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ABSTRACT
In the late nineties Erickson proved a remarkable lower bound
on the decision tree complexity of one of the central prob-
lems of computational geometry: given n numbers, do any r
of them add up to 0? His lower bound of Ω(ndr/2e), for any
fixed r, is optimal if the polynomials at the nodes are linear
and at most r-variate. We generalize his bound to s-variate
polynomials for s > r. Erickson’s bound decays quickly as r
grows and never reaches above pseudo-polynomial: we pro-
vide an exponential improvement. Our arguments are based
on three ideas: (i) a geometrization of Erickson’s proof tech-
nique; (ii) the use of error-correcting codes; and (iii) a tensor
product construction for permutation matrices.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—General

General Terms
Theory

Keywords
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Bounds

1. INTRODUCTION
Decision trees have often shown to be realistic and ef-

fective models for proving lower bounds on the complexity
of fundamental geometric problems [4,5,9–12,15,16,21–23].
Testing degeneracy is one such example. The r-variate de-
generacy testing problem is to decide whether, given a se-
quence of n reals x1, . . . , xn and a real polynomial f over
r variables, there exist distinct indices i1, . . . , ir such that
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f(xi1 , . . . , xir ) = 0. Additional constraints might be im-
posed on the indices. The terminology owes to the problem
formulation’s suitability for checking the degeneracy of just
about any geometric configuration. For example, general
position of N points in Rd can be reduced to d-variate de-
generacy testing with respect to dn numbers; in this case,
f is a (d + 1)-by-(d + 1) determinant with a row of ones,
and constraints on the indices ensure that the entries of
the determinant are, indeed, the coordinates of d + 1 dis-
tinct points. Similarly, we can formulate the degeneracy of
Voronoi diagrams, power diagrams, algebraic varieties, real
semi-algebraic sets, etc. Classical “bichromatic” problems
also fall in that category: for example, checking incidence
between points and hyperplanes (Hopcroft’s problem), rays
and triangles, lines and spheres, etc. The list of problems
studied in the literature that can be reduced to degeneracy
testing is nearly endless.

Even the unconstrained version of r-variate linear degen-
eracy testing (r-LDT) is ubiquitous in the computational
geometry landscape. This is looking among n numbers for
a zero of f(y) = a0 + a1y1 + · · · + aryr (ai 6= 0 for i > 0).
There is a vast collection of geometric problems known to be
3SUM-hard and 4SUM-hard, all of which are at least as hard
as r-LDT (for r = 3, 4) via subquadratic reductions [14].
Classical examples are separating line segments by a line,
testing if a union of triangles is simply connected, check-
ing for polygon containment under translation, minimizing
the Hausdorff distance between segment sets, computing the
Minkowski sum of two polygons, sorting the vertices of a line
arrangment, etc. [1–3, 6, 7, 18]. Needless to say, the impor-
tance of elucidating the complexity of r-LDT can hardly be
overstated.

While the problem, being a variant of SUBSET SUM,
is clearly NP-complete, its parameterized complexity as a
function of r is poorly understood (to put it charitably). The

trivial O(nr) upper bound can be improved to O(ndr/2e) if

r is odd and O(nr/2 log n) if r is even [10]. The idea is to
write f = g − h, where g and h are respectiveley br/2c-
variate and dr/2e-variate. We sort all possible values of h
and store them in a table. By binary search we look up every
possible value of g. Any successful search corresponding to
a match with distinct indices is a certificate of degeneracy.
In a nonuniform decision tree model, the extra log factor
is not needed. In other words, for any n, there exists a
binary decision tree for r-LDT of depth O(ndr/2e). Each
internal node is associated with a linear polynomial over r
variables. What makes this result particularly interesting is
the existence of a matching lower bound.



