Programming Languages
COS 441

Intro

Denotational Semantics I
Course Staff

David Walker
Professor
Research: Programming Languages
Email: dpw@cs

Chris Monsanto
Grad Student TA
Research: Programming Languages
Email: cmmonsan@cs
This Week (Sept 16, 19, 21)

Professor Walker is in Tokyo, at the International Conference on Functional Programming

Andrew Appel
Professor & Department Chair

Research: Programming Languages
What is this course about?

• What do programs do?
 – We are going to use mathematics as opposed to English or examples to describe what programs do
 – Our descriptions are going to be complete and exact
 • For any language we study, they will cover all programs and all corner cases

• How do we answer questions about programs and programming languages?
 – Since we have complete and exact mathematical descriptions of programs, we can prove strong properties about them
 • eg: Will this program crash? Will any program crash?

• Experience new and powerful programming languages
How is this course different from COS 441 last year?

• Last year, the new and powerful PL was called Coq
 – Coq is interactive theorem prover, not a programming language you’d use to build ordinary, day-to-day applications

• This year, the new and powerful PL is Haskell
 – Haskell is a programming language you’d use to build day-to-day applications
 – It’s a functional language with an amazing type system and a terse syntax that puts Java to shame
 • one line of Haskell is often worth 2 or more lines of Java
 – It’s got a bunch of cool features like higher-order functions, infinite data structures, algebraic data types, data-parallel programming and concurrent transactions
 – It’s also got strong support for defining your own domain-specific languages (DSLs); we’ll explore that support by developing DSLs for creating simple animations, modeling financial contracts and programming networks
Logistics & Homework

• Sign up for the course email list:
 – https://lists.cs.princeton.edu/mailman/listinfo/cos441

• Read the course web site:

• Start assignment 1
 – you can do parts I and II when this lecture is complete
 – you can do other parts after the second or third lectures
 – due 1pm Tuesday Sept 27
 – see course web site for late policy

• Get ready for assignment 2 by downloading Haskell:
 – http://hackage.haskell.org/platform/
 – see course web site for learning materials
THIS WEEK:
DENOTATIONAL SEMANTICS
Semantics of Programs

• Many ways to use mathematics to give meaning to programs
 – **Operational semantics**: a step by step account of how to execute a program. For each instruction, explain what program variables or data structures get updated. Useful for building an interpreter that executes a program and computes its results. Easy to scale to very complex languages. Easy to prove some simple properties of programs. Harder to prove deeper properties without additional work.

 – **Axiomatic semantics**: describes what a program does in terms of logical preconditions and postconditions. Useful for building program analyzers that examine programs before they are run to detect bugs.

 – **Denotational semantics**: describes the meaning of a program by transforming the syntax of the program into a well-known mathematical object like a set or a mathematical function. Easy to describe and prove deep properties about simple languages. Harder to scale in some cases.
 • We will start with simple denotational semantics
Denotational Modus Operandi

• When employing denotational semantics we are going to proceed as follows:
 1. Define the syntax of the language
 • How do you write the programs down?
 • Use BNF notation (BNF = Backus Naur Form)
 2. Define the denotation (aka meaning) of the language
 • Use a function from syntax to mathematical objects
 • Make sure the function is inductive and (usually) total
 3. Prove something about the language
 • Most of our proofs about denotational definitions will be by induction on the structure of the syntax of the language
 – We will explain what that means and how to do it in a later lecture.
DEFINING SYNTAX
Binary Numbers: Informal Definitions

• **Examples** of the syntax of binary numbers:
 – #1
 – #0
 – #110
 – #1101010
 – #00101
 – # equivalent to zero

• **English description** of the syntax binary numbers:
 – A binary number is a hash sign followed by a (possibly empty) sequence of zeros
Binary Numbers: Formal Syntax

“:=“ can be read “is defined to be”

\[b ::= \# | b0 | b1 \]

- metavariable \(b \) stands for any item being defined
- vertical bar separates alternatives in the definition

Examples:
- #01
- #
- #1
- #0001

- How to read the definition in English:
 - a \(b \) can either be:
 - a \#\, or
 - any \(b \) followed by a 0, or
 - any \(b \) followed by a 1
Binary Numbers: Formal Syntax

