Last Time

• The denotational modus operandi:
 1. Define the syntax of the language
 • How do you write the programs down?
 • Use BNF notation (BNF = Backus Naur Form)
 2. Define the denotation (aka meaning) of the language
 • Use a function from syntax to mathematical objects
 • Make sure the function is inductive and (usually) total
This Time

• The denotational modus operandi:

 1. Define the syntax of the language
 • How do you write the programs down?
 • Use BNF notation (BNF = Bachus Naur Form)
 2. Define the denotation (aka meaning) of the language
 • Use a function from syntax to mathematical objects
 • Make sure the function is inductive and (usually) total
 3. Prove something about the language
 • Most of our proofs about denotational definitions will be by induction on the structure of the syntax of the language
PROOFS BY STRUCTURAL INDUCTION
Proofs by induction

• Often, we want to know something about all objects of a certain type:
 – for all binary numbers b, there exists a larger binary number.
 – for all binary numbers b, either even(b) or odd(b) is true
 – for all arithmetic expressions e, if $\text{expsem}(e) = 0$ then e contains a subexpression of the form $\text{num}(n)$ and $\text{mixsem}(n) = 0$
 – for all well-typed programs p, p never dereferences a null pointer
 – for all well-typed programs p, p never releases high-security information to a low-security client
 – for all programs p, $\text{semantics}(p) = \text{semantics}(\text{compile}(p))$

• We typically prove these properties by induction.
 – one kind of induction is structural induction or induction on syntax
Structure of inductive proofs for binary syntax

b ::= # | b0 | b1

Theorem: For all binary numbers b, property(b).

Proof: ?
Structure of inductive proofs for binary syntax

Theorem: For all binary numbers b, property(b).

Proof: ?

$b ::= \# | b0 | b1$

for all clues you in to the fact that you may need to do induction

your goal is to prove the property for all b.
Structure of inductive proofs for binary syntax

\[b ::= \# \mid b_0 \mid b_1 \]

Theorem: For all binary numbers \(b \), property(\(b \)).

Proof strategy:

- tackle each case (\#, \(b_0 \), \(b_1 \)) separately. Be sure to tackle all cases (missing a case means your proof is incomplete) -- proofs must be total, like semantic functions were total in the last lecture.

- for base cases like \#, prove the property directly

- for inductive cases like \(b_0 \) and \(b_1 \), use the induction hypothesis. In other words, when proving case \(b_0 \), assume that property(\(b \)) is true and use that information to conclude that property(\(b_0 \)) is true. (Likewise when proving \(b_1 \).) In general, you get to assume your property is true for all smaller binary numbers.
Theorem: For all binary numbers b, $\text{property}(b)$.

Proof: By induction on the structure of b.

case $#$:

 must prove: $\text{property}(\#)$ is true

case $b0$:
 IH: $\text{property}(b)$ is true
 ...
 must prove: $\text{property}(b0)$ is true

case $b1$:
 IH: $\text{property}(b)$ is true
 ...
 must prove: $\text{property}(b1)$ is true
Structure of inductive proofs for binary syntax

\[b ::= \# | b0 | b1 \]

Theorem: For all binary numbers \(b \), \(\text{property}(b) \).

Proof: By induction on the structure of \(b \).

- **case \#:**

 must prove: \(\text{property}(\#) \) is true

- **case \(b0 \):**

 \(\text{IH: property}(b) \) is true

 ...

 must prove: \(\text{property}(b0) \) is true

- **case \(b1 \):**

 \(\text{IH: property}(b) \) is true

 ...

 must prove: \(\text{property}(b1) \) is true

when I say always I mean always

always write proof method first

proof of a case concludes when you establish the property for this specific piece of syntax

always state the specific induction hypothesis you can use in your proof case
BINARY SYNTAX:
AN EXAMPLE PROOF
Structure of inductive proofs for binary syntax

Theorem: For all binary numbers b, if $\text{binsem}(b) > 0$ then b contains a 1.

Proof: By induction on the structure of b.

Definitions:

\[
\begin{align*}
 b & ::= \# \mid b0 \mid b1 \\
 \text{binsem} (\#) & = 0 \\
 \text{binsem} (b0) & = 2 \cdot (\text{binsem}(b)) \\
 \text{binsem} (b1) & = 2 \cdot (\text{binsem}(b)) + 1
\end{align*}
\]
Structure of inductive proofs for binary syntax

Theorem: For all binary numbers \(b \),
if \(\text{binsem}(b) > 0 \) then \(b \) contains a 1.

Proof: By induction on the structure of \(b \).

case \#:

Definitions:

\[
\begin{align*}
b & ::= \# \mid b0 \mid b1 \\
\text{binsem}(\#) & = 0 \\
\text{binsem}(b0) & = 2 \times \text{binsem}(b) \\
\text{binsem}(b1) & = 2 \times \text{binsem}(b) + 1
\end{align*}
\]
Theorem: For all binary numbers b, if $\text{binsem}(b) > 0$ then b contains a 1.

Proof: By induction on the structure of b.

case $\#$:
 1: $\text{binsem}(\#) = 0$ (by binsem def)
 2: $\text{binsem}(\#) \neq 0$ (by 1)

case done (2 implies the theorem if statement is trivially satisfied)

Definitions:

\[
b ::= \# \mid b0 \mid b1
\]

\[
\text{binsem}(\#) = 0
\]

\[
\text{binsem}(b0) = 2*(\text{binsem}(b))
\]

\[
\text{binsem}(b1) = 2*(\text{binsem}(b)) + 1
\]
Structure of inductive proofs for binary syntax

Theorem: For all binary numbers b, if $\text{binsem}(b) > 0$ then b contains a 1.

