
Information Theory in Property Testing and Monotonicity
Testing in Higher Dimension?

Nir Ailon1 and Bernard Chazelle1

Department of Computer Science, Princeton University, Princeton NJ, USA
{nailon,chazelle}@cs.princeton.edu

Abstract. In general property testing, we are given oracle access to a function f , and we wish to
randomly test if the function satisfies a given property P , or it is ε-far from having that property. In
a more general setting, the domain on which the function is defined is equipped with a probability
distribution, which assigns different weight to different elements in the distance function. This paper
relates the complexity of testing the monotonicity of a function over the d-dimensional cube to
the Shannon entropy of the underlying distribution. We provide an improved upper bound on the
property tester query complexity and we finetune the exponential dependence on the dimension d.

1 Introduction

In general property testing [4,7,9,13], we are given oracle access to a function f , and we wish to randomly
test if the function satisfies a given property P , or it is ε-far from having that property. By ε-far we mean,
that any function g that has the property P differs from f in at least ε-fraction places. We allow the
property tester to err with at most constant probability, say 1/3 (in this paper we assume only one-sided
error). In many interesting cases, this relaxation allows the tester to query only a sublinear portion of the
input f , which is crucial when the input is a giant dataset.

The query complexity of the property is the minimal number of f -queries performed by a tester for
that property (although the classical “number of operations” quantity can be considered too). A query to
a function can be viewed as a quantity of information, which gives rise to the relation between property
testing and information complexity [4], which will be made more precise in what follows.

An interesting ramification of property testing problems [4, 5, 10] generalizes the definition of distance
between two functions: Instead of defining the distance between f and g as the fractional size of the set
{x | f(x) 6= g(x)}, we attach a probability distribution D to the function domain, and define

dist(f, g) = Pr({x | f(x) 6= g(x)}).

The “old” definition reduces to the caseD = U (the uniform distribution). This definition allows assignment
of importance weights to domain points. It also allows property testers to deal with functions defined on
infinite domains, though it may be necessary to assume additional structure (for example, measurability
of f). Such functions arise when dealing with natural phenomena, like the temperature as a function of
location and time. Of course in these cases we couldn’t read the entire input even if we had unlimited
resources.

The distribution should not be considered as part of the problem, but rather as a parameter of the
problem. Fischer [4] distinguishes between the case where D is known to the tester, and the case where
it is not known. The latter is known as the “distribution-free” case [10]. In the distribution-free case, the
property tester is allowed to sample from the distributiun (but it does not know the probabilities). The
main techniques developed in this work will be used for the distribution-known case, but we will also show
an application to the distribution-free case.

The following question motivated the results in this paper: what happens when the distribution D
is uniform on a strict subset S of the domain, and zero outside S? Intuitively, the “effective” domain is
smaller, and therefore testing the property should be simpler. For general distributions, a natural measure
of the “size” of the effective domain is the Shannon entropy H of D. In this paper we show a connection
between the quantity H and the query complexity, which further supports the connection between property
testing and information theory.

? This work was supported in part by NSF grant CCR-0306283 and ARO Grant DAAH04-96-1-0181.



One interesting, well-studied property is monotonicity [2–4,6, 8, 10–12]. A real function f over a poset
P is monotone if any x, y ∈ P such that x ≤ y satisfy f(x) ≤ f(y). In this paper we assume that P is the
d-dimensional cube [n]d, with the order:

(x1, . . . , xd) ≤ (y1, . . . , yd) if xi ≤ yi for all i = 1, . . . , d.

Halevy and Kushilevitz [10] describe a property tester with query complexity O(2d logd n
ε

) in the

distribution-free case. In [11] they show a property tester with query complexity O(d4d log n
ε

), for the
special case of known uniform distribution (D = U). If d is fixed, this result improves a result by Dodis et

al. [2], who describe a property tester with query complexity O(d2 log2 n
ε

) (For large d, n must be doubly-
exponential in d for Halevy-Kushilevitz’s result to be better than that of Dodis et al.).

The main result of our paper is as follows:

Theorem 1. Let D be a (known) distribution on [n]d with independent marginal distributions (in other
words, D is a product D1× · · · ×Dd of distributions Di on [n]). Let H be the Shannon entropy of D. Then

there exists a property tester for functions over ([n]d,D) with expected query complexity O(2dH
ε

).