“:=” can be read “is defined to be”

\[
b ::= \# | b0 | b1
\]

metavariable \(b \) stands for any item being defined

vertical bar separates alternatives in the definition

Examples:
- \#01
- \#0
- \#1
- \#0001

• Question: is \#01 a binary number? Yes. Justification:
 - \#01 has the form \(b1 \) where \(b = \#0 \) and:
 - \#0 has the form \(b'0 \) where \(b' = \# \) and:
 - \# is unconditionally a binary number

• Comment: if we need to refer to lots of different binary numbers, we will use the same basic letter but add primes and subscripts: \(b', b'', b''', b_1, b_2, \ldots \) to distinguish them
Binary Numbers: Formal Syntax

“:=“ can be read “is defined to be”

```
b ::= # | b0 | b1
```

metavariable \(b\) stands for any item being defined

vertical bar separates alternatives in the definition

Examples:
- #01
- #
- #1
- #0001

• Question: is \#071\ a binary number? No! Justification:
 - \#071\ can only be a binary number if it matches one of the three patterns given above. \#071\ matches the second pattern if \#07\ is a binary number, but:
 - \#07\ is not a binary number because it is not \# and it does not have the form \(b0\) and it does not have the form \(b1\) for any \(b\)
Binary Numbers: Formal Syntax

\[b ::= \# | b0 | b1 \]

- **What we’ve got so far:**
 - some notation defined for binary numbers: \#01, \#0010, ...
 - a mechanical procedure for checking whether or not some bit of syntax is a binary number. Procedure:
 - is the syntax \# ? If so, succeed. It is a binary number.
 - does the syntax end with “0”? If so, recursively check that the prefix is a binary number. If not, fail.
 - does the syntax end with “1”? If so, recursively check that the prefix is a binary number. If not, fail.
 - if the syntax is anything else, fail.

- **Terminology:**
 - we call \# a **base case** because it contains no references to \(b \), the thing being defined.
 - we call 0b and 1b **inductive cases** because they do contain references to \(b \), the thing being defined.
Other Examples: Hex Numbers

\[h ::= \# | h0 | h1 | h2 | h3 | h4 | h5 | h6 | h7 | h8 | h9 | hA | hB | hC | hD | hE | hF \]

- **Examples:**
 - #001AAF
 - #FFB345
 - #
 - #1001

- **Question:** How can we tell the difference between constants like A, B, C, D and metavariables like h?

- **Answer:** h appears to the left of ::=
 - If a character or string does not appear to left of ::=, assume it is a constant
Other Examples: Mixed Numbers

\[h ::= \# | h0 | h1 | h2 | h3 | h4 | h5 | h6 | h7 | h8 | h9 | hA | hB | hC | hD | hE | hF \]

\[b ::= \# | b0 | b1 \]

\[n ::= \text{hex } h \mid \text{bin } b \]

• Examples of \(n \):
 – hex \#7352AAA, bin \#00110, hex \#00110

• Non-examples of \(n \):
 – bin \#7352AAA, bin (hex \#888)

• Comment:
 – programming languages have lots of different kinds of syntax in them so we typically have to define many different metavariables
 – eg: java has numbers, strings, statements, expressions, types, class definitions, ...
Other Examples: Arithmetic Expressions

h ::= # | h0 | h1 | h2 | h3 | h4 | h5 | h6 | h7 | h8 | h9 | hA | hB | hC | hD | hE | hF
b ::= # | b0 | b1
n ::= hex h | bin b
e ::= num n | add(e,e) | mult(e, e)

• Examples of e:
 – num (hex #7352AAA)
 – add (num (hex #00110), mult(num (bin #0), num (bin #10)))

• Non-examples of e:
 – num (hex (#FF + #AA))
 – bin #011
 – num #FF

• Comment:
 – we added some extra parentheses in the expressions above; these extra parens aren’t part of the “official” syntax.
 – we use them to make the structure of an expression clear.
An Aside: Abstract vs. Concrete Syntax

- First phase of a typical compiler:
 - **Concrete syntax**: a sequence of characters in a text file
 - **Abstract syntax**: structured data that represents the key information needed for semantic analysis
 - discards whitespace, comments, tokens used to make programs easy to read
 - **COS 441** deals with analysis of abstract syntax
 - we don’t worry about extra whitespace, parens, etc.; we care about structure
 - **COS 320** deals with concrete syntax and parsing

Diagram:

```
concrete syntax
x = 3;\n y = x + 2;
```

```
abstract syntax
sequence( , )
assign(x, )
assign(y, )
constant(3)
plus (x, 2)
```
One more example: Unary Numbers

i ::= # | iS

- zero
- the number after i (the Successor)

