
Programming Languages
COS 441

Intro

Denotational Semantics I

David Walker
Professor

Research: Programming Languages
Email: dpw@cs

Course Staff

Chris Monsanto
Grad Student TA

Research: Programming Languages
Email: cmmonsan@cs

Andrew Appel
Professor & Department Chair

Research: Programming Languages

This Week (Sept 16, 19, 21)

Professor Walker is in Tokyo, at the
International Conference on
Functional Programming

What is this course about?

• What do programs do?
– We are going to use mathematics as opposed to English or

examples to describe what programs do

– Our descriptions are going to be complete and exact

• For any language we study, they will cover all programs and
all corner cases

• How do we answer questions about programs and
programming languages?
– Since we have complete and exact mathematical descriptions of

programs, we can prove strong properties about them

• eg: Will this program crash? Will any program crash?

• Experience new and powerful programming languages

How is this course different from COS 441 last year?

• Last year, the new and powerful PL was called Coq
– Coq is interactive theorem prover, not a programming language

you’d use to build ordinary, day-to-day applications

• This year, the new and powerful PL is Haskell
– Haskell is a programming language you’d use to build day-to-day

applications
– It’s a functional language with an amazing type system and a

terse syntax that puts Java to shame
• one line of Haskell is often worth 2 or more lines of Java

– It’s got a bunch of cool features like higher-order functions,
infinite data structures, algebraic data types, data-parallel
programming and concurrent transactions

– It’s also got strong support for defining your own domain-
specific languages (DSLs); we’ll explore that support by
developing DSLs for creating simple animations, modeling
financial contracts and programming networks

Logistics & Homework

• Sign up for the course email list:
– https://lists.cs.princeton.edu/mailman/listinfo/cos441

• Read the course web site:

– http://www.cs.princeton.edu/~dpw/cos441-11

• Start assignment 1

– you can do parts I and II when this lecture is complete
– you can do other parts after the second or third lectures
– due 1pm Tuesday Sept 27
– see course web site for late policy

• Get ready for assignment 2 by downloading Haskell:

– http://hackage.haskell.org/platform//
– see course web site for learning materials

THIS WEEK:
DENOTATIONAL SEMANTICS

Semantics of Programs

• Many ways to use mathematics to give meaning to programs
– Operational semantics: a step by step account of how to execute a

program. For each instruction, explain what program variables or data
structures get updated. Useful for building an interpreter that
executes a program and computes its results. Easy to scale to very
complex languages. Easy to prove some simple properties of
programs. Harder to prove deeper properties without additional
work.

– Axiomatic semantics: describes what a program does in terms of
logical preconditions and postconditions. Useful for building program
analyzers that examine programs before they are run to detect bugs.

– Denotational semantics: describes the meaning of a program by
transforming the syntax of the program into a well-known
mathematical object like a set or a mathematical function. Easy to
describe and prove deep properties about simple languages. Harder
to scale in some cases.
• We will start with simple denotational semantics

Denotational Modus Operandi

• When employing denotational semantics we are
going to proceed as follows:
1. Define the syntax of the language

• How do you write the programs down?

• Use BNF notation (BNF = Backus Naur Form)

2. Define the denotation (aka meaning) of the language

• Use a function from syntax to mathematical objects

• Make sure the function is inductive and (usually) total

3. Prove something about the language

• Most of our proofs about denotational definitions will
be by induction on the structure of the syntax of the
language
– We will explain what that means and how to do it in a later

lecture.

DEFINING SYNTAX

Binary Numbers: Informal Definitions

• Examples of the syntax of binary numbers:

– #1

– #0

– #110

– #1101010

– #00101

– #

• English description of the syntax binary numbers:

– A binary number is a hash sign followed by a (possibly
empty) sequence of zeros

equivalent to zero

Binary Numbers: Formal Syntax

b ::= # | b0 | b1

metavariable b
stands for any item
being defined

Examples:
• #01
• #
• #1
• #0001

“:=“ can be read “is defined to be”

vertical bar separates
alternatives in the definition

• How to read the definition in English:
– a b can either be:

• a #, or
• any b followed by a 0, or
• any b followed by a 1

Binary Numbers: Formal Syntax

b ::= # | b0 | b1

metavariable b
stands for any item
being defined

Examples:
• #01
• #
• #1
• #0001

“:=“ can be read “is defined to be”

vertical bar separates
alternatives in the definition

• Question: is #01 a binary number? Yes. Justification:
– #01 has the form b1 where b = #0 and:
– #0 has the form b’0 where b’ = # and:
– # is unconditionally a binary number