Proof: By induction on the structure of b.

case $b'0$:

Definitions:

b ::= # | b0 | b1

$\text{binsem}(\#) = 0$

$\text{binsem}(b0) = 2*(\text{binsem}(b))$

$\text{binsem}(b1) = 2*(\text{binsem}(b)) + 1$
Theorem: For all binary numbers b, if $\text{binsem}(b) > 0$ then b contains a 1.

Proof: By induction on the structure of b.

case $b'0$:

IH: if $\text{binsem}(b') > 0$ then b' contains a 1

Definitions:

$b ::= \# | b0 | b1$

$\text{binsem}(\#) = 0$

$\text{binsem}(b0) = 2*(\text{binsem}(b))$

$\text{binsem}(b1) = 2*(\text{binsem}(b)) + 1$
Structure of inductive proofs for binary syntax

Theorem: For all binary numbers \(b \),
if \(\text{binsem}(b) > 0 \) then \(b \) contains a 1.

Proof: By induction on the structure of \(b \).

case \(b'0 \):
 IH: if \(\text{binsem}(b') > 0 \) then \(b' \) contains a 1
 1: \(\text{binsem}(b'0) = 2 \times (\text{binsem}(b')) \) (by binsem def)
 2: if \(\text{binsem}(b'0) > 0 \) then \(\text{binsem}(b') > 0 \) (by 1)
 3: if \(\text{binsem}(b'0) > 0 \) then \(b' \) contains a 1 (by 2 and IH)
 4: if \(\text{binsem}(b'0) > 0 \) then \(b'0 \) contains a 1 (by 3 and meaning of “contains”)

case done.

Definitions:

\[
\begin{align*}
b & ::= \# \mid b0 \mid b1 \\
\text{binsem}(\#) &= 0 \\
\text{binsem}(b0) &= 2 \times (\text{binsem}(b)) \\
\text{binsem}(b1) &= 2 \times (\text{binsem}(b)) + 1
\end{align*}
\]
Structure of inductive proofs for binary syntax

Theorem: For all binary numbers b, if $\text{binsem}(b) > 0$ then b contains a 1.

Proof: By induction on the structure of b.

case $b'1$:

<table>
<thead>
<tr>
<th>Definitions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b ::= #</td>
</tr>
<tr>
<td>$\text{binsem}(#) = 0$</td>
</tr>
<tr>
<td>$\text{binsem}(b0) = 2*(\text{binsem}(b))$</td>
</tr>
<tr>
<td>$\text{binsem}(b1) = 2*(\text{binsem}(b)) + 1$</td>
</tr>
</tbody>
</table>
Structure of inductive proofs for binary syntax

Theorem: For all binary numbers b, if $\text{binsem}(b) > 0$ then b contains a 1.

Proof: By induction on the structure of b.

case $b'1$:
 IH: if $\text{binsem}(b') > 0$ then b' contains a 1

Definitions:

$b ::= \# | b0 | b1$

$\text{binsem}(\#) = 0$
$\text{binsem}(b0) = 2*(\text{binsem}(b))$
$\text{binsem}(b1) = 2*(\text{binsem}(b)) + 1$
Theorem: For all binary numbers \(b \),
if \(\text{binsem}(b) > 0 \) then \(b \) contains a 1.

Proof: By induction on the structure of \(b \).

case \(b'1 \):

IH: if \(\text{binsem}(b') > 0 \) then \(b' \) contains a 1

1: \(\text{binsem}(b'1) = 2 \times (\text{binsem}(b')) + 1 \) (by binsem def)
2: \(\text{binsem}(b'1) > 0 \) and \(b'1 \) contains a 1 (by 1 and meaning of contains)

case done (2 implies the required conclusion).

Definitions:

\[
\begin{align*}
b & ::= \# \mid b0 \mid b1 \\
\text{binsem}(\#) & = 0 \\
\text{binsem}(b0) & = 2 \times (\text{binsem}(b)) \\
\text{binsem}(b1) & = 2 \times (\text{binsem}(b)) + 1
\end{align*}
\]
Recap: structure of inductive proofs for binary syntax

Theorem: For all binary numbers b, property(b).

Proof: By induction on the structure of b.

case #:
 ...
 property (#) is true
 case done.

case b_0:
 IH: property(b)
 ...
 property(b_0) is true
 case done.

case b_1:
 IH: property(b) is true
 ...
 property(b_1) is true
 case done.

Definitions:

$b ::= \# \mid b_0 \mid b_1$

$\text{binsem } (\#) = 0$
$\text{binsem } (b_0) = 2 \times (\text{binsem } (b))$
$\text{binsem } (b_1) = 2 \times (\text{binsem } (b)) + 1$
A PROOF ABOUT ARITHMETIC EXPRESSIONS
Last time

• Arithmetic expression syntax:

\[e ::= \text{num } n \mid \text{add}(e, e) \mid \text{mult}(e, e) \]

• Arithmetic expression semantics:

\[
\begin{align*}
\text{expsem} (\text{num } (n)) &= \text{mixsem } (n) \\
\text{expsem} (\text{add } (e_1, e_2)) &= \text{expsem } (e_1) + \text{expsem } (e_2) \\
\text{expsem} (\text{mult } (e_1, e_2)) &= \text{expsem } (e_1) \times \text{expsem } (e_2)
\end{align*}
\]

depends on semantics for number syntax;
(computes a natural number)
Arithmetic Expressions

• Another definition: “contains a zero”

\[
\begin{align*}
 cz(\text{num}(n)) &= \text{if } \text{mixsem}(n) = 0 \text{ then true else false} \\
 cz(\text{add}(e_1,e_2)) &= cz(e_1) \text{ or } cz(e_2) \\
 cz(\text{mult}(e_1,e_2)) &= cz(e_1) \text{ or } cz(e_2)
\end{align*}
\]

• Goal Theorem:

 – for all e, if expsem(e) = 0 then cz(e)
Theorem: For all expressions e, $\text{property}(e)$.

