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Abstract

Let A be the incidence matrix of an m-by-n set system, and let
t = tr M, where M = ATA. Finally, let 0 = tr M? be the sum of
squares of the elements of M. We prove that the hereditary discrepancy
of the set system is at least § ¢/t \/t/n, with ¢ = 1/324. This general
trace bound allows us to resolve discrepancy-type questions for which
spectral methods had previously failed. Also, by using this result in
conjunction with the “spectral lemma” for linear circuits, we derive
new complexity bounds for range searching.

e We show that the (red-blue) discrepancy of the set system formed
by n points and n lines in the plane is Q(n'/¢) in the worst case
and always' O(n'/%).

e We give a simple ezplicit construction of n points and n halfplanes
with hereditary discrepancy Q(n'/4).

e We provide a construction of n points and n axis-parallel boxes
in dimension O(logn/loglogn) with discrepancy n(1/leglogn),

e Applying these discrepancy results together with a new variation
of the spectral lemma, we derive a lower bound of Q(nlogn) on
the arithmetic complexity of off-line range searching for points
and lines (for non-monotone circuits). We also prove a lower
bound of Q(nlogn/loglogn) on the complexity of orthogonal
range searching in dimension no larger
than O(logn/loglogn).

*A preliminary version of this paper appeared in Proc. 16th Annual ACM Symp.
Comput. Geom. (2000), 64-69.
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"We use the notation O(m) and (m) as shorthand for O(mlog®m) and and
Q(m/ log®m), respectively, for some constant ¢ > 0.



1 Introduction

The red-blue discrepancy of a set system is the minimum value of ||Az||so
over all z € {—1,1}", where A is the m-by-n incidence matrix of the set
system. In a geometric context, the columns are points in R? and the rows
are the characteristic vectors of certain regions of space. The discrepancy
is not necessarily a robust notion: it might be very small but shoot up as
soon as we remove a few points. To avoid this type of pathology, Lovasz,
Spencer, and Vesztergombi [9] introduced the hereditary discrepancy, which
they defined as the maximum discrepancy of any set system derived from
A by removing any number of columns. It is important to observe that in
geometric set systems, this is just like removing points. To remove a point
from a range space gives another range space, and so in that case the hered-
itary discrepancy in fact coincides with the regular notion of discrepancy.
It is simply a more convenient tool, but not a restrictive one. Lovasz et al.
proved the classical bound, stated here for the case m = n,

1
herdisc (A) > §| det A /™.

A similar lower bound by Lovdsz and Vesztergombi [10] relates the heredi-
tary discrepancy to the volume of the convex hull of the 2n row vectors of
A and —A.

Lower bounds of this type suffer from two weaknesses: one is that the
determinant can be very small for the “wrong” reasons. In other words, the
discrepancy could be very high even though det A is very small or even null.
The other problem is that to derive a decent estimate on the determinant
might be very difficult. Harmonic analysis is the
standard vehicle for estimating the singular values of A, and hence, det A.
This works well when the set systems consist of full-dimensional regions with
smooth parameterizations (eg, points in balls, boxes, or simplices) [1, 6, 11,
12]. The approach seems to fail, however, when the regions are curves or
surfaces.

Our strategy to overcome this difficulty is to relate the discrepancy di-
rectly to combinatorial (as opposed to spectral) features of the set system.
In particular, we focus on the traces of M = ATA and M?, and prove the
following, general trace bound:



Lemma 1.1 If A is an m-by-n incidence matriz and M = AT A, then
1 M
herdisc (A) > Z cnter/trzM tI‘—,
\/ n

Note that tr AT A = tr AAT and tr (AT A)? = tr (AAT)?, and so the trace
bound is self-dual for square matrices. In particular, we can always replace
M = AT A by M = AA” if this makes calculations easier. What makes this
lower bound particularly useful is that the traces of M and M? have natural
interpretations:

1

where ¢ = 394"

e Algebraically, tr M is the sum of the eigenvalues. Combinatorially, it is
the number of ones in A. Geometrically, it is the count of point/region
incidences.

e Algebraically, tr M? is the sum of the squares of the eigenvalues. Com-
binatorially, it is the number of rectangles of ones in A (or, equiva-
lently, the number of closed paths of length 4 in the bipartite graph
corresponding to A). Geometrically, it counts the pairs of points in all
the pairwise intersections of regions.