The underlying model is the r-linear decision tree: each
internal node v is assigned a linear n-variate polynomial qv
with at most r nonzero (real) coefficients; its outgoing edges
are labeled <, =, or >. Leaves are labeled yes or no. To
test the degeneracy of an input x = (x1, . . . , xn) ∈ Rn,
we evaluate qv(x) beginning at the root and follow outgoing
edges in the obvious way until we reach a leaf, at which point
we output its label: yes if the input is degenerate and no
otherwise. Improving on previous work [8,13], Erickson [10]
proved that any r-linear decision tree for any r-LDT problem
has depth Ω(ndr/2e). His proof is quite a tour de force. It
is packed with ingenious, tightly coupled arguments, and
its only downside is to offer little wiggle room to try out
new ideas. In particular, extending the proof to s-linear
trees for s > r has long been elusive. Even the case s =
r + 1, mentioned in Yao’s list of major open problems in
his 2000 DIMACS lecture [24], has resisted all efforts. The
contribution of this paper, while far from closing the book on
the problem, represents a significant advance on two fronts:
(i) accommodating s > r variables and (ii) allowing for large
values of r.

• We prove a lower bound of Ω(nr−3)dr/2e on the depth
of any r-linear decision tree for any r-LDT problem.
This improves on Erickson’s bound of Ω(nr−r)dr/2e

from pseudopolynomial to exponential for large val-
ues of r. Indeed, if r = r(n) > nε, Erickson’s bound

can never exceed nlog n/ log logn, while ours is of the

form 2n
Ω(1)

. The technical underpinning of this im-
provement is a new adversarial strategy based on error-
correcting codes.

• By using a tensor product construction based on per-
mutation matrices, we are able to generalize the lower
bound to the s-linear decision tree model for s > r. We
show that, for any instance of r-LDT, the tree depth
is at least

Ω(nr−3)
2r−s

2d(s−r+1)/2e
(1−εr)

,

where εr > 0 tends to 0 as r → ∞. Our proof is based
on a tensor product for permutation matrices.

The exponential lower bound still holds for s > r. For
any fixed ε > 0, the depth of an s-linear decision tree is

(nr−3)r
Ω(1)

, if s ≤ r + r1−ε. In the case r > nε, this gives

a lower bound of 2n
Ω(1)

. Note that our bounds collapse if
s is not O(r). This is an obvious limitation of our method,
but one must note that a dependency on s is inevitable.
Indeed, our lower bound of nΩ(r) for s = r + O(1) cannot
hold for arbitrary values of s. By a result of Meyer auf der
Heide [19], a decision tree of depth O(n4 log n) exists for any
instance of linear degeneracy testing over r variables, with-
out a restriction on the number of nonzero coefficient of the
tree polynomials (s = n).

Another contribution of this paper is methodological. To
obtain our bounds requires a whole set of new algebraic ar-
guments, but our starting point is essentially a geometriza-
tion of Erickson’s method. The main benefit is to bypass
the complicated machinery of infinitesimals found in [10],
obviate the need for Tarski’s transfer principle, and more
generally do away with analytical arguments.

To make the proof more digestible, we begin our discussion
with the geometric framework and then treat the case s = r.

Next we move on to the case s = r + 1, where we introduce
the tensor product construction in its simplest form. Finally
we cover the general case.

2. A GEOMETRIC FRAMEWORK FOR
LOWER BOUNDS

We consider the r-SUM problem: Given a point x =
(x1, . . . xn) ∈ Rd, are there indices i1 < · · · < ir such that
xi1 + · · ·+xir = 0? We wish to prove that any r-linear deci-
sion tree used to answer this question is of depth Ω(ndr/2e).
Choosing f to be the symmetric linear function on r vari-
ables simplifies the lower bound proof, but our results can be
easily extended to any r-variate linear function. Each node
v is associated with a polynomial qv whose zeroes define a
hyperplane, called a query. The set of query hyperplanes is
denoted by Q. It is not hard to see that if the decision tree
is to be valid, Q must include every one of the

�
n
r� canonical

hyperplanes xi1 + · · · + xir = 0. Indeed, if such a hyper-
plane h∗ is missing in Q, then there exists a pair of points
p1 and p2 such that p1 lies on h∗ (thus degenerate), p2 is
nondegenerate, and no hyperplane in the finite set Q sepa-
rates between p1 and p2. Therefore, the decision tree cannot
decide r-LDT.

