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What is this course about? 

• What do programs do? 
– We are going to use mathematics as opposed to English or 

examples to describe what programs do 

– Our descriptions are going to be complete and exact 

• For any language we study, they will cover all programs and 
all corner cases 

 

• How do we answer questions about programs and 
programming languages? 
– Since we have complete and exact mathematical descriptions of 

programs, we can prove strong properties about them  

• eg: Will this program crash?  Will any program crash? 

 

• Experience new and powerful programming languages 



How is this course different from COS 441 last year? 

• Last year, the new and powerful PL was called Coq 
– Coq is interactive theorem prover, not a programming language 

you’d use to build ordinary, day-to-day applications 
 

• This year, the new and powerful PL is Haskell 
– Haskell is a programming language you’d use to build day-to-day 

applications 
– It’s a functional language with an amazing type system and a 

terse syntax that puts Java to shame 
• one line of Haskell is often worth 2 or more lines of Java 

– It’s got a bunch of cool features like higher-order functions, 
infinite data structures, algebraic data types, data-parallel 
programming and concurrent transactions 

– It’s also got strong support for defining your own domain-
specific languages (DSLs);  we’ll explore that support by 
developing DSLs for creating simple animations, modeling 
financial contracts and programming networks 



Logistics & Homework 

• Sign up for the course email list: 
– https://lists.cs.princeton.edu/mailman/listinfo/cos441 

 
• Read the course web site: 

– http://www.cs.princeton.edu/~dpw/cos441-11 

 
• Start assignment 1 

– you can do parts I and II when this lecture is complete 
– you can do other parts after the second or third lectures 
– due 1pm Tuesday Sept 27 
– see course web site for late policy 

 
• Get ready for assignment 2 by downloading Haskell: 

– http://hackage.haskell.org/platform// 
– see course web site for learning materials 



THIS WEEK: 
DENOTATIONAL SEMANTICS 



Semantics of Programs 

• Many ways to use mathematics to give meaning to programs 
– Operational semantics: a step by step account of how to execute a 

program.  For each instruction, explain what program variables or data 
structures get updated.  Useful for building an interpreter that 
executes a program and computes its results.  Easy to scale to very 
complex languages.  Easy to prove some simple properties of 
programs.  Harder to prove deeper properties without additional 
work. 
 

– Axiomatic semantics: describes what a program does in terms of 
logical preconditions and postconditions.  Useful for building program 
analyzers that examine programs before they are run to detect bugs. 
 

– Denotational semantics: describes the meaning of a program by 
transforming the syntax of the program into a well-known 
mathematical object like a set or a mathematical function.  Easy to 
describe and prove deep properties about simple languages.  Harder 
to scale in some cases. 
• We will start with simple denotational semantics 



Denotational Modus Operandi 

• When employing denotational semantics we are 
going to proceed as follows: 
1. Define the syntax of the language  

• How do you write the programs down? 

• Use BNF notation  (BNF = Backus Naur Form) 

2. Define the denotation (aka meaning) of the language 

• Use a function from syntax to mathematical objects 

• Make sure the function is inductive and (usually) total 

3. Prove something about the language 

• Most of our proofs about denotational definitions will 
be by induction on the structure of the syntax of the 
language 
– We will explain what that means and how to do it in a later 

lecture. 



DEFINING SYNTAX 



Binary Numbers: Informal Definitions 

• Examples of the syntax of binary numbers:  

– #1  

– #0  

– #110  

– #1101010 

– #00101 

– # 

 

• English description of the syntax binary numbers: 

– A binary number is a hash sign followed by a (possibly 
empty) sequence of zeros 

equivalent to zero 



Binary Numbers: Formal Syntax 

b   ::=   #  |  b0  |  b1 

metavariable b 
stands for any item 
being defined 

Examples: 
• #01 
• # 
• #1 
• #0001 

“:=“ can be read “is defined to be” 

vertical bar separates 
alternatives in the definition 

• How to read the definition in English: 
– a b can either be: 

• a #, or  
• any b followed by a 0, or 
• any b followed by a 1 

 