• Examples:
 - #S (one)
 - #SSSS (four)
 - #SS (two)
DENOTATIONAL SEMANTICS!
Denotational Semantics

• Given a binary number #10 you and I have a good idea of what it means. But how can we be sure we agree on the details?
• One way is translate it into a common language – the language of mathematics. That’s what a denotational semantics does.
Denotational Semantics: Binary Numbers

• The **denotation** (ie: meaning) of an element of binary number syntax is a natural number
• We’ll be precise by defining a mathematical function:

\[
\begin{align*}
\text{binsem} (\#) &= 0 \\
\text{binsem}(b0) &= 2 \times (\text{binsem}(b)) \\
\text{binsem}(b1) &= 2 \times (\text{binsem}(b)) + 1
\end{align*}
\]
Denotational Semantics: Binary Numbers

• The **denotation** (ie: meaning) of an element of binary number syntax is a natural number

• We’ll be precise by defining a mathematical function:

\[
\begin{align*}
\text{binsem}(\#) &= 0 \\
\text{binsem}(b0) &= 2 \times (\text{binsem}(b)) \\
\text{binsem}(b1) &= 2 \times (\text{binsem}(b)) + 1
\end{align*}
\]

each result is a natural number

each argument is a pattern drawn from the syntax definition:

\[
b ::= \# | b0 | b1
\]

metavariabes appearing in the argument position (like \(b\)) are used in the right-hand side
Denotational Semantics: Hex Numbers

• The **denotation** (ie: meaning) of hex number syntax is also a natural number:

\[
\begin{align*}
\text{hexsem}(\#) &= 0 \\
\text{hexsem}(h0) &= 16 \times (\text{hexsem}(h)) \\
\text{hexsem}(h1) &= 16 \times (\text{hexsem}(h)) + 1 \\
\text{hexsem}(h2) &= 16 \times (\text{hexsem}(h)) + 2 \\
& \vdots \\
\text{hexsem}(hF) &= 16 \times (\text{hexsem}(h)) + 15
\end{align*}
\]

- each argument is hex syntax
- results are natural numbers
Denotational Semantics: Mixed Numbers

- The **denotation** (ie: meaning) of mixed number syntax is also a natural number:

\[
\begin{align*}
\text{mixsem (hex (h))} &= \text{hexsem (h)} \\
\text{mixsem (bin (b))} &= \text{binsem (b)}
\end{align*}
\]

Note: You may be seeing a bit of a trend here in that the results are always natural numbers but that is an artifact of the arithmetic examples I have chosen for this lecture.

In later lectures, we will see other kinds of results (sets, functions, heaps, etc.) in denotation functions.
Denotational Semantics: Arithmetic Expressions

- The **denotation** (ie: meaning) of an element of arithmetic expression syntax is a natural number:

 \[e ::= \text{num } n \mid \text{add}(e,e) \mid \text{mult}(e,e) \]

 \[
 \begin{align*}
 \text{expsem} \left(\text{num } (n) \right) &= \text{mixsem} \left(n \right) \\
 \text{expsem} \left(\text{add} \left(e_1, e_2 \right) \right) &= \text{expsem} \left(e_1 \right) + \text{expsem} \left(e_2 \right) \\
 \text{expsem} \left(\text{mult} \left(e_1, e_2 \right) \right) &= \text{expsem} \left(e_1 \right) \times \text{expsem} \left(e_2 \right)
 \end{align*}
 \]
Denotational Semantics: Unary Numbers

• The **denotation** (ie: meaning) of an element of unary number syntax is a natural number:

\[
i ::= \# \mid iS
\]

\[
\begin{align*}
\text{usem (#)} &= 0 \\
\text{usem (iS)} &= \text{expsem (i) + 1}
\end{align*}
\]
GOOD DEFINITIONS VS. BAD ONES (TOTALITY)
Good Definitions

• Can I write down just any equation I want to define the semantics of some piece of syntax?
• What are the criteria?
Good Definitions: Totality

• Can I write down just any equation I want to define the semantics of some piece of syntax?
• What are the criteria?
• Here’s our semantics of binary numbers:

\[
\begin{align*}
\text{binsem}(\#) &= 0 \\
\text{binsem}(b0) &= 2 \times (\text{binsem}(b)) \\
\text{binsem}(b1) &= 2 \times (\text{binsem}(b)) + 1
\end{align*}
\]