The basic idea of the proof is to identify a “large” face C
in the arrangement1 A (Q) formed by Q. The face C, called
the chamber, may not necessarily be full-dimensional but

(C1) it must not be contained in any canonical hyperplane.

We also need a set H of critical hyperplanes. These are
canonical hyperplanes tangent to C such that

(C2) each h∗ ∈ H has a designated point ph on the bound-
ary of C;

(C3) no two points in the collection {ph} lie in the closure
of the same face of the closure of C.

Lemma 2.1. Any r-linear decision tree for the r-SUM prob-
lem is of depth at least |H|.

Proof. The tree must lead to a no (resp. yes) leaf for
any input point p0 ∈ C (resp. ph, where h∗ ∈ H). For
this reason, the path followed on input ph must include a
query hyperplane qh that intersects, but does not contain,
the segment p0ph. Indeed, the same path would otherwise
be followed for input p0. Since ph is in the closure of a face
of A (Q) that contains p0, the hyperplane qh passes through
ph but does not intersect C. Now the crux is that by (C3)
no query hyperplane can pass through more than one point
ph. 2

2.1 Critical Hyperplanes via Error-Correcting
Codes

By padding the input if necessary, we can always assume
that n = rm, for some integer m. This allows us to view

1Terminology and Conventions: Faces of polyhedra and ar-
rangements are disjoint, relatively open sets. The intersec-
tion of the closures of any two faces is either empty or the
closure of another face. Faces of dimension (codimension)
0 and 1 are called vertices and edges (cells, facets), respec-
tively. Convex polyhedra are assumed to be closed. The
hyperplane defined by hTx = 0, where h, x ∈ Rn, is de-
noted by h∗.



a vector h ∈ Rn (and hence its hyperplane h∗ through the
origin) as a matrix Mh, whose rows are filled with the co-
ordinates of h; ie, Mh

ij = h(i−1)m+j . A critical hyperplane
being of the form xi1+· · ·+xir = 0, its corresponding matrix
has r ones and n− r zeroes. We place a single one per row.
Where to put the ones is dictated by an error-correcting
recipe meant to ensure high “independence.” Throughout
this section we use the shorthand

r0 = dr/2e. (1)

Let q be the smallest prime greater than r, and let M be
a Reed-Solomon code [17] of length p = q − 1 and distance
r − r0 + 1 over the finite field Fq. This means that any
nonzero vector in M has at least r− r0 + 1 nonzero coordi-
nates. A simple choice is the ideal of Fq[X]/(Xp−1) gener-
ated by g(x) = (x−β) · · · (x−βr−r0), where β is a primitive
element of Fq. The code has dimension k = p−r+r0. Now,
define Mr to be the linear subspace of M defined by adding
the contraints {xi = 0 | r < i ≤ p }. (Note: this is not the
same as chopping off the last p−r coordinates.) In this way,
we can think of Mr as a linear code of length r, distance
greater than r − r0 and dimension at least k− (p− r) = r0.
Let v1, . . . , vr0 be an independent set of vectors in Mr. Of
course, by permuting coordinates and performing column
operations, we can always assume that the set is in column
echelon form, ie, the r-by-r0 matrix (v1, . . . , vr0) consists of
the r0-by-r0 identity matrix on top of some (r − r0)-by-r0
matrix. Since Fq is a prime field, we can naturally view the
vi’s as vectors in Rr with coordinates in {0, . . . , q − 1}. We
define L as the set of vectors n1v1 + · · ·+nr0vr0 for all non-
negative integers ni ≤ m/qr0. The upper bound is chosen
so that all coordinates lie in {0, . . . ,m − 1}. (Throughout
this paper, the notation span (S) refers to the vector space
spanned by S over the reals.)

Lemma 2.2. Three facts: (i) the set L consists of at least
(n/r3)r0 vectors in Rr with coordinates in {0, . . . ,m − 1};
(ii) the first r0 coordinates of any vector in L specify it
uniquely; (iii) any nonzero vector in span (L) has at least
r − r0 + 1 nonzero coordinates.

