COS 441 Assignment #5: Monads

Most of the materials forthis assignment may be found in a5-materials.tar.gz. Download that bundle
fromthe course website. Email the bundle back tothe TA by the assignment deadline.

Part |
Examine the file monad.lhs. Answerthe questions about monads and monad laws within the file.
Partll

Examine the file Expressions.hs. This filedepends upon the file State.hs (whichis extremelysimilarto
but notidentical tothe file State.hs used in the previous assignment). Expressions.hs containsan
expression language with several features:

e Stringexpressionsaswell asIntegerexpressions (avalueiseitherastringor an integer)
e Division expressions (including possibly division by zero, which raises an exception)
e PrintThenele2, whichprintsthe stringthat el evaluatestoandthenreturnse2

Your jobis to implementan evaluator function “eval” forthe Expression language
with thistype:

type Result=(String, Either Value Exception)

eval :: State -> Exp -> Result

Eitherisa typeinthe standard Haskell library. It’s definitionis:

Eithera b = Lefta | Rightb

So, if evaluation of your expression raises an exception e, you should return “Right e” as the result of
evaluation. If evaluation of your expression does notraise an exception, you should return “Leftv”
where vis the value the expression computes. Ineithercase, youshouldalsoreturnthe stringsthat is
printed during the course of evaluation.

In orderto implementthe evaluator, you must make use of monads and do notation to help manage the
“plumbing” thatarises. Thereisa spotin Expressions.hsforyoutodefine yourown monadto helpyou
write the evaluator code. The firstthingto do to define your monadis to choose the type of the
monad. Please call your monad type “Effectsa.”

newtype Effectsa=....

Then proceed to define the return and bind (ie: “>>=") functions forthe monad. You should checkthat
your monad obeysthe monad laws 1-3 discussed in part | of thisassignment, butyou do not have to
handin a formal proof that they do.

As wesaw in lecture, itis often useful to define some auxiliary functions (in addition to return and bind)
that help a programmer program with a monad. For example, inslides17, slide number 13, fromthe
course website, we defined the function “printme” with type String ->Outa. Thisfunction was usedto
printa string withinamonad. You may find it useful to create anothersuch function. Otherexamples
of such auxiliary functions are “getState” and “setState” used with the storage monad. Since this
evaluatoruses exceptions, you will want to think carefully about what kinds of auxiliary functions you
needto helpyou create and raise exceptions within the monad. Forexample, we recommend you
create a function “raise” that will throw an exceptioninyourmonad. Moral of the story: Think carefully
about how to structure yourcode soitiscleanand clear. If there are repeatedidiomsthatcan be
factored outinto clean functions, youshould doso. Yourevaluatorwill notonly be judgedonits
correctness butalso on the clarity of its code.

Keep the following constraintsin mind when implementing and testing your evaluator:

e Ifdivisionbyzerooccurs,the divide_by zero_exception should be thrown

e Ifan operatorisappliedtothe wrongtype of value the bad_type_exception should be thrown.
Eg: if an expressiontries toadd strings or concatenate integers, throw the bad_type_exception

e Ifan expressionreferstoavariable thatdoes not have a value inthe current state, the
undefined_variable_exception should be thrown

e Argumentsof expressions are evaluated left-to-right. So, assumingthata and b are integer
constants, the expression:
(PrintThen “X”a) :+: (PrintThen “Y”b)
should produce the string “XY” and returnthe integervalue resulting from a+b.

e Ifevaluation encounters an exception, nofurther printing should occur but the string printed so
far should be retainedinthe final result. Forexample:
(PrintThen “X” a) :/: (num Q)
should produce the string “X” as a final result (not

awn»

) as well asraisinga
divide_by_zero_exception

Send email tothe cos441 mailinglist forclarification on the semantics of evaluation of expressions.