Is the definition total?
Are there any binary numbers whose semantics are left undefined?
Good Definitions: Totality

\[
\begin{align*}
\text{binsem}(\#) &= 0 \\
\text{binsem}(b_0) &= 2 \times \text{binsem}(b) \\
\text{binsem}(b_1) &= 2 \times \text{binsem}(b) + 1
\end{align*}
\]

\[
b ::= \# \mid b_0 \mid b_1 \quad \text{<----- Recall the syntax}
\]
Good Definitions: Totality

A mathematical function defined on syntax is **total** when it produces a result for every element of the function domain.

\[
\begin{align*}
\text{binsem}(\#) &= 0 \\
\text{binsem}(b0) &= 2 \times (\text{binsem}(b)) \\
\text{binsem}(b1) &= 2 \times (\text{binsem}(b)) + 1
\end{align*}
\]

\[b ::= \# | b0 | b1\]

<----- Recall the syntax
Good Definitions: Totality

\[
\begin{align*}
\text{binsem}(\#) &= 0 \\
\text{binsem}(b0) &= 2 \times \text{binsem}(b)
\end{align*}
\]

Not Total (missing case for b1)

\[
\begin{align*}
\text{binsem}(\#0) &= 0 \\
\text{binsem}(b1) &= 2 \times \text{binsem}(b) + 1 \\
\text{binsem}(b00) &= 4 \times \text{binsem}(b) \\
\text{binsem}(b10) &= 4 \times \text{binsem}(b) + 2
\end{align*}
\]

Total but a lot harder to check that we haven’t missed any cases!

Sticking with cases that exactly match the syntax definition is typically a better bet but not always the most concise.
convert less obvious total functions into obvious ones by introducing auxiliary functions:

```
binsem (#) = 0
binsem(#0) = 0
binsem(b1) = 2*binsem(b) + 1
binsem(b00) = 4*binsem(b)
binsem(b10) = 4*binsem(b) + 2

binsem (#) = 0
binsem(b1) = 2*binsem(b) + 1
binsem(b0) = auxsem(b)
auxsem(#) = 0
auxsem(b0) = 4*binsem(b)
auxsem(b1) = 4*binsem(b) + 2
```

every function definition has exactly one case per syntactic alternative:

```
b ::= # | b0 | b1
```
GOOD DEFINITIONS VS. BAD ONES
(INDUCTION)
Denotational Semantics: Binary Numbers

• What about this function:

\[
\begin{align*}
\text{binsem} \ (\#) &= 0 \\
\text{binsem} \ (b0) &= \text{binsem} \ (b0) \\
\text{binsem} \ (b1) &= \text{binsem} \ (b1)
\end{align*}
\]

• Is it total? What’s wrong?
Denotational Semantics: Binary Numbers

• What about this function:

\[
\begin{align*}
\text{binsem} (\#) &= 0 \\
\text{binsem} (b0) &= \text{binsem} (b0) \\
\text{binsem} (b1) &= \text{binsem} (b1)
\end{align*}
\]

• Is it total? What’s wrong?
 – binsem does not terminate on all inputs
 • it is not total
 – in addition, binsem is not an inductive function
 • inductive functions are functions that are guaranteed to terminate because recursive calls are made on smaller arguments and ...
 • the argument type is such that it contains no infinitely shrinking series of values
 – BNF syntax definitions never “shrink infinitely” --- valid syntax is built from base cases using a finite number of BNF rules
Inductive Functions

• What counts as “smaller”?
 – Functions with calls to proper syntactic subexpressions
 • aka: structural induction or induction on syntax

\[
\begin{align*}
 b & ::= \# | b0 | b1 \\
 f(\#) &= \ldots \text{(no calls)} \ldots \\
 f(#0) &= \ldots \text{(no calls)} \ldots \\
 f(b0) &= \ldots f(b) \ldots \\
 f(b1) &= \ldots f(b) \ldots f(b) \ldots \\
 f(b0) &= \ldots f(b0) \ldots \\
 f(b1) &= \ldots f(b1) \ldots \\
 e & ::= \text{num (bin } b) | \text{add} (e, e) | \text{mult} (e, e) \\
 g(\text{num (bin } b)) &= \ldots f(b) \ldots \\
 g(\text{add} (e_1, e_2)) &= \ldots g(e_1) \ldots g(e_2) \ldots \\
 g(\text{mult} (e_1, e_2)) &= \ldots g(e_1) \ldots g(e_2) \ldots
\end{align*}
\]
Inductive Functions