Proof. By Nagura’s theorem [20], the interval [x, 6x/5]
contains a prime for any x ≥ 25. This shows that qr0 ≤ r2;
therefore, |L| ≥ (m/qr0)

r0 ≥ (n/r3)r0 . Part (ii) comes from
the echelon form of the matrix formed by (v1, . . . , vr0). To
prove (iii), consider a nonzero element � r0

i=1 αivi of span (L).
The set of such vectors with at least r0 zero coordinates
can be expressed as a union of linear subspaces, each one
defined by a set of homogeneous equations in the αi’s with
integer coefficients. Therefore, if the set is nonempty, it must
contain a vector v with all its αi’s integral and at least one
of them not divisible by q. Reducing v modulo q gives us a
nontrivial linear combination of the vi’s. Since these vectors
are independent over Fq, it then follows that v is a nonzero
vector of the code Mr with at least r0 zero coordinates.
This contradicts the fact that Mr has distance greater than
r − r0. 2

The set H of critical hyperplanes is in bijection with L.
The hyperplane h∗ corresponding to ` = (`1, . . . , `r) ∈ L is
defined by its matrix Mh: the coordinate `i indicates where
to place the 1 in the i-th row of the matrix, ie, Mh

ij = 1
(resp. 0) if j = `i + 1 (resp. else). By construction,

Mh (0, . . . ,m− 1)T ∈ span (L). (2)

The intersection ∩H of all the hyperplanes h∗ in H is a
linear subspace of positive dimension. Indeed, it contains
the vector

(1, . . . , 1� �� �
n−n/r

, 1 − r, . . . , 1 − r� �� �
n/r

).

Let K denote the set of query hyperplanes that contain
∩H. Note that Q ⊇ K ⊇ H.

Lemma 2.3. Given any q∗ ∈ K, (i) Mq (1, . . . , 1)T =
b (1, . . . , 1)T for some real b, and (ii) Mq (0, . . . ,m− 1)T ∈
span (L).

Proof. Since (∩H)⊥ is the space spanned by the normals
of hyperplanes in H and q ∈ (∩H)⊥, q = � i λihi, where

h∗
i ∈ H; therefore Mq = � i λiM

hi . But each Mhi has a

single one per row, and so Mhi (1, . . . , 1)T = (1, . . . , 1)T ;
hence (i). Similarly, (ii) follows from (2). 2

2.2 The Chamber
The query hyperplanes outside of K intersect ∩H in lower-

dimensional subspaces. Therefore, there exist c0 ∈ ∩H and
ρ > 0 such that the ball B(c0, ρ) centered at c0 of radius
ρ intersects none of the hyperplanes of Q \ K. By lying on
every critical hyperplane the point c0 is highly degenerate.
Moving it by some vector ψ to be specified next changes all
of that (Fig. 1). We define the point

p0 = c0 + ψ (3)

to be safely outside of the critical hyperplanes. To do that,
we need a positive convex real function g, meaning one with
positive second derivative; eg, x 7→ x2 + 1. For some fixed,
small enough γ > 0, we define the vector ψ ∈ Rn by its
matrix Mψ:

Mψ
ij =

�
γg(j) if i ≤ r0;
γ2g(j) else.

Note: γ is a scaling factor that is absolutely needed. The
reason we use γ2, however, is in anticipation of the case
s > r. We could use γ in this section instead.

Lemma 2.4. The point p0 lies outside of any canonical
hyperplane and any hyperplane of Q \ K.

This implies that the decision tree must output no on in-
put p0. Note, however, that p0 might still lie on a query
hyperplane.

Proof. Recall that a canonical hyperplane h∗ is one with
an equation of the form xi1 + · · · + xir = 0. By choosing γ
small enough, we can ensure that ‖ψ‖2 ≤ ρ/2; therefore, the
point p0 lies inside B(c0, ρ), safely away from any hyperplane
of Q \ K (Fig. 1). We have already observed that Q must
contain all of the canonical hyperplanes; therefore, the only
danger is that p0 lies on some canonical hyperplane h∗ in K.
But this is impossible. Indeed, c0 ∈ ∩H ⊆ h∗, and so

hT p0 = hTψ = �
j∈J

γg(j) + �
j∈J′

γ2g(j) > 0,

with |J ∪ J ′| = r. 2
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Figure 1: Output no if the input is p0 but yes if the input is ph or ph′. Both of these points lie on critical

hyperplanes as well as in the flat p0 +W .