In the special case D = U , this theorem improves Halevy and Kushilevitz’s result by replacing the 4d with
2d (because then H = d log n). It also generalizes previous work to any product distribution and gives
a first evidence of the connection between property testing and the Shannon entropy of the underlying
distribution.

Although this paper discusses mainly the known distribution case, the techniques developed here can
be used to show the following:

Theorem 2. Let D be an (unknown) distribution on [n]d with independent marginal distributions. Then

there exists a property tester for functions over ([n]d,D) with query complexity O(d2d log n
ε

).

Note that although Theorem 2 assumes that the distribution D is unknown, it will in fact be implicitly
assumed by the property tester that D is a product of d marginal distributions. This is a relaxation of
the notion of distribution-free property testing: the distribution is assumed to belong to some big family

of distributions. This improves Halevy and Kushilevitz’s O( logd n2d

ε
) property tester [10] for this relaxed

version (in their result, however, nothing is assumed about the distribution D).
The rest of the paper is organized as follows: Section 2 starts with preliminaries and definitions, Section 3

proves Theorem 1 for the case ([n],D), Section 4 proves Theorem 1 for the case ([n]d,U), and Section 5
completes the proof of Theorem 1. In Section 6 we prove Theorem 2. Section 7 discusses future work and
open problems.

2 Preliminaries

Let f be a real valued function on the domain [n]d, with a probability distributionD = D1×· · ·×Dd. Assume

that Di assigns probability pi
j to j ∈ [n], and therefore D assigns probability

∏d

k=1 pk
ik

to (i1, i2, . . . , id).

Definition 1. The distance of f from monotonicity, denoted by ε, is min PrD({f 6= g}), where the mini-
mum is over all monotone functions g.

We will also use the notion of the axis-parallel (“projected”) order.

Definition 2. The i-th axis-parallel order ≤i on [n]d is defined as

(x1, . . . , xd) ≤i (y1, . . . , yd) if xi ≤ yi and xj = yj for j 6= i.

Definition 3. The i-th axis-parallel distance of f to monotonicity, denoted by εi, is min PrD({f 6= g}),
where the minimum is over all functions g that are monotone with respect to ≤i.

It is a simple observation that f is monotone on [n]d if and only if it is monotone with respect to ≤i

for each i = 1, . . . , d.



Definition 4. An integer pair 〈i, j〉 (for i, j ∈ [n]d, i ≤ j) is a violating pair if f(i) > f(j). We say that
“j is in violation with i” or “i is in violation with j” in this case.

Although this work deals with the finite domain case, it will be useful in what follows to consider the
continuous cube Id, where I = {x ∈ R | 0 ≤ x < 1}. The probability distribution is the Lebesgue measure,
denoted by µ. The distance between two measurable functions α, β : Id → R is µ({α 6= β}) (the set
{α 6= β} is measurable). The distance of α from monotonicity is inf dist(α, β) where the infimum is over
all monotone functions β.

For i = 1, . . . , d, consider the following sequence of subintervals covering I:

∆i
1 = [0, pi

1), ∆
i
2 = [pi

1, p
i
1 + pi

2), . . . , ∆
i
n = [1− pi

n, 1).

For a number x ∈ I, define inti(x) = j if x ∈ ∆i
j , that is, x belongs to the j-th interval induced by Di.

If d = 1 we omit the superscript and simply write ∆j and int(x). It is obvious that if x is distributed
uniformly in I, then inti(x) is distributed according to Di.

For a given f : [n]d → R, denote by f̃ : Id → R the function

f̃(x1, . . . , xd) = f(int1(x1), int2(x2), . . . , intd(xd)).

The function f̃ is constant on rectangles of the form ∆1
i1
× · · · ×∆d

id
, for any i1, . . . , id ∈ [n]. Moreover,

any function α : Id → R which is constant on these rectangles can be viewed as a function over [n]d. The
following lemma formalizes an intuitive connection between ([n]d,D) and (Id,U). The proof is postponed
to Appendix A.

Lemma 1. The distance ε̃ of f̃ from monotonicity in Id (with respect to the Lebesgue measure) equals
the distance ε of f from monotonicity in [n]d (with respect to D). This is also true with respect to the
axis-parallel orders ≤i.

Finally, we give a precise definition of a property tester:

Definition 5. An ε-property tester for monotonicity (or, ε-monotonicity tester) is a randomized algorithm
that, given f : [n]d → R, outputs “ACCEPT” with probability 1 if f is monotone, and “REJECT” with
probability at least 2/3 if f is ε-far from being monotone w.r.t. a fixed distribution D. In the distribution-
known case, the probabilities of D are known. In the distribution-free case they are unknown, but the
property tester can sample from D.