Binary Numbers: Formal Syntax 

b   ::=   #  |  b0  |  b1 

metavariable b 
stands for any item 
being defined 

Examples: 
• #01 
• # 
• #1 
• #0001 

“:=“ can be read “is defined to be” 

vertical bar separates 
alternatives in the definition 

• Question: is #01 a binary number?  Yes.  Justification: 
– #01 has the form b1 where b = #0 and: 
– #0 has the form b’0 where b’ = # and: 
– # is unconditionally a binary number  

• Comment: if we need to refer to lots of different binary numbers, we will 
use the same basic letter but add primes and subscripts:  b’, b’’, b’’’, b1, b2, 
... to distinguish them 



Binary Numbers: Formal Syntax 

b   ::=   #  |  b0  |  b1 

metavariable b 
stands for any item 
being defined 

Examples: 
• #01 
• # 
• #1 
• #0001 

“:=“ can be read “is defined to be” 

vertical bar separates 
alternatives in the definition 

• Question: is #071 a binary number?  No!  Justification: 
– #071 can only be a binary number if it matches one of the three 

patterns given above.  #071 matches the second pattern if  #07 
is a binary number, but: 

– #07 is not a binary number because it is not # and it does not 
have the form b0 and it does not have the form b1 for any b 



Binary Numbers: Formal Syntax 

b   ::=   #  |  b0  |  b1 

• What we’ve got so far: 
– some notation defined for binary numbers: #01, #0010, ... 
– a mechanical procedure for checking whether or not some bit of 

syntax is a binary number.  Procedure: 
• is the syntax # ? If so, succeed.  It is a binary number. 
• does the syntax end with “0”?  If so, recursively check that the 

prefix is a binary number.  If not, fail. 
• does the syntax end with “1”?  If so, recursively check that the 

prefix is a binary number.  If not, fail. 
• if the syntax is anything else, fail. 

• Terminology: 
– we call # a base case because it contains no references to b, the thing 

being defined. 
– we call 0b and 1b inductive cases because they do contain references 

to b, the thing being defined.  
 



Other Examples: Hex Numbers 

h   ::=   # | h0 | h1 | h2 | h3 | h4 | h5 | h6 | h7 | h8 | h9 | hA | hB | hC | hD | hE | hF 

• Examples: 
– #001AAF 

– #FFB345 

– # 

– #1001 

 

• Question: How can we tell the difference between 
constants like A, B, C, D and metavariables like h? 

• Answer: h appears to the left of ::= 
– If a character or string does not appear to left of ::=, assume it is 

a constant 



Other Examples: Mixed Numbers 

h   ::=   # | h0 | h1 | h2 | h3 | h4 | h5 | h6 | h7 | h8 | h9 | hA | hB | hC | hD | hE | hF 
b   ::=   # | b0 | b1 
n   ::=   hex h | bin b 

• Examples of n: 
– hex #7352AAA, bin #00110, hex #00110 

• Non-examples of n: 
– bin #7352AAA, bin (hex #888) 

 
• Comment:  

– programming languages have lots of different kinds of syntax in 
them so we typically have to define many different 
metavariables 

– eg: java has numbers, strings, statements, expressions, types, 
class definitions, ... 



Other Examples: Arithmetic Expressions 

h   ::=   # | h0 | h1 | h2 | h3 | h4 | h5 | h6 | h7 | h8 | h9 | hA | hB | hC | hD | hE | hF 
b   ::=   # | b0 | b1 
n   ::=   hex h | bin b 
e   ::=   num n | add(e,e) | mult(e, e) 

• Examples of e: 
– num (hex #7352AAA) 
– add (num (hex #00110), mult(num (bin #0), num (bin #10))) 

 
• Non-examples of e:     

– num (hex (#FF + #AA)) 
– bin #011  
– num #FF 

 
• Comment:  

– we added some extra parentheses in the expressions above; these extra 
parens aren’t part of the “official” syntax.  

– we use them to make the structure of an expression clear. 