• Comment: if we need to refer to lots of different binary numbers, we will
use the same basic letter but add primes and subscripts: b’, b’’, b’’’, b1, b2,
... to distinguish them

Binary Numbers: Formal Syntax

b ::= # | b0 | b1

metavariable b
stands for any item
being defined

Examples:
• #01
• #
• #1
• #0001

“:=“ can be read “is defined to be”

vertical bar separates
alternatives in the definition

• Question: is #071 a binary number? No! Justification:
– #071 can only be a binary number if it matches one of the three

patterns given above. #071 matches the second pattern if #07
is a binary number, but:

– #07 is not a binary number because it is not # and it does not
have the form b0 and it does not have the form b1 for any b

Binary Numbers: Formal Syntax

b ::= # | b0 | b1

• What we’ve got so far:
– some notation defined for binary numbers: #01, #0010, ...
– a mechanical procedure for checking whether or not some bit of

syntax is a binary number. Procedure:
• is the syntax # ? If so, succeed. It is a binary number.
• does the syntax end with “0”? If so, recursively check that the

prefix is a binary number. If not, fail.
• does the syntax end with “1”? If so, recursively check that the

prefix is a binary number. If not, fail.
• if the syntax is anything else, fail.

• Terminology:
– we call # a base case because it contains no references to b, the thing

being defined.
– we call 0b and 1b inductive cases because they do contain references

to b, the thing being defined.

Other Examples: Hex Numbers

h ::= # | h0 | h1 | h2 | h3 | h4 | h5 | h6 | h7 | h8 | h9 | hA | hB | hC | hD | hE | hF

• Examples:
– #001AAF

– #FFB345

– #

– #1001

• Question: How can we tell the difference between
constants like A, B, C, D and metavariables like h?

• Answer: h appears to the left of ::=
– If a character or string does not appear to left of ::=, assume it is

a constant

Other Examples: Mixed Numbers

h ::= # | h0 | h1 | h2 | h3 | h4 | h5 | h6 | h7 | h8 | h9 | hA | hB | hC | hD | hE | hF
b ::= # | b0 | b1
n ::= hex h | bin b

• Examples of n:
– hex #7352AAA, bin #00110, hex #00110

• Non-examples of n:
– bin #7352AAA, bin (hex #888)

• Comment:

– programming languages have lots of different kinds of syntax in
them so we typically have to define many different
metavariables

– eg: java has numbers, strings, statements, expressions, types,
class definitions, ...

Other Examples: Arithmetic Expressions

h ::= # | h0 | h1 | h2 | h3 | h4 | h5 | h6 | h7 | h8 | h9 | hA | hB | hC | hD | hE | hF
b ::= # | b0 | b1
n ::= hex h | bin b
e ::= num n | add(e,e) | mult(e, e)

• Examples of e:
– num (hex #7352AAA)
– add (num (hex #00110), mult(num (bin #0), num (bin #10)))

• Non-examples of e:

– num (hex (#FF + #AA))
– bin #011
– num #FF

• Comment:

– we added some extra parentheses in the expressions above; these extra
parens aren’t part of the “official” syntax.

– we use them to make the structure of an expression clear.

An Aside: Abstract vs. Concrete Syntax
• First phase of a typical compiler:

• Concrete syntax: a sequence of characters in a text file
• Abstract syntax: structured data that represents the key information needed

for semantic analysis
– discards whitespace, comments, tokens used to make programs easy to read

• COS 441 deals with analysis of abstract syntax
– we don’t worry about extra whitespace, parens, etc.; we care about structure

• COS 320 deals with concrete syntax and parsing

x = 3;\n y = x + 2;

concrete syntax

assign(x,) assign(y,)

constant(3) plus (x, 2)

sequence(,)

parsing

abstract syntax

linear series of characters
in text file

structured representation
used for analysis

One more example: Unary Numbers

i ::= # | iS

zero the number after i
(the Successor)

• Examples:

– #S (one)

– #SSSS (four)

– #SS (two)

DENOTATIONAL SEMANTICS!

Denotational Semantics

• Given a binary number #10 you and I have a good idea of
what it means. But how can we be sure we agree on the
details?

• One way is translate it into a common language – the
language of mathematics. That’s what a denotational
semantics does.