Proof: By induction on the structure of e.

case $\text{num} \ n$:
 ...
 $\text{property} (\text{num} \ n)$
case done.

case $\text{add}(e_1, e_2)$:
 IH1: $\text{property}(e_1)$
 IH2: $\text{property}(e_2)$
 ...
 $\text{property}(\text{add}(e_1, e_2))$
case done.

case $\text{mult}(e_1, e_2)$:
 IH1: $\text{property}(e_1)$ is true
 IH2: $\text{property}(e_2)$ is true
 ...
 $\text{property}(\text{mult}(e_1, e_2))$
case done.

Definitions:

e ::= \text{num} \ n \ | \ \text{add}(e,e) \ | \ \text{mult}(e,e)

\[
\begin{align*}
\text{expsem} (\text{num} (n)) &= \text{mixsem} (n) \\
\text{expsem} (\text{add} (e_1,e_2)) &= \text{expsem} (e_1) + \text{expsem} (e_2) \\
\text{expsem} (\text{mult} (e_1,e_2)) &= \text{expsem} (e_1) \times \text{expsem} (e_2) \\
\text{cz} (\text{num} (n)) &= \text{if} \ \text{mixsem} (n) = 0 \ \text{then} \ \text{true} \ \text{else} \ \text{false} \\
\text{cz} (\text{add} (e_1,e_2)) &= \text{cz} (e_1) \ \text{or} \ \text{cz} (e_2) \\
\text{cz} (\text{mult} (e_1,e_2)) &= \text{cz} (e_1) \ \text{or} \ \text{cz} (e_2)
\end{align*}
\]
Theorem: For all e, if $\text{expsem}(e) = 0$ then $\text{cz}(e)$.

Proof: By induction on the structure of e.

case $\text{num } n$:
 1. $\text{expsem}(\text{num } n) = \text{mixsem}(n)$ \hfill (by expsem def)

$\text{expsem}(\text{num } n) = \text{mixsem}(n)$
$\text{expsem}(\ldots) = \ldots$

$\text{cz}(\text{num } n) = \text{if } \text{mixsem}(n) = 0 \text{ then true else false}$
$\text{cz}(\ldots) = \ldots$
Theorem: For all e, if $\text{expsem}(e) = 0$ then $\text{cz}(e)$.

Proof: By induction on the structure of e.

case $\text{num } n$:
1. $\text{expsem}(\text{num } n) = \text{mixsem}(n)$ (by expsem def)

 subcase $\text{expsem}(\text{num } n) = 0$:

 subcase $\text{expsem}(\text{num } n) \neq 0$

```
expsem(\text{num } n) = \text{mixsem}(n) 
expsem(...) = ...

\text{cz}(\text{num } n) = \text{if mixsem}(n) = 0 \text{ then true else false}
\text{cz}(...) = ...
```
Theorem: For all e, if $\text{expsem}(e) = 0$ then $\text{cz}(e)$.

Proof: By induction on the structure of e.

case $\text{num } n$:
1. $\text{expsem}(\text{num } n) = \text{mixsem}(n)$ (by expsem def)

 subcase $\text{expsem}(\text{num } n) = 0$:
 2. $\text{mixsem}(n) = 0$ (by 1 and subcase)
 3. $\text{cz}(\text{num } n)$ is true (by 2 and def of cz)
 we have proven the theorem!

 subcase $\text{expsem}(\text{num } n) \neq 0$

\[
\begin{align*}
\text{expsem}(\text{num } n) &= \text{mixsem}(n) \\
\text{expsem}(\ldots) &= \\
\text{cz}(\text{num } n) &= \text{if } \text{mixsem}(n) = 0 \text{ then } \text{true} \text{ else } \text{false} \\
\text{cz}(\ldots) &=
\end{align*}
\]
Theorem: For all e, if $\text{expsem}(e) = 0$ then $\text{cz}(e)$.

Proof: By induction on the structure of e.

case \text{num \, n}:
 1. $\text{expsem}(\text{num \, n}) = \text{mixsem}(n)$ \quad (by \, \text{expsem def})

 \text{subcase} \, \text{expsem}(\text{num \, n}) = 0:
 2. $\text{mixsem}(n) = 0$ \quad (by \, 1 \, \text{and subcase})
 3. $\text{cz}(\text{num \, n})$ is true \quad (by \, 2 \, \text{and def \, of \, cz})

 we have proven the theorem!

 \text{subcase} \, \text{expsem}(\text{num \, n}) \neq 0
 we have trivially proven the theorem!

case done.

\begin{align*}
\text{expsem} (\text{num \,(n)}) &= \text{mixsem} (n) \\
\text{expsem} (...) &= ... \\
\text{cz} (\text{num \,(n)}) &= \text{if mixsem} (n) = 0 \text{ then true else false} \\
\text{cz} (...) &= ...
\end{align*}
Theorem: For all e, if $\text{expsem}(e) = 0$ then $\text{cz}(e)$.