An Aside:  Abstract vs. Concrete Syntax 
• First phase of a typical compiler: 

 
 
 
 
 
 
 
 
 
 
 

• Concrete syntax:  a sequence of characters in a text file 
• Abstract syntax:  structured data that represents the key information needed 

for semantic analysis 
– discards whitespace, comments, tokens used to make programs easy to read 

• COS 441 deals with analysis of abstract syntax 
– we don’t worry about extra whitespace, parens, etc.; we care about structure 

• COS 320  deals with concrete syntax and parsing 

x = 3;\n  y = x + 2; 

concrete syntax 

assign(x,   ) assign(y,   ) 

constant(3) plus (x, 2) 

sequence(   ,   ) 

parsing 

abstract syntax 

linear series of characters  
in text file 

structured representation 
used for analysis 



One more example:  Unary Numbers 

i ::= # | iS  

zero the number after i 
(the Successor) 

• Examples: 

– #S        (one) 

– #SSSS (four)   

– #SS (two) 

 



DENOTATIONAL SEMANTICS! 



Denotational Semantics 

• Given a binary number #10 you and I have a good idea of 
what it means.  But how can we be sure we agree on the 
details? 

• One way is translate it into a common language – the 
language of mathematics.  That’s what a denotational 
semantics does. 



Denotational Semantics: Binary Numbers 

• The denotation (ie: meaning) of an element of binary 
number syntax is a natural number 

• We’ll be precise by defining a mathematical function: 

 

 

 

 

 

 

 

 

binsem ( # ) = 0 
 
binsem (b0) = 2*(binsem(b))  
 
binsem (b1) = 2*(binsem(b)) + 1 



Denotational Semantics: Binary Numbers 

• The denotation (ie: meaning) of an element of binary 
number syntax is a natural number 

• We’ll be precise by defining a mathematical function: 

 

 

 

 

 

 

 

 

binsem ( # ) = 0 
 
binsem (b0) = 2*(binsem(b))  
 
binsem (b1) = 2*(binsem(b)) + 1 

each argument is a pattern drawn from the syntax definition: 
b   ::=   #  |  b0  |  b1 

 
metavariables appearing in the argument position (like b) 
     are used in the right-hand side 

each result is 
a natural number 



Denotational Semantics: Hex Numbers 

• The denotation (ie: meaning) of hex number syntax is 
also a natural number: 

hexsem ( # ) = 0 
 
hexsem (h0) = 16*(hexsem(h))  
 
hexsem (h1) = 16*(hexsem(h)) + 1 
 
hexsem (h2) = 16*(hexsem(h)) + 2 
 
... 
 
hexsem (hF) = 16*(hexsem(h)) + 15 

each argument is  
hex syntax 

results are  
natural numbers 
 



Denotational Semantics: Mixed Numbers 

• The denotation (ie: meaning) of mixed number syntax 
is also a natural number: 

mixsem ( hex (h) ) = hexsem (h) 
 
mixsem ( bin (b) ) = binsem (b) 

Note:  You may be seeing a bit of a trend here in that the results are always  
natural numbers but that is an artifact of the arithmetic examples I have  
chosen for this lecture.   
 
In later lectures, we will see other kinds of results (sets, functions, heaps, etc.) 
in denotation functions 
 



Denotational Semantics: Arithmetic Expressions 

• The denotation (ie: meaning) of an element of 
arithmetic expression syntax is a natural number: 

expsem ( num (n) ) = mixsem (n) 
 
expsem ( add (e1,e2) ) = expsem (e1) + expsem (e2)  
 
expsem ( mult (e1,e2) ) = expsem (e1) * expsem (e2)  

e   ::=   num n | add(e,e) | mult(e, e) 
 



Denotational Semantics: Unary Numbers 

• The denotation (ie: meaning) of an element of unary 
number syntax is a natural number: 

usem ( # ) = 0 
 
usem ( iS ) = expsem (i) + 1 

i ::= # | iS  



GOOD DEFINITIONS VS. BAD ONES 
(TOTALITY) 



Good Definitions 

• Can I write down just any equation I want to define 
the semantics of some piece of syntax? 

• What are the criteria? 



Good Definitions:  Totality 

• Can I write down just any equation I want to define 
the semantics of some piece of syntax? 

• What are the criteria? 