These characterizations give us the combinatorial tools needed to resolve
a few open questions: some have to do with discrepancy theory proper,
others with the complexity of off-line range searching in a non-monotone
model (the standard model of linear circuits with bounded coefficients). A
problem instance is specified by a set system of n weighted points and m
regions. The output consists of the sums of the weights in each region. This
is equivalent to multiplying the incidence matrix A by the weight vector z.
The spectral lemma [3] states that the complexity of the problem is lower-
bounded by Q(maxy, klog M), where )y, is the k-th largest eigenvalue of AT A.
By appealing to Lemma 1.1 we are able to bypass eigenvalues altogether to
give a lower bound based solely on traces.?

Lemma 1.2 The complexity of range searching with incidence matriz A is

Qg(nlog(trM/n - 6\/trM2/n)),

where M = AT A and € > 0 is an arbitrarily small constant.

2The spectral lemma allows the presence of help gates. So can Lemma 1.2, but we
ignore this technical point for the purpose of this abstract.



This paper follows the principle of the discrepancy method [5], which
is to derive complexity bounds from discrepancy results. We specialize the
two lemmas above to two classical set systems which had resisted previous
investigations: points in lines and points in higher dimensional boxes. We
show that the (red-blue) discrepancy of the set system formed by n points
and n lines in the plane is Q(nl/ 6). Using the entropy method of discrepancy
theory we give a nearly matching upper bound of O(nl/ 6 10g2/ 3n). We also
prove that the corresponding off-line range searching problem has complexity
Q(nlogn).

The exponent of 1/6 stands in contrast with that of 1/4 associated with
points and triangles. Triangle range searching does not seem harder than
line range searching (think of Hopcroft’s problem), and the best algorithms
for both run in time O(n4/ 3), so it is intriguing that their discrepancies
should differ by so much. Of incidental interest, our techniques allow a
very elementary derivation of an Q(n'/*) bound for points and triangles.
As shown in [4], Q(n!/%) is the exact bound on the discrepancy. There
are two reasons why our bound is interesting nevertheless: (i) it is purely
combinatorial and, in particular, it requires no harmonic analysis; (ii) the
construction is explicit whereas the previous one was existential. Also, we
provide an explicit construction for n points and n axis-parallel boxes in
dimension O(logn/loglogn) with hereditary discrepancy n‘2(1/loglogn) —QOf
course, this implies the same lower bound on the standard discrepancy (but
the construction is no longer explicit). This quasi-linear discrepancy stands
in sharp contrast with the polylogarithmic bound for the fixed-dimensional
case.

We establish a lower bound of Q(nlogn) on the complexity of off-line
line range searching. The only previous result was Q(n*/?) for monotone
circuits [5]. We also prove a lower bound of Q(nlogn/loglogn) on the
complexity of orthogonal range searching in dimension O(logn/loglogn).
In fixed dimension, the lower bound is Q(nloglogn) [2]. It is intriguing to
observe that when the dimension becomes as big as roughly log n, orthogonal
range searching essentially rises to the (known) complexity level of triangle
range searching in two dimensions.



2 The Trace Bound

The linear discrepancy of an m-by-n 0/1 matrix A is defined as

lindisc (A) = max min ||[A(z — ¢)|0o-
(4) c€[-1,1]" ze{-1,1}n 14 Moo
The main advantage of the linear discrepancy over the hereditary variety
is that the continuous parameter c¢ brings linear algebra into the picture.
Lovész, Spencer, and Vesztergombi [9] proved that

herdisc (A) > %lindisc(A). (1)

By definition, for any ¢ € [—1,1]", there exists some z € {—1,1}" such that
Ac = Az +y, where y € [lindisc (4),

lindisc (A4)]™. The image of the cube [—1,1]" via A is a polyhedron in R™
whose vertices belong to A{—1,1}". We conclude:

Lemma 2.1 The polyhedron A[—1,1]" is covered by the < 2" m-dimensional
cubes of side length 2lindisc (A) centered at the vertices of A[—1,1]™.

The trace bound does not involve eigenvalues explicitly but its proof
does. Let A\ > .-+ > X, > 0 be the eigenvalues of AT A; ties are broken

arbitrarily.
Lemma 2.2 For any 1 <k <n,
lindisc (A) > 18~"/*/X,.

