
Introducing Haskell

COS 441 Slides 3B

Agenda

• Last time: Introducing Haskell

– It’s a functional language with

• a sophisticated type system, including type inference

• immutable data structures

• pure computation

• lazy evaluation

– Reasoning about Haskell programs occurs via

• “substitution of equals for equals”

• this law always applies in Haskell, rarely in C or Java

– Good Haskell programmers use functional abstraction often

– Haskell tools

• ghci: the top-level interpreter

– :l to load a file; :t to discover a type; :info discover more info

• ghc: the Haskell compiler

• Today: More Haskell Basics

HASKELL BASICS:
DEFINITIONS & BUILT-IN TYPES

Local Definitions

• We often want to define small helper function within the
scope of other, larger functions:

• Or:

foo1 z =
 let triple x = x*3
 in triple z

foo2 z = triple z
 where triple x = x*3

Haskell Indentation

• Haskell, like Python, but unlike Java, C or math written in a
notebook, has semantically meaningful indentation

• Wrong:

copies k n =
if n == 0 then []
else k : copies k (n-1)

zap z =
 let x = z
 y = z + z
 in x + y

must indent
function
body

zap z =
 let x = z
 y =
 z + z
 in
 x + y
 indent y = ...

indent z + z

Haskell Indentation

• Haskell, like Python, but unlike Java, C or math written in a
notebook, has semantically meaningful indentation

• Right:

• Golden rules:

– let (and where and do) indentation:

• the first non-whitespace character after let defines the indentation
level; subsequent definitions must start at that level

– Code which is part of some expression should be indented
further than the line containing the beginning of that expression

zap z =
 let
 x = z
 y = z + z
 in x + y

copies k n =
 if n == 0 then
 []
 else
 k : copies k (n-1)

zap z =
 let x = z
 y = z + z
 in
 x + y

beginning of x defines indentation level

Tuples

• Java uses objects to collect up several different kinds of
values; C uses structs

– both, especially Java objects, are incredibly heavy weight

• Haskell uses tuples

– constructed by enclosing a sequence of values in parens:

– deconstructed (used) via pattern matching:

(‘b’, 4) :: (Char, Integer)

easytoo :: (Integer, Integer, Integer) -> Integer
easytoo (x, y, z) = x + y * z

Lists

• Lists in Java look very similar to the mathematical list notation
we introduced in previous lectures

• [] is the empty list (called nil)

• String is a synonym for [Char]

• We can build lists of lists:

• For every type T, we can build lists of type [T]

[1, 2, 3] :: [Integer]

*‘a’, ‘b’, ‘c’+ :: *Char+

[[1, 2], [3], [8, 9, 10]] :: [[Integer]]

Lists

• Lists are homogenous; all elements must be the same type

Prelude> [True, 'a']

<interactive>:1:9:
 Couldn't match expected type `Bool' with actual type `Char’
 In the expression: 'a'
 In the expression: [True, 'a']
 In an equation for `it': it = [True, 'a']

actually a character

expecting a boolean

Constructing Lists

• What do you know, constructing lists in Haskell resembles the
mathematical notation we used earlier!

• Building a list:

• Building a list inside a function:

• Calculating:

3 : [4, 5]

add123 xs = 1 : 2 : 3 : xs

add123 []
= 1 : 2 : 3 : []

add123 (3 : [4, 5])
= 1 : 2 : 3 : (3 : [4, 5]
= 1 : 2 : 3 : 3 : 4 : 5 : []

Functions building lists

-- A list of n copies of k

copies :: Integer -> Integer -> [Integer]
copies k n =
 if n == 0 then []
 else k : copies k (n-1)

Functions building lists

-- A list of n copies of k

copies :: Integer -> Integer -> [Integer]
copies k n =
 if n == 0 then []
 else k : copies k (n-1)

copies 4 12
=> [12, 12, 12, 12]

instead of using “=“
I’ll sometimes use the symbol “=>” which means “evaluates to”

Functions building lists

-- A list of n copies of k

copies :: Integer -> Integer -> [Integer]
copies k n =
 if n == 0 then []
 else k : copies k (n-1)

-- A list of the numbers from m to n

fromTo :: Integer -> Integer -> [Integer]
fromTo m n =
 if n < m then []
 else m : fromTo (m+1) n

copies 4 12
=> [12, 12, 12, 12]

Functions building lists

-- A list of n copies of k

copies :: Integer -> Integer -> [Integer]
copies k n =
 if n == 0 then []
 else k : copies k (n-1)

-- A list of the numbers from m to n

fromTo :: Integer -> Integer -> [Integer]
fromTo m n =
 if n < m then []
 else m : fromTo (m+1) n

copies 4 12
=> [12, 12, 12, 12]

fromTo 9 13
=> [9, 10, 11, 12, 13]

Functions deconstructing lists

-- Sum the elements of a list

listSum :: [Integer] -> Integer

listSum [] = 0
listSum (x:xs) = x + listSum xs

Functions deconstructing lists

-- Sum the elements of a list

listSum :: [Integer] -> Integer

listSum [] = 0
listSum (x:xs) = x + listSum xs

length :: [a] -> Int

length [] = 0
length (x:xs) = 1 + length xs

lower case letter =
any type at all
(a type variable)

upper case letter =
a concrete type

Functions deconstructing lists

-- Sum the elements of a list

listSum :: [Integer] -> Integer

listSum [] = 0
listSum (x:xs) = x + listSum xs

length :: [a] -> Int

length [] = 0
length (x:xs) = 1 + length xs

cat :: [a] -> [a] -> [a]

cat [] xs2 = xs2
cat (x:xs) xs2 = x:(cat xs xs2)