Remark : If the distribution D has elements with probability 0, then a function can have distance 0 to
monotonicity without being actually monotone. In our terminology, a “monotone function” is monotone
in the traditional case (even elements with probability 0 must comply). Since we will always assume ε > 0,
a function that is ε-far from being monotone is never a monotone function.

3 A property tester for ([n], D)

The algorithm is a generalization of an algorithm presented in [10]. Let f : [n]→ R be the input function.
We need a few definitions and lemmas.

Definition 6. For a violating pair 〈i, j〉 we say that i is active if

Pr( in violation with i | [i + 1, j]) ≥ 1/2.

Similarly, j is active if
Pr( in violation with j | [i, j − 1]) ≥ 1/2.

In other words, an active integer in a violating pair 〈i, j〉 is also in violation with an abundance of
elements in the interval [i, j].

Definition 7. For a violating pair 〈i, j〉, we say that i is strongly active if it is active and pi ≤ Pr([i+1, j]).
Similarly, j is strongly active if it is active and pj ≤ Pr([i, j − 1]).



Lemma 2. If 〈i, j〉 is a violating pair, then either i is strongly active or j is strongly active.

Proof. It is immediate that for any i < k < j, either 〈i, k〉 or 〈k, j〉 is a violating pair. So either i or j is in
violation with at least half the weight of the integers [i + 1, j − 1]. This proves that either i or j is active.
So assume i is active but not strongly active. This means that pi > Pr([i + 1, j]). But this would imply
that j is strongly active. Indeed, pi is greater than half of Pr([i, j − 1]), and i is in violation with j, so j
is active. But pj < pi so j is strongly active. 2

Lemma 3. Let J be the collection of strongly active integers from all violating pairs of f . Then Pr(J) ≥ ε.

Proof. Actually, any collection J of at least one integer from each violating pair has this property. Proof
of this simple fact can be found in [10]. 2

To describe the algorithm, we need another piece of notation. For x ∈ I, let left(x) denote the left
endpoint of the interval ∆int(x), and similarly let right(x) denote its right endpoint.

The following algorithm is an ε-property tester for monotonicity of f , with expected query complexity
O(H+1

ε
). We show how to eliminate the added 1/ε shortly.

monotonicity-test (f,D, ε)

1 repeat O(ε−1) times

2 choose random x ∈ I
set δ ← pint(x)

3 set r ← right(x)
4 while r + δ ≤ 2
5 choose random y ∈U [r, min{r + δ, 1}]
6 if f(int(x)) > f(int(y))
7 then output REJECT

δ ← 2δ
set δ ← pint(x)

set l ← left(x)
8 while l − δ ≥ −1

choose random y ∈ [max{l − δ, 0}, x]
if f(int(y)) > f(int(x))
then output REJECT

set δ ← 2δ
output ACCEPT

We first calculate the expected running time of monotonicity-test. The number of iterations of the
internal while loops (lines 4,8) is clearly at most log(2/pint(x)) (all the logarithms are taken in base 2 in

this paper). Clearly,
Ex∈UI [log(2/pint(x))] = Ei∈D[log(2/pi)] = H + 1.

We prove correctness of the algorithm. Obviously, if f is monotone then the algorithm returns “AC-
CEPT”. Assume that f is ε-far from being monotone. By lemma 3, with probability at least ε, the random
variable x chosen in line 2 satisfies int(x) ∈ J . This means that i = int(x) is strongly active with respect
to a violating pair 〈i, j〉 or 〈j, i〉. Assume the former case (a similar analysis can be done for the latter). So
i is in violation with at least half the weight of [i+1, j], and also pi ≤ Pr([i+1, j]). Consider the intervals
[r, r + pi2

t] for t = 0, 1, 2, . . . with r as in line 3. For some t, this interval “contains” the corresponding
interval [i + 1, j] (i.e. ∆i+1 ∪ · · · ∪ ∆j), but pi2

t is at most twice Pr([i + 1, j]). The latter by virtue of i
being strongly active. For this t, with probability at least 1/2 the y chosen in line 5 is in [i + 1, j]. In such
a case, the probability of y being a witness of nonmonotonicity in lines 6-7 is at least 1/2, by virtue of i
being active. Summing up, we get that the probability of outputting “REJECT” in a single iteration of
the loop in line 1 is at least ε/4. Repeating O(ε−1) times gives a constant probability.