Proof: The singular-value decomposition of a matrix allows us to express
Aas UDVT, where U (resp. V) is the orthogonal matrix whose columns are
the eigenvectors of AA” (resp. AT A) and D is the m-by-n diagonal matrix
whose only nonzero entries are v/A1, ..., v/ A, (the singular values of A). Let
L be the subspace spanned by the k eigenvectors of AT A corresponding to
Al, ..., Ak. Consider the projection of [—1,1]" on L. We omit the proof that
projecting a cube from R" to R* creates a volume distortion factor which
lies (conservatively) between 3~™ and 3". It follows that

vol (Aproj,[-1,1]") =
VAL Agvol (proj [-1,1]") >

ok3 n\k/2 (2)



Given any z € L and y € L+, AT Az lies in L and so (Az)T(Ay) =
(AT Az)Ty = 0. In fact, not only are AL and A(L') orthogonal, but they
span all AR" and therefore (AL)L = A(L'). Tt easily follows that

Aproj;[—1,1]" = proj 4 A[—1,1]"
L AL

and by (2)
vol (proj 4 A[—1, 1]") > 2k3 7 \F/2.
By Lemma 2.1, the projection of A[—1,1]" on AL is covered by the pro-

jections of 2" cubes of side length 2lindisc (A). Accounting for the dilation
factor of 3", we find that

vol (proj 47, A[—1,1]") < 2"3™(2lindisc (4))*,
which, together with m < n, proves the lemma. O

We prove the trace bound by a probabilistic argument. Let A be the
random variable \;, where i is chosen at random uniformly in {1,...,n}.

Lemma 2.3 If n/k > 2varA/E2)X + 1, then )\, > E)N/4.

Proof: We use a second-moment argument based on a one-way Chebyshev
inequality.? For z > 0, let G, be the event, A > EX — z, and let p be its
probability.
0 = E[A|Gz]p+E[A|éw] (1-p)—EX
— (B Gs] ~ENp+ (E[\|G,] —EN) (1 —p)
< (EA[G:] —EX)p—z(1-p),

and hence,
EX| Gy > EX+z(1/p —1).

Consider the random variable E[X|Y], where Y is the o-algebra generated
by G; and G;. The conditional variance var[)|Y], defined as the variance
of E[A|Y], can never exceed the (unconditional) variance (see [8], pp. 195-
196), and so

> varE[)|Y]
> (E[\|Go] — EXp(EA|Go] — EN)* (1 - p)
>

2 2 2 2
e (1/p—1)p+a°(1-p) 22°(1/p—1).
3Interestingly, this cannot be derived directly from Chebyshev’s inequality.

var \




It follows that 1

P> 1tz 2varh’ (3)
Setting z = 3EA/4, we find that the number of eigenvalues greater than or
equal to EA/4 is at least
n
1+ (16/9E2)) var)’

which completes the proof. O

We can now prove Lemma 1.1. If we write M = ATA, t = tr M and
o = tr M2, then EX = t/n and var\ = o/n — t2/n?. Therefore, by setting
n/k to about 2(varA/E?\+1) = 2no/t?, we derive from (1) and Lemmas 2.2
and 2.3:

1
herdisc (A) > 2 lindisc (A4) >

lls—n/km > l18—2n0/t2\/z
2 - 4 n’
which proves Lemma 1.1. O

We now prove Lemma 1.2. By the spectral lemma [3], the circuit size (or,
equivalently, the straight-line complexity) of z — Az is at least Q(klog Ax),
where ), is the k-th largest eigenvalue of AT A. This result holds under the
assumption that gates compute functions of the form (u,v) — au+ Sv, with

lal, || = O(1). Set z = ey/tr M?/n in (3). Then,

Prob{)\ >trM/n — 5\/trM2/n} >

1 1
>
1+ne2varA\/tr M2 — 142

which is independent of n. Setting k¥ = [n/(1 + &72)], the spectral lemma
yields an asymptotic circuit complexity lower bound of

" —eiJtr M2
1+€_2]og<trM/n e\/tr M /n),

which proves Lemma 1.2. O

Remark: The spectral lemma allows the use of help gates, which take two
arguments and output any function of them. In the presence of h help gates,
Lemma 1.2 still holds if we replace nlog(---) by (n — ch)log(---), for some
constant ¢ > 0 depending on «.



3 Lines and Halfplanes

We consider the discrepancy of an n-by-n set system formed by points and
lines in R2. We prove a tight bound of n'/ (up to a polylogarithmic factor).
This is a surprising result because it differs so noticeably from the ©(n'/%)
bound for points and triangles.

Theorem 3.1 For any n > 0, there ezxists an n-by-n set system of points
and lines in the plane with discrepancy Q(nl/ﬁ). This is optimal up to a
factor of (logn)?/3.