Proof: By induction on the structure of e.

case $\text{add}(e_1, e_2)$:

<table>
<thead>
<tr>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{expsem}(\text{add}(e_1, e_2)) = \text{expsem}(e_1) + \text{expsem}(e_2)$</td>
</tr>
<tr>
<td>$\text{cz}(\text{add}(e_1, e_2)) = \text{cz}(e_1) \text{ or } \text{cz}(e_2)$</td>
</tr>
</tbody>
</table>
Theorem: For all \(e \), if \(\text{expsem}(e) = 0 \) then \(\text{cz}(e) \).

Proof: By induction on the structure of \(e \).

case \(\text{add}(e_1, e_2) \):

IH1: if \(\text{expsem}(e_1) = 0 \) then \(\text{cz}(e_1) \).
IH2: if \(\text{expsem}(e_2) = 0 \) then \(\text{cz}(e_2) \).

Proving properties of expressions

- \(\text{expsem} \left(\text{add} \left(e_1, e_2 \right) \right) = \text{expsem} \left(e_1 \right) + \text{expsem} \left(e_2 \right) \)
- \(\text{cz} \left(\text{add} \left(e_1, e_2 \right) \right) = \text{cz} \left(e_1 \right) \text{ or } \text{cz} \left(e_2 \right) \)
Theorem: For all e, if $\text{expsem}(e) = 0$ then $\text{cz}(e)$.

Proof: By induction on the structure of e.

case $\text{add}(e_1, e_2)$:

IH1: if $\text{expsem}(e_1) = 0$ then $\text{cz}(e_1)$.
IH2: if $\text{expsem}(e_2) = 0$ then $\text{cz}(e_2)$.

1. $\text{expsem}\left(\text{add}(e_1, e_2)\right) = \text{expsem}(e_1) + \text{expsem}(e_2)$ \hspace{1cm} (by expsem def)

1b. iff $\text{expsem}(\text{add}(e_1, e_2)) = 0$ then $\text{expsem}(e_1) + \text{expsem}(e_2) = 0$

2. if $\text{expsem}(\text{add}(e_1, e_2)) = 0$ then $\text{expsem}(e_1) = 0$ and $\text{expsem}(e_2) = 0$ \hspace{1cm} (by 1)

3. if $\text{expsem}(\text{add}(e_1, e_2)) = 0$ then $\text{expsem}(e_1) = 0$ \hspace{1cm} (by 2)
Theorem: For all e, if $\text{expsem}(e) = 0$ then $\text{cz}(e)$.

Proof: By induction on the structure of e.

Case $\text{add}(e_1, e_2)$:

IH1: if $\text{expsem}(e_1) = 0$ then $\text{cz}(e_1)$.

IH2: if $\text{expsem}(e_2) = 0$ then $\text{cz}(e_2)$.

1. $\text{expsem}(\text{add}(e_1, e_2)) = \text{expsem}(e_1) + \text{expsem}(e_2)$ \hspace{1cm} (by expsem def)

2. if $\text{expsem}(\text{add}(e_1, e_2)) = 0$ then $\text{expsem}(e_1) = 0$ and $\text{expsem}(e_2) = 0$ \hspace{1cm} (by 1)

3. if $\text{expsem}(\text{add}(e_1, e_2)) = 0$ then $\text{expsem}(e_1) = 0$ \hspace{1cm} (by 2)

4. if $\text{expsem}(\text{add}(e_1, e_2)) = 0$ then $\text{cz}(e_1)$ \hspace{1cm} (by 3, IH1)

Proving properties of expressions

$$
\text{expsem} \left(\text{add} \left(e_1, e_2 \right) \right) = \text{expsem} \left(e_1 \right) + \text{expsem} \left(e_2 \right)
$$

$$
\text{cz} \left(\text{add} \left(e_1, e_2 \right) \right) = \text{cz} \left(e_1 \right) \text{ or } \text{cz} \left(e_2 \right)
$$
Theorem: For all e, if $\text{expsem}(e) = 0$ then $\text{cz}(e)$.

Proof: By induction on the structure of e.

case $\text{add}(e_1, e_2)$:

IH1: if $\text{expsem}(e_1) = 0$ then $\text{cz}(e_1)$.

IH2: if $\text{expsem}(e_2) = 0$ then $\text{cz}(e_2)$.

1. $\text{expsem}(\text{add}(e_1, e_2)) = \text{expsem}(e_1) + \text{expsem}(e_2)$ \hspace{1cm} (by expsem def)

2. if $\text{expsem}(\text{add}(e_1, e_2)) = 0$ then $\text{expsem}(e_1) = 0$ and $\text{expsem}(e_2) = 0$ \hspace{1cm} (by 1)

3. if $\text{expsem}(\text{add}(e_1, e_2)) = 0$ then $\text{expsem}(e_1) = 0$ \hspace{1cm} (by 2)

4. if $\text{expsem}(\text{add}(e_1, e_2)) = 0$ then $\text{cz}(e_1)$ \hspace{1cm} (by 3, IH1)

5. if $\text{expsem}(\text{add}(e_1, e_2)) = 0$ then $\text{cz}(\text{add}(e_1, e_2))$ \hspace{1cm} (by 4, cz def)

case done.

$\text{expsem}\left(\text{add}\left(e_1, e_2\right)\right) = \text{expsem}\left(e_1\right) + \text{expsem}\left(e_2\right)$

$\text{cz}\left(\text{add}\left(e_1, e_2\right)\right) = \text{cz}\left(e_1\right)\text{ or } \text{cz}\left(e_2\right)$
Theorem: For all e, if $\text{expsem}(e) = 0$ then $\text{cz}(e)$.