The chamber C is the unique face of A (Q) that contains
p0. To define the map h∗ ∈ H 7→ ph ∈ ∂C, we need to
introduce the vector space W spanned by the 2r vectors
uk, wk ∈ Rn (k = 1, . . . , r) whose associated matrices Muk

andMwk are zero everywhere except at row k, whereM
uk
ij =

1 and Mwk
ij = j. Given h∗ ∈ H, we define a vector

ϕh ∈ ψ +W (4)

such that Mϕh
ij > 0 (resp. = 0) if Mh

ij = 0 (resp. else). Note
that ψ + W is not necessarily a vector space. One should
think of Mϕh as a mask: Its rows mark with zeroes the
positions whereMh is 1 and fill the rest with positive entries.
To see that such a vector ϕh actually exists, consider the i-
th row of the matrix Mϕh . Let γi = γ (resp. γ2) if i ≤ r0
(resp. else). It suffices to show that the row can satisfy
constraints in t, u of the form γig(j)+ t+uj = 0 if j is equal
to the one value j0 where Mh

ij0 = 1, and γig(j) + t+ uj > 0
for any j 6= j0. Feasibility is ensured by the fact that

g(j0) − g(j)

j0 − j
<
g(j′) − g(j0)

j′ − j0

for any j < j0 < j′, which itself is a consequence of the
mean-value theorem applied to the convex function g. It is
immediate to check that,

Mϕh
ij =

�
Θ(γ) if i ≤ r0;
Θ(γ2) else,

(5)

where the Θ notation hides quantities that depend on g and
n. These bounds imply that, by scaling down γ if necessary,
we can ensure that ‖ϕh‖2 < ρ/2. We now define

ph = c0 + ϕh. (6)

Lemma 2.5. The point ph lies inside the critical hyper-
plane h∗ and outside any hyperplane of Q \ K.

Proof. The second part follows directly from the fact
that ‖ϕh‖2 < ρ/2. Recall that ϕh has zero coordinates

precisely at the positions where h does not; therefore,

hT ph = hT (c0 + ϕh) = hTϕh = 0.

2

Incidentally, note that the ph’s are not strewn all across
the boundary of C: By (3–6), they all live in the low-
dimensional flat p0 +W .

Lemma 2.6. Given any q∗ ∈ Q and h∗ ∈ H, if qT p0 6=
qT ph and qT p0 q

T ph ≤ 0, then qT ph = 0 and qT px 6= 0 for
any x∗ ∈ H distinct from h∗.

In other words, collapsing p0 to any ph changes at most
a single query from non-zero to zero, and leaves the sign of
every other query unchanged.

Proof. Obviously we can assume that q∗ ∈ K, since
otherwise q∗ would miss B(c0, ρ) entirely and so qT p0 and
qT ph would be nonzero and have the same sign; hence,
qT p0 q

T ph > 0. We distinguish between two cases.

(A) Each row of Mq has at least one nonzero element:
Then, since s = r, it has exactly one and, by Lemma
2.3 (i), all the nonzero elements are equal to the same
number, which without loss of generality we may as-
sume to be 1. Therefore,

qT p0 = qT (c0 + ψ) = qTψ

=

r0�
i=1

γg(ji) +
r�

i=r0+1

γ2g(ji) > 0.
(7)

By the lemma’s assumption, it follows that qT ph ≤ 0.
For any x∗ ∈ H, qT px = qT (c0 + ϕx) = qTϕx ≥ 0;
therefore, qT ph = 0. Can any other x∗ ∈ H also satisfy
qT px = 0? The answer is no. To see why, recall that
Mϕx acts as a mask for the 1s in Mx. If Mx does
not match Mq in each one of the first r0 rows then,
by (5), qT px, which is also qTϕx = trMq(Mϕx)T , is



of the form Cγ + O(γ2), for some C > 0, and hence
can never be 0 as long as we choose γ small enough.
On the other hand, by Lemma 2.2 (ii), if Mx matches
Mq in each one of the first r0 rows, then x is unique,
and therefore equal to h. This completes the proof for
case (A). Note that we never used the fact that each
row i > r0 of Mq has exactly one nonzero element.
This will allow us to use the same proof verbatim in
the next section, even though the only assurance we
will then have on the matrix Mq is each of its first r0
rows has a single 1.