• Here’s our semantics of binary numbers: 

binsem ( # ) = 0 
 
binsem (b0) = 2*(binsem(b))  
 
binsem (b1) = 2*(binsem(b)) + 1 

Is the definition total?   
Are there any binary numbers whose semantics are left undefined? 
 
 



Good Definitions:  Totality 

binsem ( # ) = 0 
 
binsem (b0) = 2*(binsem(b))  
 
binsem (b1) = 2*(binsem(b)) + 1 

 
 
 
b   ::=   #    |    b0    |    b1                  <----- Recall the syntax 
 



Good Definitions:  Totality 

binsem ( # ) = 0 
 
binsem (b0) = 2*(binsem(b))  
 
binsem (b1) = 2*(binsem(b)) + 1 

 
 
 
b   ::=   #    |    b0    |    b1                  <----- Recall the syntax 
 
 

A mathematical function 
defined on syntax 
is total when it produces 
a result for every 
element of the function 
domain.  



Good Definitions:  Totality 

binsem ( # ) = 0 
 
binsem (b0) = 2*(binsem(b))  

Not Total (missing case for b1) 

binsem ( # ) = 0 
 
binsem ( #0 ) = 0 
 
binsem ( b1 ) = 2*(binsem(b)) + 1 
 
binsem ( b00 ) = 4*(binsem(b))  
 
binsem ( b10 ) = 4*(binsem(b)) + 2 
 

Total but a lot 
harder to check 
that we haven’t 
missed any cases! 
 
Sticking with cases 
that exactly match 
the syntax definition 
is typically a better bet 
but not always the  
most concise. 



Good Definitions:  Totality 

binsem ( # ) = 0 
 
binsem ( #0 ) = 0 
 
binsem ( b1 ) = 2*(binsem(b)) + 1 
 
binsem ( b00 ) = 4*(binsem(b))  
 
binsem ( b10 ) = 4*(binsem(b)) + 2 
 

binsem ( # ) = 0 
binsem (b1) = 2*(binsem(b)) + 1 
binsem (b0) = auxsem (b) 
 
auxsem ( # ) = 0 
auxsem ( b0 ) = 4*binsem(b) 
auxsem ( b1 ) = 4*binsem(b) + 2 

convert less obvious total functions into obvious 
ones by introducing auxiliary functions: 

every function definition has 
exactly one case per syntactic 
alternative: 
b   ::=   #    |    b0    |    b1 



GOOD DEFINITIONS VS. BAD ONES 
(INDUCTION) 



Denotational Semantics: Binary Numbers 

• What about this function: 

 

 

 

 

• Is it total?  What’s wrong? 

   

 

binsem ( # ) = 0 
 
binsem (b0) = binsem (b0) 
 
binsem (b1) = binsem (b1) 



Denotational Semantics: Binary Numbers 

• What about this function: 

 

 

 

 

• Is it total?  What’s wrong? 
– binsem does not terminate on all inputs 

• it is not total  

– in addition, binsem is not an inductive function 

• inductive functions are functions that are guaranteed to 
terminate because recursive calls are made on smaller 
arguments and ... 

• the argument type is such that it contains no infinitely 
shrinking series of values 
– BNF syntax definitions never “shrink infinitely” --- valid syntax is 

built from base cases using a finite number of BNF rules 

binsem ( # ) = 0 
 
binsem (b0) = binsem (b0) 
 
binsem (b1) = binsem (b1) 



Inductive Functions 

• What counts as “smaller”? 

– Functions with calls to proper syntactic subexpressions 

• aka: structural induction or induction on syntax 

 b   ::=   # | b0 | b1 
 
f(#)   = ... (no calls) ... 
f(#0) = ... (no calls) ... 
f(b0) = ... f(b) ...  
f(b1) = ... f(b) ... f (b) ... 
 
f(b0) = ... f(b0) ... 
f(b1) = ... f(b11) ... 
 
e   ::=   num (bin b) | add(e,e) | mult(e, e) 
 
g(num (bin b)) = ... f (b) ... 
g(add (e1, e2)) = ... g (e1) ...  g (e2) ...  
g(mult (e1, e2)) = ... g (e1) ...  g (e2) ... 

inductive 

not inductive 

inductive 

no calls 
always ok 

multiple calls to 
subexpressions ok 

identical calls  bad 

identical calls  to larger 
expressions bad 

calls to other 
inductive functions 
ok 



Inductive Functions 

• What counts as “smaller”? 