We note that the additive constant 1 in the query complexity can be eliminated using a simple technical
observation. Indeed, notice that, for x chosen in line 2, if pint(x) > 1/2 then x cannot be strongly active
by definition, and therefore that iteration can be aborted without any query. If pint(x) ≤ 1/2 then we
can eliminate one iteration from the while loops by initializing δ = 2pint(x) instead of δ = pint(x) and
by slightly decreasing the probability of success in each iteration of the repeat loop. This gets rid of the
additive constant, and concludes the proof of Theorem 1 in the ([n],D) case.

4 A property tester for ([n]d, U)

Let f : [n]d → U denote the input function. For a dimension j ∈ [d] and integers i1, . . . , ı̂j, . . . , id ∈ [n], let

f j

i1,...,îj ,...,id

denote the one-dimensional function obtained by restricting f to the line

{i1} × · · · × {ij−1} × [n]× {ij+1} × · · · × {id} .

highdim-mon-uniform-test (f, ε)

repeat O(ε−1d2d) times

1 choose random dimension j ∈ [d]

2 choose random i1, . . . , îj , . . . , id ∈ [n]

3 run one iteration of repeat loop of monotonicity-test(f j

i1,...,îj ,...,id

,U , ∗)

output ACCEPT

To prove that the above algorithm is an ε-monotonicity tester for f , we will need the following lemma.
It is an improved version of a theorem from [11], with 2d replacing the 4d on the right hand side. Recall
Definition 2 of εi.

Lemma 4.
d

∑

i=1

εi ≥ ε/2d+1.

The correctness of highdim-mon-uniform-test is a simple consequence of Lemma 4. If f is monotone,
then the algorithm returns “ACCEPT” with probability 1. So assume f is ε-far from monotonicity. By
Lemma 4, the restricted one-dimensional function f j

i1,...,ı̂j ,...,id
chosen in line 3 has expected distance of at

least γ = 1
d

∑

εi ≥
1
d
ε/2d+1 from monotonicity, in each iteration of the repeat loop. A single iteration of

monotonicity-test has an expected success probability of Ω(γ) by the analysis of the previous section.
Repeating O(ε−1d2d) times amplifies the probability of success to any fixed constant. As for the query
complexity, line 3 makes O(log n) queries, which is the entropy of the uniform distribution on [n]. So the
entire query complexity is O(ε−12dd log n) = O(ε−12dH), as required. It remains to prove Lemma 4:

Proof. For i = 1, . . . , d, let Bi denote a minimal subset of [n]d such that f can be changed on Bi to
get a monotone function with respect to ≤i. So |Bi| = ndεi. Let B = ∪d

i=1Bi. So |B| ≤
∑

εi[n]d. Let
χB : [n]d → {0, 1} denote the characteristic function of B:

χB(x) =

{

1 x ∈ B

0 otherwise

We define operators ΨL and ΨR on {0, 1} functions over [n] as follows:

(ΨLv)(i) =

{

1 if there exists j ∈ [1, i] s.t.
∑i

k=j v(k) ≥ (i− j + 1)/2

0 otherwise

(ΨRv)(i) =

{

1 if there exists j ∈ [i, n] s.t.
∑j

k=i v(k) ≥ (j − i + 1)/2

0 otherwise



Given a {0, 1}-function over [n]d, we define operators Ψ
(i)
L (resp. Ψ

(i)
R ) for i = 1, . . . , d by applying ΨR

(resp. ΨL) independently on one-dimensional lines of the form

{x1} × · · · × {xi−1} × [n]× {xi+1} × · · · × {xd}.

Finally, for i = 1, . . . , d we define the functions ϕ
(i)
L , ϕ

(i)
R : [n]d → {0, 1} as follows:

ϕ
(i)
L =

(

Ψ
(i)
L ◦ Ψ

(i+1)
L ◦ · · · ◦ Ψ

(d)
L

)

χB

ϕ
(i)
R =

(

Ψ
(i)
R ◦ Ψ

(i+1)
R ◦ · · · ◦ Ψ

(d)
R

)

χB

(1)

Note that ϕ
(i)
L = Ψ

(i)
L ϕ

(i+1)
L and ϕ

(i)
R = Ψ

(i)
R ϕ

(i+1)
R .