(B) Some row of Mq is null: By Lemma 2.3 (i),

Mq (1, . . . , 1)T = 0,

and each row ofMq must then have at least two nonzero
elements or none at all. It follows that the number of
null rows is at least r0, and so, by Lemmas 2.2 (iii)
and 2.3 (ii), Mq (0, . . . ,m − 1)T = 0. (This is where
error correction kicks in.) As a result, qTw = 0 for
any w ∈ W . But, by (3–6), ph − p0 = ϕh − ψ ∈ W ;
therefore, qT ph = qT p0, which contradicts the lemma’s
assumption. 2

It is immediate to verify that the chamber C and the
points ph satisfy the requirements C1—C3. If the chamber
C lay within a canonical hyperplane, then so would p0, which
would contradict Lemma 2.4; hence C1. Consider a query
hyperplane q∗ ∈ Q and a critical hyperplane h∗ ∈ H. By
Lemma 2.6, there are only three possibilities: p0ph ⊂ q∗,
p0ph∩q

∗ = ∅, or ph ∈ q∗ and px 6∈ q∗ for any distinct x∗ ∈ H.
This proves that ph lies in the closure of C. Combined with
the fact that ph ∈ h∗ (Lemma 2.5), this establishes condition
C2. Finally, if two distinct points ph and px lay in the
same face of the closure of C, then some q∗ ∈ Q would
contradict the three possibilities above; hence C3. In view
of Lemmas 2.1 and 2.2, we have proven

Theorem 2.7. The depth of any r-linear decision tree for
r-SUM is Ω(nr−3)dr/2e.

3. THE CASE s = r + 1

What can go wrong with the previous proof if s = r + 1?
The only place where the number s actually plays a role is in
the proof of Lemma 2.6. Case (B) survives almost verbatim.
The only problem is that the number of null rows is at least
r−bs/2c, which can be less than r0. We fix this by redefining
r0 so that it satisfies

1 ≤ r0 ≤ r − bs/2c. (8)

In the present case, the setting r0 = br/2c will do.
Case (A) is far more difficult to fix. All the rows of Mq

have exactly one nonzero element, except for one of them, i0,
which has two nonzeroes (the case of one nonzero in every
row having already been handled). Again we can assume
that all the nonzero elements are 1, except in row i0, where
the elements are α and 1 − α, for some real α /∈ {0, 1}. Let
γ′ = γ (resp. γ2) if i0 ≤ r0 (resp. else); taking row i0 into

account, we can rewrite (7) as

qT p0 = qTψ

= γ′αg(ji0) + γ′(1 − α)g(j′i0)

+

r0�
i=1
i6=i0

γg(ji) +
r�

i=r0+1

i6=i0

γ2g(ji).

If i0 > r0 then all is well. Indeed, by making γ small enough

qT p0 =

r0�
i=1

γg(ji) +Oq(γ
2) > 0. (9)

The remainder of the proof involves only the first r0 rows
of Mq, which happen to be as in case (A), and so it can be
repeated verbatim.

The case i0 ≤ r0 is a tougher nut to crack. In fact we
have not found a way of tackling it directly. Consequently,
our strategy is simply to modify H so that this case cannot
happen. Recall that, for the purpose of Lemma 2.6, we
can assume that q∗ ∈ K. As we observed in the proof of
Lemma 2.3, this implies that q ∈ span (H∗), where H∗ =
{h |h∗ ∈ H}. Thus, our goal is to redefine a large set H of
critical hyperplanes so that, in addition to all the properties
we expect of H, the following should hold: If q is a vector
of Rn such that (i) with the exception of one row i0 ≤ r0
each of the first r0 rows of Mq consists of a single 1 with
0’s everywhere else, and (ii) the exceptional row, i0, is null
everywhere except for two entries summing up to 1, then q
cannot be in the span of H∗.