Proof: We begin with the lower bound, whose one-

paragraph proof illustrates the surprising power of the trace bound. A
classical construction of Erd8s (see [13]), whose description we omit here,
produces an n-by-n set system of points and lines whose incidence matrix A
has ©(n'/3) ones per row (ie, points per line) and ©(n'/?) ones per column:
(i) each diagonal element of M = AT A is ©(n'/3), so the trace of M is
Q(n4/ 3), while the squares of the elements along the diagonal sum up to
O(n5/3); (ii) each nondiagonal element is 0/1 (at most one of the n lines
passes through two distinct points), and the number of ones among them
coincides with the number of pairs of points on any of the n lines, ie, O(n%/3).
It follows that the trace of M? is O(n®/3). By Lemma 1.1, it follows that

4/3
herdisc (4) > icnl%/a/(n‘lﬁf1 [7 _ Qtfs),
n

hence the lower bound.

We now establish an upper bound of O(n'/¢) (log n)%/® on the discrepancy
of any n-by-n set system of points and lines. Our argument builds on two
known facts. One is the Szeremédi-Trotter bound of O(m?/?n?/? + m 4 n)
on the number of incidences between n points and m lines in the plane [13,
14, 15]. The other is Beck’s partial coloring lemma of discrepancy theory [1,
5, 11]: Let (X,Ro) and (X, R1) be two set systems, and assume that

IT (Rl +1) <2075,
RERo

where n = |X]|, and that |R| < r for any R € Ry. Then, there exists a
partial coloring x : X — {—1,0,1}, such that x is nonzero over at least one
tenth of X, x(R) = 0, for each R € Ry, and |x(R)| < v/2rIn(4|R4]), for
each R € R1.



Consider a set system formed by n points and m lines. We partition it
into two sub-systems: R includes the subsets with at least r = ¢(nlogn)'/?
incidences, for some constant ¢ > 0 small enough, while R consists of the
others. Clearly, assuming that n is large enough,

r[Ro| = O(n*?|Ro|** + n + [Ra),
and so |Ry| < n/6logn and, indeed,

H (|R| +1) < (n+1)n/610gn < 2(n—1)/5_
RERy

This implies the existence of a partial coloring with at least n/10 nonzeros
and discrepancy at most proportional to

nl/ﬁ(log n)2/3. Next, we extract the points corresponding to the color 0,
and we iterate through this partial coloring process. Adding the various
discrepancies increases the bound above by only a constant factor. O

By way of illustration, here is another interesting application of the trace
bound. We describe a set system of n points and n halplanes with discrep-
ancy Q(n!/4). (The best bound [4] has no tilde factor—which in this case is
VIog n—Dbut it is purely existential.) The simple construction below illus-
trates why 1/4 is the right exponent purely by combinatorial means.

We use strips instead of halfplanes. This is equivalent, up to a con-
stant factor, since a strip is the intersection of two halfplanes. Consider
a [n'/?/logn| x |n'/?logn| square grid. The set of points consists of the
centers of all the unit squares, so their number is ©(n). Let S, , denote
the strip intersecting the top and bottom sides of the grid in the horizontal
intervals [u,u + 1] and [u + vlogn,u + vlogn + 1], respectively. The set
of strips consists of all the S, , cutting the grid’s boundary only in the top
and bottom sides: their number is clearly ©(n). For any fixed v, the strips
{Suw} are disjoint while, for any two distinct vy and v, the intersection
of any two S, ., and S,,, can be covered with a parallelogram of width 1
and height O(n'/?)/|vg —v1|log? n and thus contains O(n'/?)/|vy —v1|log? n
points. Also, S, 4, cannot intersect more than O(|vg — vi|logn) strips S,
inside the grid.

We can now bound the traces t = tr M and ¢ = tr M? for this set
system. For convenience, we consider M = AAT instead of M = AT A.
Each strip contains ©(n'/2/logn) points, so the total number of incidences
is t = Q(n%2/logn). Let Ly, .y, be the sum of the squares of the elements



in row (ug,vo) of AT A, and let P denote the set of ©(n) points:

LU‘O’UO -
= Zu,v |P N SUO,UO N SUaU|2
/ 2

= O(n/log?n) + > vtvo O(L) |v — vg|logn

lv—vo|log? n

= O(n/log%n) + O(n/log®n) Y™\  1/i = O(n/log®n).