Proof: By induction on the structure of e.

case $\text{mult}(e_1, e_2)$:

$$\text{expsem}(\text{mult}(e_1, e_2)) = \text{expsem}(e_1) \times \text{expsem}(e_2)$$

$$\text{cz}(\text{mult}(e_1, e_2)) = \text{cz}(e_1) \text{ or } \text{cz}(e_2)$$
Theorem: For all \(e \), if \(\text{expsem}(e) = 0 \) then \(\text{cz}(e) \).

Proof: By induction on the structure of \(e \).

case \(\text{mult}(e_1, e_2) \):
 IH1: if \(\text{expsem}(e_1) = 0 \) then \(\text{cz}(e_1) \).
 IH2: if \(\text{expsem}(e_2) = 0 \) then \(\text{cz}(e_2) \).

Proving properties of expressions

\[
\text{expsem}(\text{mult}(e_1, e_2)) = \text{expsem}(e_1) \ast \text{expsem}(e_2)
\]

\[
\text{cz}(\text{mult}(e_1, e_2)) = \text{cz}(e_1) \text{ or } \text{cz}(e_2)
\]
Theorem: For all e, if $\text{expsem}(e) = 0$ then $\text{cz}(e)$.

Proof: By induction on the structure of e.

case $\text{mult}(e_1, e_2)$:

IH1: if $\text{expsem}(e_1) = 0$ then $\text{cz}(e_1)$.
IH2: if $\text{expsem}(e_2) = 0$ then $\text{cz}(e_2)$.

1. $\text{expsem}(\text{mult}(e_1, e_2)) = \text{expsem}(e_1) \times \text{expsem}(e_2)$ (by expsem def)
2. if $\text{expsem}(\text{mult}(e_1, e_2)) = 0$ then $\text{expsem}(e_1) = 0$ or $\text{expsem}(e_2) = 0$ (by 1)

$$\begin{align*}
\text{expsem}(\text{mult}(e_1, e_2)) &= \text{expsem}(e_1) \times \text{expsem}(e_2) \\
\text{cz}(\text{mult}(e_1, e_2)) &= \text{cz}(e_1) \text{ or } \text{cz}(e_2)
\end{align*}$$
Theorem: For all e, if $\text{expsem}(e) = 0$ then $\text{cz}(e)$.

Proof: By induction on the structure of e.

\textbf{case $\text{mult}(e_1, e_2)$:}

- IH1: if $\text{expsem}(e_1) = 0$ then $\text{cz}(e_1)$.
- IH2: if $\text{expsem}(e_2) = 0$ then $\text{cz}(e_2)$.

1. $\text{expsem}(\text{mult}(e_1, e_2)) = \text{expsem}(e_1) \times \text{expsem}(e_2)$ \hspace{1cm} (by expsem def)
2. if $\text{expsem}(\text{mult}(e_1, e_2)) = 0$ then $\text{expsem}(e_1) = 0$ or $\text{expsem}(e_2) = 0$ \hspace{1cm} (by 1)
3. if $\text{expsem}(\text{mult}(e_1, e_2)) = 0$ then $\text{cz}(e_1)$ or $\text{cz}(e_2)$ \hspace{1cm} (by 2, IH1, IH2)
Theorem: For all e, if $\text{expsem}(e) = 0$ then $\text{cz}(e)$.

Proof: By induction on the structure of e.

case $\text{mult}(e_1, e_2)$:

IH1: if $\text{expsem}(e_1) = 0$ then $\text{cz}(e_1)$.

IH2: if $\text{expsem}(e_2) = 0$ then $\text{cz}(e_2)$.

1. $\text{expsem}(\text{mult}(e_1, e_2)) = \text{expsem}(e_1) * \text{expsem}(e_2)$ (by expsem def)

2. if $\text{expsem}(\text{mult}(e_1, e_2)) = 0$ then $\text{expsem}(e_1) = 0$ or $\text{expsem}(e_2) = 0$ (by 1)

3. if $\text{expsem}(\text{mult}(e_1, e_2)) = 0$ then $\text{cz}(e_1)$ or $\text{cz}(e_2)$ (by 2, IH1, IH2)

4. if $\text{expsem}(\text{mult}(e_1, e_2)) = 0$ then $\text{cz}(\text{mult}(e_1, e_2))$ (by 3, cz def)

case done.

Proving properties of expressions

$\text{expsem}(\text{mult}(e_1, e_2)) = \text{expsem}(e_1) * \text{expsem}(e_2)$

$\text{cz}(\text{mult}(e_1, e_2)) = \text{cz}(e_1) \text{ or } \text{cz}(e_2)$
A NOTE ON TYPES FOR FUNCTIONS
Types for functions

• So far, function types have been implicit.
• When things start getting more complicated, it is useful to be able to write them down to remind ourselves what kinds of denotation functions we are dealing with:

\[x :: T1 \rightarrow T2 \]
Types for functions

• So far, function types have been implicit.
• When things start getting more complicated, it is useful to be able to write them down to remind ourselves what kinds of denotation functions we are dealing with:

Examples:
- binsem :: BinarySyntax -> Natural
- even :: BinarySyntax -> Bool
- usem :: UnarySyntax -> Natural

(we’ll see more examples and more types shortly; you will pick it up as we go)
THE MATHEMATICAL STRUCTURE OF LISTS
Lists

- Natural numbers, integers, booleans, sets are well-known mathematical objects; so are lists

- A natural number j is either
 - 0, or
 - $j' + 1$ (the successor of some natural number j')