Recall from the construction of H that the first r0 rows
of any Mh (h∗ ∈ H) completely determine the remaining
ones. Furthermore, each one of the first r0 rows can be
chosen by placing a 1 arbitrarily between positions 1 and
m0 = bm/qr0c and filling the rest of the row with 0’s. So
it suffices to concentrate on the first r0 rows. Once we have
the top r0 rows, we use our Reed-Solomon code to fill in the
bottom r − r0 rows just as we did in the previous section.

An r0-by-amatrix is called defective if, with the exception
of one row (called anomalous), each one consists of a single
1 with 0’s everywhere else; furthermore the exceptional row
is null everywhere except at two places. We postpone the
proof of the next result.

Lemma 3.1. There exists a set P r0-by-m 0/1 matrices
with exactly one 1 per row between positions 1 and m0 such
that no defective r0-by-m matrix belongs to spanP and, for
n large enough and any fixed ε > 0,

|P| ≥ (nr−3)br/2c(1−1/ lnbr/2c)(1−ε).

In view of our previous discussion, this automatically im-
plies a lower bound on the depth of (r+1)-linear trees. The
theorem below does not indicate what happens for small
values of r. A careful examination shows that we obtain
nontrivial lower bounds for any r ≥ 6.

Theorem 3.2. The depth of any (r + 1)-linear decision

tree for r-SUM is at least (nr−3)br/2c(1−εr), where εr > 0
tends to 0 as r → ∞.



3.1 The Tensor Product Construction
The problem fits into a general class of questions related

to codes and combinatorial designs: How to build a large
vector space that does not contain a family of forbidden
vectors? In the case at hand, we start by building a “core”
square matrix that satisfies the desired property and then
show how to scale it up into an arbitrarily large rectangular
matrix by using a suitable tensor product.

Let A (resp. B) be an r0-by-a (resp. r0-by-b) real matrix.
Following standard tensor notation, we write the element
Ai,j as Aij instead. The tensor product P = A ⊗ B of A

and B is defined by the formula P ij,k = AijB
i
k. It is a mixed

third-order tensor with two covariant indices and a single
contravariant one. This product extends to sets naturally.
If A (resp. B) is a set of r0-by-a (resp. r0-by-b) real matrices,
then

A⊗B = {A⊗B |A ∈ A, B ∈ B }.

Tensor exponentiation for sets is defined by

A⊗k = A⊗ · · · ⊗ A� �� �
k times

.

The |A|k elements of A⊗k belong to the vector space Vk of
mixed (k+1)st-order tensors with k covariant indices and 1
contravariant one. By fixing an ordering (say, lexicographic)
of the covariant indices, we can interpret the tensors of Vk
as r0-by-ak matrices, and vice versa. For our “core,” we
choose permutation matrices. Let Π denote the set of r0-
by-r0 0/1 matrices with exactly one 1 per row and column.
The lemma below gives our tensor product its raison d’être.

Lemma 3.3. No defective r0-by-r
k
0 matrix can belong to

the span of Π⊗k, for any k ≥ 1.

Proof. In any matrix of span (Π) each row and each col-
umn sum up to the same number, which can be assumed
to be 1. Therefore, the anomalous row of a defective r0-
by-r0 matrix consists of two entries, α,α′ 6= 0 summing up
to 1. Suppose that the column with the α also includes a
set of ` ones for ` > 0 (note that these can only be ones).
Since the column sum is 1, we have α + ` = 1. This im-
plies that α must be an integer and, since it is nonzero,
α′ = 1 − α = ` ≥ 2. But then the column with α′ sums up
to more than 1, which gives a contradiction. This implies
that neither of the columns with α,α′ has any other nonzero
element. But then the r0−2 other columns sum up to r0−1,
which exceeds the required count by one. This proves the
lemma for k = 1.

For k > 1, we define the tensor homomorphism hl : Vk 7→
Vk−1, where

hl(P )ij1,...,jl−1,jl+1,...,jk
=

r0�
j=1

P ij1,...,jl−1,j,jl+1,...,jk
.

