= length (x:xs’) + length ys  (reparenthesizing and folding length 
    we have RHS with x:xs’ for xs) 
 
case done! 
 
All cases covered! Proof done! 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Exercises 

To test your understanding, try to prove the following: 
 

Theorem 1:  for all finite lists xs, ys. listSum(xs ++ ys) = listSum xs + listSum ys 

 

drop n [ ] = [ ] 

drop n (x:xs) = if n <= 0 then x:xs  

                           else drop (n-1) xs 

 

Theorem 2:  for all finite lists xs, natural numbers n and m, 

  drop n (drop m xs) = drop (n+m) xs 

Hint: split the inductive case where xs = x:xs into 3 subcases: 

case xs = x:xs: 

    subcase m = 0 and n = 0:  ... 

    subcase m = 0 and n = n’ + 1 for some natural number n’  (ie: n > 0): ... 

    subcase m = m’+1 for some natural number m’ (ie: m > 0): ... 

 



Summary 

• Haskell is 

– a functional language emphasizing immutable data 

– where every expression has a type: 

• Char, Int, (Char, Int, Float), [ Int ], [ [ [ (Char, [ [ Int ] ] ) ] ] ] 

• Char -> Int, (Char, Char) -> Int -> [ (Char, Int) ] 

• String = [ Char ] 

• Reasoning about Haskell programs involves 

– substitution  of “equals for equals,”  unlike in Java or  C 

– mathematical calculation: 

• unfold function abstractions 

• push symbolic names around like we do in mathematical proofs 

• reason locally using properties of operations (eg: + commutes) 

• use induction hypothesis 

• fold function abstractions back up 

• Homework:  Install Haskell.  Read LYAHFGG Intro, Chapter 1 

 