We claim that outside the set {ϕ
(1)
L = 1} ∪ {ϕ

(1)
R = 1} ⊆ [n]d the function f is monotone. Indeed,

choose x, y ∈ [n]d such that x ≤ y and ϕ
(1)
L (y) = ϕ

(1)
R (x) = 0. We want to show that f(x) ≤ f(y).

Claim 3 Any b ∈ B satisfies ϕ
(i)
L (b) = ϕ

(i)
R (b) = 1 for i = 1, . . . , d.

By the above Claim, x, y /∈ B. Now consider the two line segments:

SR = [x1, y1]× {x2} × · · · × {xd}

SL = [x1, y1]× {y2} × · · · × {yd}.

By definition of Ψ
(1)
R (resp. Ψ

(1)
L ), the average value of ϕ

(2)
R (resp. ϕ

(2)
L ) on SR (resp. SL) is less than

1/2. Therefore, there exists z1 ∈ [x1, y1] such that ϕ
(2)
R (z1, x2, . . . , xd)+ϕ

(2)
L (z1, y2, . . . , yd) < 1. Since these

values are in {0, 1}, we get that

ϕ
(2)
R (z1, x2, . . . , xd) = ϕ

(2)
L (z1, y2, . . . , yd) = 0. (2)

Denote x(1) = (z1, x2, . . . , xd) and y(1) = (z2, y2, . . . , yd). By Claim 3 and (2), both x(1) and y(1) are
outside B. Since x ≤1 x(1) we get that f(x) ≤ f(x(1)). A similar argument shows that f(y(1)) ≤ f(y).

We use an inductive argument, using the functions ϕ
(2)
L and ϕ

(2)
R to show that f(x(1)) ≤ f(y(1)). The

general inductive step generates points x(i) ≤ y(i) that agree in the first i coordinates, and such that

ϕ
(i+1)
R (x(i)) = ϕ

(i+1)
L (y(i)) = 0 (consequently, x(i), y(i) /∈ B).

In the base step we will end up with x(d−1) and y(d−1) that differ in their last coordinate only. Therefore,
they are ≤d-comparable and f(x(d−1)) ≤ f(y(d−1)) because x(d−1), y(d−1) /∈ B.

It remains to bound the size of the set {ϕ
(1)
L = 1}. A similar analysis can be applied to {ϕ

(1)
R = 1}. We

claim that |{ϕ
(1)
L = 1}| ≤ |B|2d. This is a simple consequence of the following lemma.

Lemma 5. Let v ∈ {0, 1}n. Then the number of 1’s in ΨLv is at most twice the number of 1’s in v. A
similar result holds for ΨR.

To prove this, imagine walking on the domain [n] from 1 to n, and marking integers according to the
following rule (assume on initialization that all domain points are unmarked and a counter is set to 0):

If the value of v on the current integer i is 1, then mark i. Also, in this case increase the counter by
1. If v(i) = 0 and the counter is > 0, then mark integer i and decrease the counter by 1. Otherwise do
nothing.

It is obvious that the number of marked integers is at most twice the number of 1’s in v. It is also not
hard to show that (ΨLv)(i) = 1 only if i is marked. Indeed, if (ΨLv)(i) = 1, then for some j ≤ i, vector v
on integer segment [j, i] has at least as many 1’s as 0’s. This implies that either v(i) = 1 or the counter at
i is positive, therefore i is marked. This proves the lemma.

We conclude that the combined size of {ϕ
(1)
L = 1} and {ϕ

(1)
R = 1} is at most |B|2d+1. This means that f

is monotone on a subset of [n]d of size at least nd−|B|2d+1. It is a simple fact that any monotone function
on a subset of [n]d can be completed to a monotone function on the entire domain (see Lemma 1 [6]). So
the distance ε of f from monotonicity is at most 2d+1

∑

εi, as required. 2



5 A property tester for ([n]d, D)

Let f : [n]d → R be the input function, where [n]d is equipped with a (known) distributionD = D1×· · ·×Dd.
The following algorithm is a monotonicity tester for f .

highdim-monotonicity-test (f,D, ε)

1 repeat O(ε−1d2d) times

2 choose random dimension j ∈ [d]
3 choose random (i1, . . . , id) ∈D [n]d

4 run one iteration of repeat loop of monotonicity-test(f j
i1,...,ı̂j ,...,id

,Dj , ∗)

output ACCEPT

Clearly, for D = U highdim-monotonicity-test is equivalent to highdim-mon-uniform-test.
We start with the query complexity analysis. The call to monotonicity-test in line 4 has query

complexity O(Hj) (the entropy of Dj). Therefore, the expected query complexity in each iteration of the

repeat loop is 1
d

∑d
j=1 O(Hj) = 1

d
O(H) (we use the well known identity that the entropy of a product

of independent variables is the sum of the individual entropies). Therefore the total running time is
O(ε−12dH), as claimed.