Let M be a defective r0-by-rk0 matrix. By definition, its
anomalous row i0 contains two nonzero elements: the two
corresponding covariant k-tuple indices, being distinct, dif-
fer in at least one index l. Since k > 1, there exists at least
one covariant index l′ 6= l. We easily verify that hl′(M) is a
defective r0-by-rk−1

0 matrix and

hl′(Π
⊗k) = Π⊗(k−1).

The proof follows by simple linear algebra and induction. 2

To maximize its size, we choose the set P = Π⊗k for the
largest k such that rk0 ≤ m0 = bm/qr0c. Using Stirling’s
approximation, we find that

|P| = |Π|k = (r0!)
k ≥ (nr−3)br/2c(1−1/ lnbr/2c)(1−ε),

for any fixed ε > 0. Filling up each row with 0’s to get the
proper of length m concludes the proof of Lemma 3.1. 2

4. THE CASE s > r + 1

We need a new idea to generalize the tensor product con-
struction to higher values of s. We exploit the fact that the
(hard part of the) lower bound involves only query hyper-
planes whose normal vectors q are spanned by the normals
h of the critical hyperplanes h∗ ∈ ∩H. We use this to add
combinatorial structure to the matrices Mq by redesigning
the set ∩H. We need to redefine r0 so that the first r0 rows
of Mh can be grouped in equal-sized blocks. Of course, r0
still needs to satisfy (8). The choice of r0 = λρ0 will do,
where

λ = �s− r

2 � + 1 and ρ0 = �r − bs/2c

λ � .
Note that this requires that s be not too large, say s <
b3r/2c. Divide up the first r0 rows of Mh into λ blocks of
consecutive rows of ρ0 rows each. To build up a matrix Mh

of H we proceed as follows:

• Step 1 Use the tensor construction of the previous
section (the case s = r+1) to produce the top ρ0 rows
of Mh. In carrying out the construction, of course,
use permutation matrices of size ρ0-by-ρ0 instead of
r0-by-r0. This gives us a set P of matrices with the
same properties as those of Lemma 3.1, except for the
size of P and the size of the matrices, now ρ0-by-m.

• Step 2 For each matrix of P , make λ copies of it
and stack them on top of one another to produce an
r0-by-m matrix.

• Step 3 Complete the bottom r − r0 rows via Reed-
Solomon as before.

Lemma 4.1. For any q∗ ∈ K, the top r0 rows of Mq form
an r0-by-m matrix made up of λ copies of the same ρ0-by-m
matrix.

Proof. A simple consequence of the fact that

q ∈ span { h |h∗ ∈ H}.

2

There is no need to revisit Lemma 2.6 in detail. Again,
only case (A) is worth discussing: Each row of Mq has at
least one nonzero element. By analogy with the case s =
r+1, if all the rows with more than one nonzero have indices
greater than r0 then inequality (9) holds and we are done.

Suppose now that at least one row i0 ≤ r0 contains two or
more nonzeroes. By Lemma 4.1, the λ blocks that make up
the top r0 rows ofMq are identical. This shows that no block
can have more than ρ0 + 1 nonzeroes. Indeed, any one of



them did, then so would all of the others, and their combined
contribution of nonzeroes would be at least (ρ0+2)λ. Added
to the (at least) r − r0 nonzeroes of the bottom rows, this
would give us a total of at least (ρ0+2)λ+r−r0 > s nonzero
coordinates in q, which is ruled out. So, the only possibility
left is for each block to have exactly ρ0 or ρ0 + 1 nonzeroes:
the first case was handled in the proof of Lemma 2.6, while
the second one was shown to be impossible in the last section
because of the tensor product contruction.

Theorem 4.2. The depth of any s-linear decision tree for
r-SUM is at least

(nr−3)
2r−s

2d(s−r+1)/2e
(1−εr)

,

where εr > 0 tends to 0 as r → ∞.

Note that for any s ≤ r+ r1−ε, where ε > 0 is arbitrarily

small constant, the depth is (nr−3)r
Ω(1)

.
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