– Functions are allowed to be mutually inductive: 

 

binsem ( # ) = 0 
binsem (b1) = 2*(binsem(b)) + 1 
binsem (b0) = auxsem (b) 
 
auxsem ( # ) = 0 
auxsem ( b0 ) = 4*binsem(b) 
auxsem ( b1 ) = 4*binsem(b) + 2 

all calls in any of the right-hand 
sides are calls with smaller 
arguments than appear on 
the left-hand side of the 
corresponding equation. 



Inductive Functions 

• If you have taken COS 340 (or other math courses) 
you know that functions on the natural numbers can 
also be inductive 

– the right-hand side makes calls on smaller natural numbers  

– here is a mutually inductive definition of even and odd as 
functions from the natural numbers to booleans: 

 
natural numbers:   j ::= 0 | 1 | 2 | ... 
 
even (0) = true   odd (0) = false 
even (j+1) = not (odd (j))  odd (j+1) = not (even(j)) 

smaller number:  j < j + 1 



Inductive Functions 

• Actually, inductive functions on natural numbers and 
inductive functions on syntax are the same thing: 

 

i ::= # | iS 
 
 
 
 
 
 

j ::= 0 | 1 | 2 | ... 
 
 
 
 
 
 



Inductive Functions 

• Actually, inductive functions on natural numbers and 
inductive functions on syntax are the same thing: 

 

i ::= # | iS 
 
 
 
 
 
 

j ::= 0 | 1 | 2 | ... 
 
 
 
 
 
 

usem ( # ) = 0 
usem ( iS ) = usem (i) + 1 



Inductive Functions 

• Actually, inductive functions on natural numbers and 
inductive functions on syntax are the same thing: 

 

i ::= # | iS 
 
 
 
 
 
 

j ::= 0 | 1 | 2 | ... 
 
 
 
 
 
 

usem ( # ) = 0 
usem ( iS ) = usem (i) + 1 

natrep ( 0 ) = # 
natrep ( j + 1 ) = (natrep (j))S 



Inductive Functions 

• Actually, inductive functions on natural numbers and 
inductive functions on syntax are the same thing: 

 

 

i ::= # | iS 
 
even (#) = true 
even (iS) = odd i 
 
odd (#) =  false 
odd (iS) = even i 

j ::= 0 | 1 | 2 | ... 
 
even (0) = true 
even (j+1) = odd j 
 
odd (0) = false 
odd (j+1) = even j 

usem ( # ) = 0 
usem ( iS ) = usem (i) + 1 

natrep ( 0 ) = # 
natrep ( j + 1 ) = (natrep (j))S 



Summary 

• Define syntax using BNF notation: 
 
 

• Define denotation semantics using functions from syntax to 
mathematical objects like natural numbers, booleans, sets, or 
functions: 
 
 
 
 

• Denotational functions are 
– total  

• f is total when for any x with an appropriate type,  f(x) produces a result 
• note:  sometimes denotational functions will not be total; in such cases 

we are intentionally saying that some bit of syntax is meaningless 
– inductive 

• functions are only called recursively on smaller arguments 
• a smaller argument is a proper subexpression of the original argument.  

This is called structural induction or induction on syntax 
 

b ::= # | b0 | b1  

binsem (#) = 0  
binsem (b0) = binsem(b)  
binsem (b1) = binsem(b) + 1  



Reminders 

• Sign up for the course email list: 
– https://lists.cs.princeton.edu/mailman/listinfo/cos441 

 

• Read the course web site: 
– http://www.cs.princeton.edu/~dpw/cos441-11 

 

• Start the first assignment (parts I and II) 
– due 1pm Tuesday Sept 27 

– see course web site for late policy 

 

• Get ready for assignment 2 by downloading Haskell: 
– http://hackage.haskell.org/platform// 

– see course web site for learning materials 