We prove correctness. Clearly, if f is monotone then highdim-monotonicity-test outputs “ACCEPT”
with probability 1. Assume f is ε-far from monotone. In order to lower bound the success probability (out-
putting “REJECT”) of line 4, we want to lower bound the average axis-parallel distances to monotonicity
of f , similarly to Lemma 4. In order to do that, we consider the continuous case. Recall the definition of
the function f̃ : Id → R from Section 2. Let ε̃ be its distance from monotonicity w.r.t. the Lebesgue mea-
sure, and ε̃i its corresponding axis-parallel distances. We need the following lemma, which is a continuous
version of Lemma 4.

Lemma 6.
d

∑

i=1

ε̃i ≥ ε̃/2d+1.

Proof. The proof is basically as that of Lemma 4, with a redefinition of Bi, B, χB, ΨL, ΨR, Ψ i
L, Ψ i

R, ϕ
(i)
L , ϕ

(i)
R .

We pick an arbitrarily small δ > 0, and define the set Bi ⊆ Id as the set {f 6= g} for some ≤i-monotone
g with distance at most ε̃i + δ from f (so ε̃i ≤ µ(Bi) ≤ ε̃i + δ). Let χB be the characteristic function of
B = ∪Bi. Obviously, µ(B) ≤

∑

ε̃i + δd. We then define the following continuous versions of ΨL, ΨR, which
are now operators on measurable {0, 1} functions over I:

(ΨLv)(x) =

{

1 v(x) = 1 or there exists y ∈ [0, x) s.t.
∫ x

y
v(t)dt ≥ 1

2 (x − y)

0 otherwise

(ΨRv)(x) =

{

1 v(x) = 1 or there exists y ∈ (x, 1] s.t.
∫ y

x
v(t)dt ≥ 1

2 (y − x)

0 otherwise

The operator Ψ i
L (resp. Ψ i

R) on functions of Id applies ΨL (resp. ΨR) on all lines of the form

{x1} × · · · × {xi−1} × I × {xi+1} × · · · × {xd} .

The functions ϕ
(i)
L and ϕ

(i)
R are defined as in (1). The main observation is that µ({ϕ

(1)
L = 1}) ≤ 2dµ(B)

(similarly, for ϕ
(1)
R ). This is a simple consequence of the following lemma, which is a continuous version of

Lemma 5.

Lemma 7. Let v be a measurable {0, 1} function defined on I. Then
∫ 1

0
(ΨLv)(t)dt ≤ 2

∫ 1

0
v(t)dt . In other

words, the measure of the 1-level set of ΨLv is at most twice the measure of the 1-level set of v. A similar
result holds for ΨR.



The mostly technical proof of Lemma 7 can be found in Appendix B. The rest of the proof of Lemma 6
continues very similar to that of Lemma 4 and by taking δ → 0.

2

As a result of Lemmas 6 and 1, we have

∑

εi ≥ ε/2d+1

.

This means that the expected one-dimensional distance from monotonicity of f j

i1,...,îj ,...,id

in line 4

(w.r.t. the marginal distribution Dj) is at least γ = 1
d
ε/2d+1. By the analysis of monotonicity-test,

we know that the probability of outputting “REJECT” in a single iteration of the repeat loop is Ω(γ).
Therefore, by repeating O(1/γ) times we get constant probability of success. This completes the proof of
Theorem 1. ut

6 The Distribution-(almost) Free Case

We prove Theorem 2. Let f : [n]d → R be the input function, where [n]d is equipped with a distribution
D = Di × · · · × Dd, and the marginal distributions Di are unknown.