- Analogously list of natural numbers l is either
 - $[\]$ (empty), or
 - $j : l'$ (a list with at least one element j followed by a list l')

- In BNF:
 $$l ::= [\] | j : l$$
Lists

• Lists have inductive structure like natural numbers
 – [] is the smallest list
 – the list l is smaller than the list with an extra element tacked on the front: (j : l)

• Some useful inductive functions over lists:
 – (check they total and inductive)

\[
\begin{align*}
\text{length } ([]) & = 0 \\
\text{length } (j : l_1) & = 1 + \text{length } (l_1)
\end{align*}
\]

\[
\begin{align*}
\text{concatenate } ([], l_2) & = l_2 \\
\text{concatenate } (j : l_1, l_2) & = j : (\text{concatenate}(l_1, l_2))
\end{align*}
\]

• Notation:
 – \(l_1 ++ l_2 \) means “concatenate \((l_1, l_2) \)”
 – \([1, 2, 3, 4] \) means “1 : 2 : 3 : 4 : []”
Proofs over Lists

Theorem: For all \(l_1 \) and for all \(l_2 \), \(\text{length} \ (l_1 ++ l_2) = \text{length} \ (l_1) + \text{length} \ (l_2) \)

Proof: By induction on the structure of \(?? \)
Theorem: For all l_1 and for all l_2, $\text{length} (l_1 ++ l_2) = \text{length} (l_1) + \text{length} (l_2)$

Proof: By induction on the structure of l_1.

why not l_2?
It’s because of the fact that length and ++ operate at the front of the list. However, this is not a rule. Often you just have to try induction on one thing or the other and see if it works.

\[
l ::= [] | j : l
\]

length ([]) = 0
length (j : l_1) = 1 + length (l_1)

[] ++ l_2 = l_2
(j : l_1) ++ l_2 = j : (l_1 ++ l_2)
Proofs over Lists

Theorem: For all \(l_1 \) and for all \(l_2 \), \(\text{length} \ (l_1 ++ l_2) = \text{length} \ (l_1) + \text{length} \ (l_2) \)

Proof: By induction on the structure of \(l_1 \).

case \(l_1 = [] \):
Proofs over Lists

Theorem: For all l_1 and for all l_2, $\text{length}(l_1 ++ l_2) = \text{length}(l_1) + \text{length}(l_2)$

Proof: By induction on the structure of l_1.

Case $l_1 = []$:

\[
\text{length}([[]] ++ l_2) = \ ?
\]

\[
l ::= [] | j : l
\]

\[
\text{length}([]) = 0
\]

\[
\text{length}(j : l_1) = 1 + \text{length}(l_1)
\]

\[
[] ++ l_2 = l_2
\]

\[
(j : l_1) ++ l_2 = j : (l_1 ++ l_2)
\]
Theorem: For all \(l_1 \) and for all \(l_2 \), \(\text{length} (l_1 ++ l_2) = \text{length} (l_1) + \text{length} (l_2) \)

Proof: By induction on the structure of \(l_1 \).

case \(l_1 = [] \):

\[
\begin{align*}
\text{length} ([] ++ l_2) &= \text{length} (l_2) \quad \text{(by def of ++)} \\
&= 0 + \text{length} (l_2) \quad \text{(by ordinary arithmetic)} \\
&= \text{length} ([]) + \text{length} (l_2) \quad \text{(by def of length, in reverse)}
\end{align*}
\]

case done.

\[
\begin{array}{l}
l ::= [] \mid j : l \\
length ([]) = 0 \\
length (j : l_1) = 1 + \text{length} (l_1) \\
[] ++ l_2 = l_2 \\
(j : l_1) ++ l_2 = j : (l_1 ++ l_2)
\end{array}
\]
Proofs over Lists

Theorem: For all \(l_1 \) and for all \(l_2 \), length (\(l_1 \ ++ \ l_2 \)) = length (\(l_1 \)) + length (\(l_2 \))

Proof: By induction on the structure of \(l_1 \).

case \(l_1 = j : l_1' \):

\[
\begin{align*}
l & ::= \ [\] \mid j : l \\
\text{length} (\ [\]) &= 0 \\
\text{length} (j : l_1) &= 1 + \text{length} (l_1) \\
[\] ++ l_2 &= l_2 \\
(j : l_1) ++ l_2 &= j : (l_1 ++ l_2)
\end{align*}
\]
Proofs over Lists

Theorem: For all \(l_1 \) and for all \(l_2 \), \(\text{length} (l_1 ++ l_2) = \text{length} (l_1) + \text{length} (l_2) \)

Proof: By induction on the structure of \(l_1 \).

case \(l_1 = j : l_1' \):
 IH: \(\text{length} (l_1' ++ l_2) = \text{length} (l_1') + \text{length} (l_2) \)

<table>
<thead>
<tr>
<th>l ::=</th>
<th>[]</th>
<th>j : l</th>
</tr>
</thead>
<tbody>
<tr>
<td>length ([]) = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>length (j : l_1) = 1 + length (l_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[] ++ l_2 = l_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j : l_1) ++ l_2 = j : (l_1 ++ l_2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proofs over Lists

Theorem: For all l_1 and for all l_2, $\text{length } (l_1 ++ l_2) = \text{length } (l_1) + \text{length } (l_2)$

Proof: By induction on the structure of l_1.