It follows that o = O(n/logn)?. By Lemma 1.1,

1 2
: — no/t _ 1/4
herdisc (4) > 1€ \Vt/m=Q(n'/")/y/logn,

as claimed. O

Theorem 3.2 For any large enough n, there exists an n-by-n set system of
points and azis-parallel bozes in ROU08™/10glogn) yyith discrepancy nSi1/10glogn),

Proof: As usual, it suffices to prove the theorem relative to the hereditary
discrepancy; indeed, by moving the relevant points outside of the boxes, the
hereditary discrepancy becomes the actual (standard) discrepancy. Given
an integer p, define s = |,/p/logp|, d = |s/5], and k = |d/2logp]. To
establish the theorem, we may restrict ourselves to n-by-n set systems where
n is of the form p®, for a large prime p. Indeed, given an arbitrary (large)
value of n, we can apply the theorem for n' = p°, where p is defined as
the largest prime not exceeding log? n. The resulting n'-by-n' set system is
made n-by-n trivially by adding n — n’ empty boxes and far away points.
This addition does not change the discrepancy. Furthermore, by the prime
distribution law [7], it easily follows that /n < n' < n; therefore, the bounds
on the dimension and the discrepancy claimed by the theorem (for n') remain
true if we change n' into n.

So, from now on, we assume that n = p°, with s,d, k as specified above,
and p a large prime. The set of n points is a p-ary Faure set* of p® points
in R%. We postpone a review of the properties of such points to the place
in the proof where they are needed. To define our set B of n boxes B, we
consider all grids G;, ... ;, in R? consisting of cells of the form

1 1 1 . . .
E Xﬁ X”'Xﬁ’ i1+ig+---+ig=s—k.
“For a detailed description of Faure sets, see, eg, [11] pp. 51-54.

d

10



Note that the total number of such grids is (* *T971).

Each cell o of G;,.._;, is a box that contains exactly p* points Let B be a
set consisting of any p°® of these boxes chosen from (any) p* grids (we shall
prove later that there are at least p® such boxes). A few words of motivation
for the choice of parameters d, k:

e The trace t of M = AT A is equal to np¥, so k should be as large as
possible. However,

e as k grows, d = d(k) should grow to ensure that our set system contains
at least p® boxes. At the same time,

e d should be kept small enough so as to bound by a constant the expo-
nent no/t? in Lemma, 1.1 (recall that o = tr M?).

We now prove that the total number of boxes is at least p®, and so B is well
defined. The total number of boxes in all the grids is equal to # grids xp*~*,
so it is enough to show that the number of grids is at least p*. As we observed
earlier, this number is

s—kd-1) ( E )d1
d—1 2d—1)
> 9d > 2|_d/210gpj logp _ pk.

Next, we prove that the hereditary discrepancy of the set system is
nf2(1/loglogn) 55 desired. The number of points in each box is p* and so
the trace t satisfies

b ph/2 = pilmgs 35l 5 ps/2liosn — 9f(s)

—=p >
n
_ nQ(l/loglogn)' (4)
On the other hand, the trace of M? satisfies
o <p* Z{ (#inters.)? |
relative to a fixed box and all boxes in B } (5)
Let boxes by and by belong to grids G;, ... ;, and Gj, .. j,, respectively. Then

the number of points in their intersection is at most max{1, ph—dist/2 1,

11



where dist is the L'-distance between the vectors (i1, ...,i4) and (j1,. .., j4)-
So,

~~
inters. with itself
?2k—1d2 422t 4 > n

inters. with gr;is at dist < 2k
p* - (# of grids) )

inters. with other grids

The first and the third items are equal to p?* and the second item forms a
convergent geometric series (because d2/p < 1/2), so

o < OE™***) = O(t? /n).
The lower bound follows from (4) and Lemma 1.1. O
In view of Lemma 1.2, the proof above immediately implies:

Theorem 3.3 Off-line orthogonal range searching in R has complezity
Q(nlogn/loglogn) for any walue of d > clogn/loglogn, for some con-
stant c.

4 Further Work and Open
Problems

The trace bound is a very general tool that can be applied to a host of
other problems (finite projective plane, Hadamard set systems, arithmetic
progressions, etc.) Being essentially a second-moment result, however, it
falls short for problems requiring tighter estimates on the distribution of
eigenvalues (eg, halfspace range searching in higher dimension). We are
currently attempting to develop an extension of the technique via tensor
products, but it is too early to claim tangible progress on this question.

We can prove that the lower bound of Q(nlogn/loglogn) on the com-
plexity of orthogonal range searching in dimension O(logn/loglogn) shoots
up to Q(nlogn) in dimension /n and above. Put differently, in dimension
d, the median eigenvalue of AT A is of the form n%(@")  where d(d,n) =
1/loglogn for d = logn/loglogn and §(d,n) = Q(1), for d > y/n. How
does § grow as a function of d?

12
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