Functions deconstructing lists

-- Sum the elements of a list

listSum :: [Integer] -> Integer

listSum [] = 0
listSum (x:xs) = x + listSum xs

length :: [a] -> Int

length [] = 0
length (x:xs) = 1 + length xs

(++) :: [a] -> [a] -> [a]

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

cat :: [a] -> [a] -> [a]

cat [] xs2 = xs2
cat (x:xs) xs2 = x:(cat xs xs2)

INDUCTIVE PROOFS
ABOUT HASKELL PROGRAMS

Recall: Proofs by simple calculation

• Some proofs are very easy and can be done by:

– unfolding definitions

– using lemmas or facts we already know

– folding definitions back up

• Eg:

Theorem: easy a b c == easy a c b

Proof:

easy a b c

= a * (b + c) (by unfold)

= a * (c + b) (by commutativity of add)

= easy a c b (by fold)

Definition:
easy x y z = x * (y + z)

given this

we do this proof

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []

case: xs = x:xs’

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)

case: xs = x:xs’

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)

case: xs = x:xs’

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)
= 0 + length (ys) (simple arithmetic)

case: xs = x:xs’

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)
= 0 + length (ys) (simple arithmetic)
= length [] + length (ys) (fold length -- done, we have RHS)

case: xs = x:xs’

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)
= 0 + length (ys) (simple arithmetic)
= length [] + length (ys) (fold length)

case: xs = x:xs’

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)
= 0 + length (ys) (simple arithmetic)
= length [] + length (ys) (fold length)

case: xs = x:xs’
 length ((x:xs’) ++ ys) (LHS of theorem equation)
= length (x:(xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys)) (unfold length)

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)
= 0 + length (ys) (simple arithmetic)
= length [] + length (ys) (fold length)

case: xs = x:xs’
 length ((x:xs’) ++ ys) (LHS of theorem equation)
= length (x:(xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys)) (unfold length)
 subcase xs’ = []

 subcase xs’ = x’:xs’’ [] ++ ys = ys

(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)
= 0 + length (ys) (simple arithmetic)
= length [] + length (ys) (fold length)

case: xs = x:xs’
 length ((x:xs’) ++ ys) (LHS of theorem equation)
= length (x:(xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys)) (unfold length)
 subcase xs’ = []
 ...
 subcase xs’ = x’:xs’’
 = 1 + length ((x’:xs’’) ++ ys) (substitution)
 = 1 + length (x’:(xs’’ ++ ys)) (unfold ++)
 = 1 + 1 + length (xs’’ ++ ys) (unfold length)
 subsubcase xs’’ = * +

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof strategy:

• Proof by induction on the length of xs

– must cover both cases: * + and x:xs’

• apply inductive hypothesis to smaller arguments (smaller lists)

• In general, Haskell has lots of non-inductive data types like
Integers (as opposed to Natural Numbers) so you have to be
careful all series of shrinking arguments have base cases

– use folding/unfolding of Haskell definitions

– use lemmas/properties you know of basic operations

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = []:

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = []:
 length ([] ++ ys) (LHS of theorem)

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = []:
 length ([] ++ ys) (LHS of theorem)
 = length ys (unfold ++)
 = 0 + (length ys) (arithmetic)
 = (length []) + (length ys) (fold length)

case done!

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ + length ys

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ + length ys

 length ((x:xs’) ++ ys) (LHS of theorem)

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ ++ length ys

 length ((x:xs’) ++ ys) (LHS of theorem)
= length (x : (xs’ ++ ys)) (unfold ++)

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ + length ys

 length ((x:xs’) ++ ys) (LHS of theorem)
= length (x : (xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys) (unfold length)

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ + length ys

 length ((x:xs’) ++ ys) (LHS of theorem)
= length (x : (xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys) (unfold length)
= 1 + (length xs’ + length ys) (by IH)

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ + length ys

 length ((x:xs’) ++ ys) (LHS of theorem)
= length (x : (xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys) (unfold length)
= 1 + (length xs’ + length ys) (by IH)
= length (x:xs’) + length ys (reparenthesizing and folding length)

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ + length ys

 length ((x:xs’) ++ ys) (LHS of theorem)
= length (x : (xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys) (unfold length)
= 1 + (length xs’ + length ys) (by IH)
= length (x:xs’) + length ys (reparenthesizing and folding length
 we have RHS with x:xs’ for xs)

case done!

All cases covered! Proof done!

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Exercises

To test your understanding, try to prove the following:

Theorem 1: for all finite lists xs, ys. listSum(xs ++ ys) = listSum xs + listSum ys

drop n [] = []

drop n (x:xs) = if n <= 0 then x:xs

 else drop (n-1) xs

Theorem 2: for all finite lists xs, natural numbers n and m,

 drop n (drop m xs) = drop (n+m) xs

Hint: split the inductive case where xs = x:xs into 3 subcases:

case xs = x:xs:

 subcase m = 0 and n = 0: ...

 subcase m = 0 and n = n’ + 1 for some natural number n’ (ie: n > 0): ...

 subcase m = m’+1 for some natural number m’ (ie: m > 0): ...

Summary

• Haskell is

– a functional language emphasizing immutable data

– where every expression has a type:

• Char, Int, (Char, Int, Float), [Int], [[[(Char, [[Int]])]]]

• Char -> Int, (Char, Char) -> Int -> [(Char, Int)]

• String = [Char]

• Reasoning about Haskell programs involves

– substitution of “equals for equals,” unlike in Java or C

– mathematical calculation:

• unfold function abstractions

• push symbolic names around like we do in mathematical proofs

• reason locally using properties of operations (eg: + commutes)

• use induction hypothesis

• fold function abstractions back up

• Homework: Install Haskell. Read LYAHFGG Intro, Chapter 1