Denotational Semantics: Binary Numbers

• The denotation (ie: meaning) of an element of binary
number syntax is a natural number

• We’ll be precise by defining a mathematical function:

binsem (#) = 0

binsem (b0) = 2*(binsem(b))

binsem (b1) = 2*(binsem(b)) + 1

Denotational Semantics: Binary Numbers

• The denotation (ie: meaning) of an element of binary
number syntax is a natural number

• We’ll be precise by defining a mathematical function:

binsem (#) = 0

binsem (b0) = 2*(binsem(b))

binsem (b1) = 2*(binsem(b)) + 1

each argument is a pattern drawn from the syntax definition:
b ::= # | b0 | b1

metavariables appearing in the argument position (like b)
 are used in the right-hand side

each result is
a natural number

Denotational Semantics: Hex Numbers

• The denotation (ie: meaning) of hex number syntax is
also a natural number:

hexsem (#) = 0

hexsem (h0) = 16*(hexsem(h))

hexsem (h1) = 16*(hexsem(h)) + 1

hexsem (h2) = 16*(hexsem(h)) + 2

...

hexsem (hF) = 16*(hexsem(h)) + 15

each argument is
hex syntax

results are
natural numbers

Denotational Semantics: Mixed Numbers

• The denotation (ie: meaning) of mixed number syntax
is also a natural number:

mixsem (hex (h)) = hexsem (h)

mixsem (bin (b)) = binsem (b)

Note: You may be seeing a bit of a trend here in that the results are always
natural numbers but that is an artifact of the arithmetic examples I have
chosen for this lecture.

In later lectures, we will see other kinds of results (sets, functions, heaps, etc.)
in denotation functions

Denotational Semantics: Arithmetic Expressions

• The denotation (ie: meaning) of an element of
arithmetic expression syntax is a natural number:

expsem (num (n)) = mixsem (n)

expsem (add (e1,e2)) = expsem (e1) + expsem (e2)

expsem (mult (e1,e2)) = expsem (e1) * expsem (e2)

e ::= num n | add(e,e) | mult(e, e)

Denotational Semantics: Unary Numbers

• The denotation (ie: meaning) of an element of unary
number syntax is a natural number:

usem (#) = 0

usem (iS) = expsem (i) + 1

i ::= # | iS

GOOD DEFINITIONS VS. BAD ONES
(TOTALITY)

Good Definitions

• Can I write down just any equation I want to define
the semantics of some piece of syntax?

• What are the criteria?

Good Definitions: Totality

• Can I write down just any equation I want to define
the semantics of some piece of syntax?

• What are the criteria?

• Here’s our semantics of binary numbers:

binsem (#) = 0

binsem (b0) = 2*(binsem(b))

binsem (b1) = 2*(binsem(b)) + 1

Is the definition total?
Are there any binary numbers whose semantics are left undefined?

Good Definitions: Totality

binsem (#) = 0

binsem (b0) = 2*(binsem(b))

binsem (b1) = 2*(binsem(b)) + 1

b ::= # | b0 | b1 <----- Recall the syntax

Good Definitions: Totality

binsem (#) = 0

binsem (b0) = 2*(binsem(b))

binsem (b1) = 2*(binsem(b)) + 1

b ::= # | b0 | b1 <----- Recall the syntax

A mathematical function
defined on syntax
is total when it produces
a result for every
element of the function
domain.

Good Definitions: Totality

binsem (#) = 0

binsem (b0) = 2*(binsem(b))

Not Total (missing case for b1)

binsem (#) = 0

binsem (#0) = 0

binsem (b1) = 2*(binsem(b)) + 1

binsem (b00) = 4*(binsem(b))

binsem (b10) = 4*(binsem(b)) + 2

Total but a lot
harder to check
that we haven’t
missed any cases!

Sticking with cases
that exactly match
the syntax definition
is typically a better bet
but not always the
most concise.

Good Definitions: Totality

binsem (#) = 0

binsem (#0) = 0

binsem (b1) = 2*(binsem(b)) + 1

binsem (b00) = 4*(binsem(b))

binsem (b10) = 4*(binsem(b)) + 2

binsem (#) = 0
binsem (b1) = 2*(binsem(b)) + 1
binsem (b0) = auxsem (b)

auxsem (#) = 0
auxsem (b0) = 4*binsem(b)
auxsem (b1) = 4*binsem(b) + 2

convert less obvious total functions into obvious
ones by introducing auxiliary functions:

every function definition has
exactly one case per syntactic
alternative:
b ::= # | b0 | b1

GOOD DEFINITIONS VS. BAD ONES
(INDUCTION)

Denotational Semantics: Binary Numbers

• What about this function:

• Is it total? What’s wrong?

binsem (#) = 0

binsem (b0) = binsem (b0)

binsem (b1) = binsem (b1)

Denotational Semantics: Binary Numbers

• What about this function:

• Is it total? What’s wrong?
– binsem does not terminate on all inputs

• it is not total

– in addition, binsem is not an inductive function

• inductive functions are functions that are guaranteed to
terminate because recursive calls are made on smaller
arguments and ...