We cannot simply run highdim-monotonicity-test on f , because that algorithm expects the ar-
gument D to be the actual probabilities of the distribution. In the distribution-free case, we can only
pass an oracle[D], which is a distribution sampling function. Therefore our new algorithm, highdim-

monotonicity-test-distfree will take f, oracle[D] and ε as input.

highdim-monotonicity-test1 (f, oracle[D], ε)

1 repeat O(ε−1d2d) times

2 choose random dimension j ∈ [d]
3 choose random (i1, . . . , ı̂j , . . . , id) ∈D [n]d−1

4 run one iteration of repeat loop of monotonicity-test1(f j
i1,...,ı̂j ,...,id

, oracle[Dj ], ∗)

output ACCEPT

Note that oracle[Dj ] in line 4 is obtained by projecting the output of oracle[D]. Algorithm monotonicity-

test1 is defined to be exactly Halevy-Kushilevitz’s 1-dimensional distribution-free monotonicity tester [10].
It is similar to monotonicity-test, except that we cannot compute pint(x) and therefore we cannot com-

pute y and int(y). Instead, int(y) is chosen uniformly at random in the integer interval

[int(x), min{int(x) + 2t}] ,

for t = 0, . . . , dlog ne. This replaces the while-loop starting on line 4, and similarly for the while-loop
starting on line 8. The running time of a single iteration of the repeat loop of monotonicity-test1 is

O(log n), and the total running time is O(d2d log n
ε

), as required.

Let f ′ denote the one dimensional function f j
i1,...,ı̂j ,...,id

, as chosen in line 4 of highdim-monotonicity-

test1, and let ε′ be its distance from monotonicity w.r.t. Dj . In [10] it is proven that a single repeat-loop
iteration of monotonicity-test1 (f, oracle[Dj ], ∗) outputs “REJECT” with probability Ω(ε′). But we
showed in Section 5 that E[ε′] ≥ 1

d
ε/2d+1. Repeating lines 2-4 O(ε−1d2d) times amplifies this to a constant

probability. This concludes the proof of Theorem 2.

ut



7 Future work

1. Lower bounds: The best known lower bound for the one-dimensional uniform distribution property
tester [3] is Ω(ε−1 log n) . For arbitrary distribution it is possible, using Yao’s minimax principal, to
show a lower bound of Ω(ε−1 log(ε/pmax)), where pmax is the maximal probability in the distribution.
Note that log(1/pmax) can be arbitrarily smaller than H . It would be interesting to close the gap, as
well as generalize for higher dimension.

2. High-dimensional monotonicity: It is not known if Lemma 4 is tight. Namely, is there a high dimensional
function that has axis-parallel distances from monotonicity exponentially (in d) smaller than the global
distance to monotonicity? We note that even if the exponential dependence is tight in the inequality,
it would not necessarily mean that the property testing query complexity should be exponential in d
(other algorithms that are not based on axis-parallel comparisons might do a better job).

3. Other posets and distributions: It would be interesting to generalize the results here to functions over
general posets [6] as well as arbitrary distributions (not necessarily product distributions).

4. More information theory in property testing: It would be interesting to see how the entropy or other
complexity measures of D affect the query complexity of other interesting property testing problems.

Acknowledgements

We would like to thank Shirley Halevy and Eyal Kushilevitz for enlightening discussions.

References

1. Batu, T., Rubinfeld, R., White, P. Fast approximate PCPs for multidimensional bin-packing problems, Proc.
RANDOM (1999), 245–256.

2. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A. Improved testing algo-

rithms for monotonicity, Proc. RANDOM (1999), 97–108.
3. Ergun, F., Kannan, S., Kumar, S. Ravi, Rubinfeld, R., Viswanathan, M. Spot-checkers, Proc. STOC (1998),

259–268.
4. Fischer, E. The art of uninformed decisions: A primer to property testing, Bulletin of EATCS, 75: 97-126, 2001.
5. Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A., Testing Juntas Proc. FOCS (2002), 103–112.
6. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorodnitsky, A. Monotonicity testing

over general poset domains, Proc. STOC (2002), 474–483.
7. Goldreich, O. Combinatorial property testing - A survey, in “Randomization Methods in Algorithm Design,”

45-60, 1998.
8. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samordinsky, A. Testing monotonicity, Combinatorica, 20

(2000), 301–337.
9. Goldreich, O., Goldwasser, S., Ron, D. Property testing and its connection to learning and approximation, J.

ACM 45 (1998), 653–750.
10. Halevy, S., Kushilevitz, E. Distribution-free property testing, Proc. RANDOM (2003), 302–317.
11. Halevy, S., Kushilevitz, E. Testing Monotonicity over Graph Products, ICALP (2004).
12. Parnas, M., Ron, D., Rubinfeld, R. Tolerant property testing and distance approximation, ECCC 2004.
13. Ron, D. Property testing, in “Handbook on Randomization,” Volume II, 597-649, 2001.
14. Rubinfeld, R., Sudan, M. Robust characterization of polynomials with applications to program testing, SIAM J.