case $l_1 = j : l_1'$:
IH: $\text{length } (l_1' ++ l_2) = \text{length } (l_1') + \text{length } (l_2)$

\[
\text{length } ((j : l_1') ++ l_2) =
\]

\[
[] ::= [] | j : l
\]

\[
\text{length } ([]) = 0
\]

\[
\text{length } (j : l_1) = 1 + \text{length } (l_1)
\]

\[
[] ++ l_2 = l_2
\]

\[
(j : l_1) ++ l_2 = j : (l_1 ++ l_2)
\]
Proofs over Lists

Theorem: For all \(l_1 \) and for all \(l_2 \), \(\text{length} (l_1 ++ l_2) = \text{length} (l_1) + \text{length} (l_2) \)

Proof: By induction on the structure of \(l_1 \).

case \(l_1 = j : l_1' \):

IH: \(\text{length} (l_1' ++ l_2) = \text{length} (l_1') + \text{length} (l_2) \)

\[
\begin{align*}
\text{length} ((j : l_1') ++ l_2) &= \text{length} (j : (l_1' ++ l_2)) & \text{(by def of ++)} \\
&= 1 + \text{length} (l_1' ++ l_2) & \text{(by def of length)} \\
&= 1 + \text{length} (l_1') + \text{length} (l_2) & \text{(by IH)} \\
&= \text{length} (j : l_1') + \text{length} (l_2) & \text{(by def of length)}
\end{align*}
\]

case done.

\[
\begin{align*}
\text{l} &::= \; [] \; | \; j : l \\
\text{length} ([]) &= 0 \\
\text{length} (j : l_1) &= 1 + \text{length} (l_1) \\
[] ++ l_2 &= l_2 \\
(j : l_1) ++ l_2 &= j : (l_1 ++ l_2)
\end{align*}
\]
Typical Structure of Proofs About Lists

Theorem: For all l. ... property of l ...

Proof: By induction on the structure of l.

case \(l = [] \)

... 2-column proof of property of \([]\) ...
... justifications use definitions given and basic mathematical facts

case done.

\[\text{case } l = j : l' : \]
\[\text{IH: property of } l' \]

... 2-column proof of property of \(j : l' \)
... justifications use IH, definitions, basic mathematical facts

case done.
Exercises

theorem 1:
for all \(l_1 \), for all \(l_2 \),
\[
\text{length (} l_1 ++ (j_2 : l_2) \text{)} = 1 + \text{length (} l_1 ++ l_2 \text{)}
\]
proof: ?

theorem 2:
for all \(l \),
\[
\text{length (} l ++ l \text{)} = 2 \times \text{length (} l \text{)}
\]
proof: ? (hint: use theorem 1 as one of your justifications)

theorem 3:
for all \(l \), \(l ++ [] = l \)
proof: ?

Note: You don’t have to do them,
but exercises given out in class might show up on exams!
A LIST-PROCESSING LANGUAGE
A list processing language

natural numbers
j ::= 0 | 1 | 2 | ...

list language syntax
s ::=
 empty -- empty list
 | single j -- singleton list containing j
 | cons (j, s) -- prepend j onto s
 | concat (s₁, s₂) -- concatenate s₁ and s₂
 | take (j, s) -- the first j elements of s
 | rem (j, s) -- everything but the first j elements of s
A list processing language

natural numbers

\[j ::= 0 \mid 1 \mid 2 \mid \ldots \]

list language syntax

\[s ::= \]

- `empty` -- empty list
- `single j` -- singleton list containing \(j \)
- `cons (j, s)` -- prepend \(j \) onto \(s \)
- `concat (s_1, s_2)` -- concatenate \(s_1 \) and \(s_2 \)
- `take (j, s)` -- the first \(j \) elements of \(s \)
- `rem (j, s)` -- everything but the first \(j \) elements of \(s \)

Examples (all equal to the list \([5, 3, 2]\)):

- `cons (5, cons (3, cons (2, empty)))`
- `concat (cons (5, cons (3, empty)), single 2)`
- `take (3, cons (5, cons (3, cons (2, cons (6, cons (6, cons (7, empty)))))), single 2)`
- `rem (2, cons (9, cons (11, cons (5, cons (3, single 2))))))`
- `concat (single 5, concat (single 2, single 3))`
A list processing language

<table>
<thead>
<tr>
<th>natural numbers</th>
<th>list language syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j ::= 0</td>
<td>1</td>
</tr>
</tbody>
</table>

- The denotational semantics will explain how to convert list syntax into concrete lists.
A list processing language

<table>
<thead>
<tr>
<th>Natural numbers</th>
<th>List language syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j ::= 0 \mid 1 \mid 2 \mid ...)</td>
<td>(s ::= \text{empty} \mid \text{single } j \mid \text{cons } (j, s) \mid \text{concat } (s_1, s_2) \mid \text{take } (j, s) \mid \text{rem } (j, s))</td>
</tr>
</tbody>
</table>

\[
\text{listsem :: ListSyntax} \rightarrow \text{List}
\]

\[
\begin{align*}
\text{listsem } (\text{empty}) & = [\] \\
\text{listsem } (\text{single } j) & = [j] \\
\text{listsem } (\text{cons } (j, s)) & = j : (\text{listsem } (s)) \\
\text{listsem } (\text{concat } (s_1, s_2)) & = \text{listsem } (s_1) ++ \text{listsem } (s_2) \\
\text{listsem } (\text{take } (j, s)) & = ??? \\
\text{listsem } (\text{rem } (j,s)) & = ???
\end{align*}
\]
A list processing language

natural numbers

j ::= 0 | 1 | 2 | ...