• the argument type is such that it contains no infinitely
shrinking series of values
– BNF syntax definitions never “shrink infinitely” --- valid syntax is

built from base cases using a finite number of BNF rules

binsem (#) = 0

binsem (b0) = binsem (b0)

binsem (b1) = binsem (b1)

Inductive Functions

• What counts as “smaller”?

– Functions with calls to proper syntactic subexpressions

• aka: structural induction or induction on syntax

 b ::= # | b0 | b1

f(#) = ... (no calls) ...
f(#0) = ... (no calls) ...
f(b0) = ... f(b) ...
f(b1) = ... f(b) ... f (b) ...

f(b0) = ... f(b0) ...
f(b1) = ... f(b11) ...

e ::= num (bin b) | add(e,e) | mult(e, e)

g(num (bin b)) = ... f (b) ...
g(add (e1, e2)) = ... g (e1) ... g (e2) ...
g(mult (e1, e2)) = ... g (e1) ... g (e2) ...

inductive

not inductive

inductive

no calls
always ok

multiple calls to
subexpressions ok

identical calls bad

identical calls to larger
expressions bad

calls to other
inductive functions
ok

Inductive Functions

• What counts as “smaller”?

– Functions are allowed to be mutually inductive:

binsem (#) = 0
binsem (b1) = 2*(binsem(b)) + 1
binsem (b0) = auxsem (b)

auxsem (#) = 0
auxsem (b0) = 4*binsem(b)
auxsem (b1) = 4*binsem(b) + 2

all calls in any of the right-hand
sides are calls with smaller
arguments than appear on
the left-hand side of the
corresponding equation.

Inductive Functions

• If you have taken COS 340 (or other math courses)
you know that functions on the natural numbers can
also be inductive

– the right-hand side makes calls on smaller natural numbers

– here is a mutually inductive definition of even and odd as
functions from the natural numbers to booleans:

natural numbers: j ::= 0 | 1 | 2 | ...

even (0) = true odd (0) = false
even (j+1) = not (odd (j)) odd (j+1) = not (even(j))

smaller number: j < j + 1

Inductive Functions

• Actually, inductive functions on natural numbers and
inductive functions on syntax are the same thing:

i ::= # | iS

j ::= 0 | 1 | 2 | ...

Inductive Functions

• Actually, inductive functions on natural numbers and
inductive functions on syntax are the same thing:

i ::= # | iS

j ::= 0 | 1 | 2 | ...

usem (#) = 0
usem (iS) = usem (i) + 1

Inductive Functions

• Actually, inductive functions on natural numbers and
inductive functions on syntax are the same thing:

i ::= # | iS

j ::= 0 | 1 | 2 | ...

usem (#) = 0
usem (iS) = usem (i) + 1

natrep (0) = #
natrep (j + 1) = (natrep (j))S

Inductive Functions

• Actually, inductive functions on natural numbers and
inductive functions on syntax are the same thing:

i ::= # | iS

even (#) = true
even (iS) = odd i

odd (#) = false
odd (iS) = even i

j ::= 0 | 1 | 2 | ...

even (0) = true
even (j+1) = odd j

odd (0) = false
odd (j+1) = even j

usem (#) = 0
usem (iS) = usem (i) + 1

natrep (0) = #
natrep (j + 1) = (natrep (j))S

Summary

• Define syntax using BNF notation:

• Define denotation semantics using functions from syntax to
mathematical objects like natural numbers, booleans, sets, or
functions:

• Denotational functions are
– total

• f is total when for any x with an appropriate type, f(x) produces a result
• note: sometimes denotational functions will not be total; in such cases

we are intentionally saying that some bit of syntax is meaningless
– inductive

• functions are only called recursively on smaller arguments
• a smaller argument is a proper subexpression of the original argument.

This is called structural induction or induction on syntax

b ::= # | b0 | b1

binsem (#) = 0
binsem (b0) = binsem(b)
binsem (b1) = binsem(b) + 1

Reminders

• Sign up for the course email list:
– https://lists.cs.princeton.edu/mailman/listinfo/cos441

• Read the course web site:
– http://www.cs.princeton.edu/~dpw/cos441-11

• Start the first assignment (parts I and II)
– due 1pm Tuesday Sept 27

– see course web site for late policy

• Get ready for assignment 2 by downloading Haskell:
– http://hackage.haskell.org/platform//

– see course web site for learning materials