• What counts as “smaller”?
 – Functions are allowed to be mutually inductive:

\[
\begin{align*}
\text{binsem}(\#) &= 0 \\
\text{binsem}(b1) &= 2\times(\text{binsem}(b)) + 1 \\
\text{binsem}(b0) &= \text{auxsem}(b) \\
\text{auxsem}(\#) &= 0 \\
\text{auxsem}(b0) &= 4\times\text{binsem}(b) \\
\text{auxsem}(b1) &= 4\times\text{binsem}(b) + 2
\end{align*}
\]

all calls in any of the right-hand sides are calls with smaller arguments than appear on the left-hand side of the corresponding equation.
Inductive Functions

- If you have taken COS 340 (or other math courses) you know that functions on the natural numbers can also be inductive
 - the right-hand side makes calls on smaller natural numbers
 - here is a mutually inductive definition of even and odd as functions from the natural numbers to booleans:

natural numbers: \(j ::= 0 \mid 1 \mid 2 \mid ... \)

- even (0) = true
- even (j+1) = not (odd (j))
- odd (0) = false
- odd (j+1) = not (even(j))

smaller number: \(j < j + 1 \)
Inductive Functions

• Actually, inductive functions on natural numbers and inductive functions on syntax are the same thing:

\[i ::= \# | j \]

\[j ::= 0 \mid 1 \mid 2 \mid ... \]
Inductive Functions

• Actually, inductive functions on natural numbers and inductive functions on syntax are the same thing:

\[
\begin{align*}
\text{use}_{\text{m}}(\#) &= 0 \\
\text{use}_{\text{m}}(i\text{S}) &= \text{use}_{\text{m}}(i) + 1
\end{align*}
\]

\[
i ::= \# \mid i\text{S}
\]

\[
j ::= 0 \mid 1 \mid 2 \mid \ldots
\]

Inductive Functions

- Actually, inductive functions on natural numbers and inductive functions on syntax are the same thing:

\[\text{usem}(\#) = 0 \]
\[\text{usem}(\text{iS}) = \text{usem}(\text{i}) + 1 \]

\[\text{natrep}(0) = \# \]
\[\text{natrep}(j + 1) = (\text{natrep}(j))\text{S} \]
Inductive Functions

- Actually, inductive functions on natural numbers and inductive functions on syntax are the same thing:

\[
\begin{align*}
\text{usem}(\#) &= 0 \\
\text{usem}(iS) &= \text{usem}(i) + 1
\end{align*}
\]

- \(i ::= \# \mid iS\)
- \(\text{even}(\#) = \text{true}\)
- \(\text{even}(iS) = \text{odd } i\)
- \(\text{odd}(\#) = \text{false}\)
- \(\text{odd}(iS) = \text{even } i\)

- \(j ::= 0 \mid 1 \mid 2 \mid \ldots\)
- \(\text{even}(0) = \text{true}\)
- \(\text{even}(j+1) = \text{odd } j\)
- \(\text{odd}(0) = \text{false}\)
- \(\text{odd}(j+1) = \text{even } j\)

- \(\text{natrep}(0) = \#\)
- \(\text{natrep}(j+1) = (\text{natrep}(j))S\)
Summary

• Define syntax using BNF notation:

\[b ::= \# \mid b0 \mid b1 \]

• Define denotation semantics using functions from syntax to mathematical objects like natural numbers, booleans, sets, or functions:

\[
\begin{align*}
\text{binsem} (\#) &= 0 \\
\text{binsem} (b0) &= \text{binsem}(b) \\
\text{binsem} (b1) &= \text{binsem}(b) + 1
\end{align*}
\]

• Denotational functions are
 – total
 • f is total when for any x with an appropriate type, \(f(x) \) produces a result
 • note: sometimes denotational functions will not be total; in such cases we are intentionally saying that some bit of syntax is meaningless
 – inductive
 • functions are only called recursively on smaller arguments
 • a smaller argument is a proper subexpression of the original argument. This is called structural induction or induction on syntax
Reminders

• Sign up for the course email list:
 – https://lists.cs.princeton.edu/mailman/listinfo/cos441

• Read the course web site:

• Start the first assignment (parts I and II)
 – due 1pm Tuesday Sept 27
 – see course web site for late policy

• Get ready for assignment 2 by downloading Haskell:
 – http://hackage.haskell.org/platform//
 – see course web site for learning materials