list language syntax

s ::= empty | single j | cons (j, s) | concat (s₁, s₂) | take (j, s) | rem (j, s)

listsem :: ListSyntax -> List

listsem (empty) = []
listsem (single j) = [j]
listsem (cons (j, s)) = j : (listsem(s))
listsem (concat (s₁, s₂)) = listsem (s₁) ++ listsem (s₂)
listsem (take (j, s)) = takeaux (j, listsem (s))
listsem (rem (j,s)) = ???

takeaux :: (Natural, List) -> List

takeaux (0, list) = []
takeaux (j+1, []) = []
takeaux (j+1, j’ : list) = j’ : (takeaux (j, list))

lexicographic ordering for inductive definition:
(x₁,y₁) is smaller than (x₂, y₂) if x₁ smaller than x₂
 or x₁ = x₂ and y₁ smaller than y₂
A list processing language

<table>
<thead>
<tr>
<th>Natural numbers</th>
<th>List language syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>j ::= 0</td>
<td>1</td>
</tr>
</tbody>
</table>

List language syntax

- `listsem :: ListSyntax -> List`

<table>
<thead>
<tr>
<th><code>listsem</code></th>
<th>=</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>listsem (empty)</code></td>
<td>=</td>
<td><code>[]</code></td>
</tr>
<tr>
<td><code>listsem (single j)</code></td>
<td>=</td>
<td><code>[j]</code></td>
</tr>
<tr>
<td><code>listsem (cons (j, s))</code></td>
<td>=</td>
<td><code>j : (listsem(s))</code></td>
</tr>
<tr>
<td><code>listsem (concat (s₁, s₂))</code></td>
<td>=</td>
<td><code>listsem (s₁) ++ listsem (s₂)</code></td>
</tr>
<tr>
<td><code>listsem (take (j, s))</code></td>
<td>=</td>
<td><code>takeaux (j, listsem (s))</code></td>
</tr>
<tr>
<td><code>listsem (rem (j,s))</code></td>
<td>=</td>
<td><code>remaux (j, listsem(s))</code></td>
</tr>
</tbody>
</table>

Takeaux

- `takeaux :: (Natural, List) -> List`

<table>
<thead>
<tr>
<th><code>takeaux</code></th>
<th>=</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>takeaux (0, list)</code></td>
<td>=</td>
<td><code>[]</code></td>
</tr>
<tr>
<td><code>takeaux (j+1, [])</code></td>
<td>=</td>
<td><code>[]</code></td>
</tr>
<tr>
<td><code>takeaux (j+1, j’ : list)</code></td>
<td>=</td>
<td><code>j : takeaux (j, list)</code></td>
</tr>
</tbody>
</table>

Remaux

- `remaux :: (Natural, List) -> List`

<table>
<thead>
<tr>
<th><code>remaux</code></th>
<th>=</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>remaux (0, list)</code></td>
<td>=</td>
<td><code>list</code></td>
</tr>
<tr>
<td><code>remaux (j+1, [])</code></td>
<td>=</td>
<td><code>[]</code></td>
</tr>
<tr>
<td><code>remaux (j+1, j’ : list)</code></td>
<td>=</td>
<td><code>remaux (j, list)</code></td>
</tr>
</tbody>
</table>
Exercise

• Consider these additional definitions:

\[
\text{result ::= Yes | Maybe}
\]

\[
\text{isempty :: ListSyntax -> Result}
\]

\[
\begin{align*}
isempty (\text{empty}) & = \text{Yes} \\
isempty (\text{single j}) & = \text{Maybe} \\
isempty (\text{cons (j, s)}) & = \text{Maybe} \\
isempty (\text{concat (s}_1, s_2)) & = \text{if (isempty (s}_1) = Yes) \text{ and isempty (s}_2) = \text{Yes} \text{ then Yes} \text{ else Maybe} \\
isempty (\text{take (j, s)}) & = \text{Maybe} \\
isempty (\text{rem (j,s)}) & = \text{Maybe}
\end{align*}
\]

• Prove this theorem:
 – for all s, if isempty(s) = Yes then listsem(s) = []
Summary: Inductive proof structure

- Proofs by induction on syntax:
 - start with a statement of the methodology used:
 - eg: “By induction on the syntax of binary numbers”
 - must be total
 - they must have proof cases for all syntactic alternatives
 - have an induction hypothesis that can be applied to smaller subexpressions
 - should be done in a 2-column format and have cases that look like this:

 case syntactic alternative:

 IH: ... statement of inductive hypothesis on subexpression ...

 1. fact (justification)
 2. fact (justification)
 3. fact (justification)

 case done.

justifications use:
- IH,
- previous facts established (1, 2),
- definitions like binsem or ++ given,
- simple mathematical reasoning
Summary: kinds of induction

– induction on natural numbers
 • case for 0
 • case for j+1 with IH used on j
– induction on lists
 • case for []
 • case j : l with IH used on j
– induction on syntax: s ::= alt1 | alt2 | alt3 | ...
 • case for each of alt1, alt2, alt3, ... with IH used on subexpressions s
– mutual induction on syntax: s ::= alt1 | alt2 and t ::= alt3 | alt4
 • case for each of alt1, alt2, alt3, ... with IH used on subexpressions s or t
– induction on pairs (first, second)
 • sometimes: by induction on the first element
 • sometimes: by induction on the second element
 • sometimes: by lexicographic ordering of first and second (or second and first)
– in all of the above, sometimes you break down the basic cases further:
 • natural numbers: 0/j+1 broken down further to 0/1/j+1 or 0/1/j+2 etc.
 • whatever the breakdown, cover all cases & use IH on smaller subexpressions