Comput. 25 (1996), 647–668.



Appendix A: Proof of Lemma 1

The direction ε̃ ≤ ε is clear. It remains to show that ε ≤ ε̃. Pick an arbitrarily small δ > 0, and let g̃ be
some monotone function on Id with distance at most ε̃+δ to f̃ . We are going to replace g̃ with a monotone
function g over [n]d with distance at most ε̃ + 2δ to f . To do this, we will make it constant on tiles of the
form ∆1

i1
×∆2

i2
× · · ·×∆d

id
, paying a price of at most one extra δ. We will do this one dimension at a time.

We show how to do this for the first dimension, and the rest is done similarly. Our goal is to replace
g̃ with a monotone function g̃(1) that has distance at most ε̃ + δ(1 + 1/d) from f̃ , with the property that
it is constant on any line segment of the form ∆1

i × {x2} × · · · × {xd}, for any i ∈ [n] and x2, . . . , xd ∈ I.
For every i ∈ [n], do the following: For every x1 ∈ ∆1

i , consider the restriction of the function g̃ to the
d− 1 dimensional cube {x1} × Id−1. Denote this function by g̃x1

(x2, . . . , xd). Let ε̃x1
denote the distance

between g̃x1
and f̃x1

(where f̃x1
is defined similarly to g̃x1

). Let γ = infx1∈∆1
i
ε̃x1

. Pick x1 such that ε̃x1

is at most γ + δ/d. We now “smear” the value of g̃ at (x1, x2, . . . ., xd) to ∆1
i × {x2} × · · · × {xd}, for all

x2, . . . , xd. Doing this for all i = 1, . . . , n produces the function g̃(1). It is not hard to see that the distance
between g̃(1) and f is at most ε̃ + δ(1 + 1/d), and the function g̃(1) is monotone.

After obtaining g̃(j), we obtain g̃(j+1) by repeating the above process for the (j + 1)-th dimension. It
is easy to verify that for j < d,

1. If g̃(j) is monotone then so is g̃(j+1).
2. If g̃(j) is constant on ∆1

i1
×∆2

i2
×· · ·×∆j

ij
×{xj+1}× · · ·×{xd} for all i1, . . . , ij and xj+1, . . . , xd, then

g̃(j+1) is constant on ∆1
i1
×∆2

i2
× · · ·×∆j+1

ij+1
×{xj+2}× · · ·× {xd} for all i1, . . . , ij+1 and xj+2, . . . , xd.

3. If the distance between g̃(j) and f̃ is at most ε̃ + jδ/d, then the distance between g̃(j+1) and f̃ is at
most ε̃ + (j + 1)δ/d.

Therefore, g̃(d) is monotone, and it is defined over [n]d (because it is constant over ∆1
i1
× · · · × ∆d

id
).

Denote the equivalent function over ([n]d,D) by g. The monotone function g has distance at most ε̃ + 2δ
from f . The set of possible distances between functions over ([n]d,D) is finite, therefore by choosing δ
small enough we obtain a function g which has distance exactly ε̃ from f . This concludes the proof.

2

Appendix B: Proof of Lemma 7

Let B denote the set {x|v(x) = 1}, and C denote {x|(ΨLv)(x) = 1}. We want to show that µ(C) ≤ 2µ(B).
It suffices to show that for any ε > 0, µ(C) ≤ (2 + ε)µ(B).

For y < x, define

ρ(y, x) =

∫ x

y
v(t)dt

y − x
=

µ(B ∩ [y, x])

µ([y, x])
.

That is, ρ(y, x) is the measure of the set {v = 1} conditioned on [y, x].
Pick an arbitrary small ε > 0. Let Cε be the set of points x ∈ I such that there exists y < x with

ρ(y, x) > 1/2− ε. For x ∈ Cε, we say that y is an ε-witness for x if ρ(y, x) > 1/2− ε. We say that y is a
strong ε-witness for x if for all y < z ≤ x, ρ(y, z) > 1/2− ε.

We claim that if x ∈ Cε, then there exists a strong ε-witness y for x. Assume otherwise. Let y be any
ε-witness for x. Since y is not a strong ε-witness for x, there exists z : y < z < x such that ρ(y, z) ≤ 1/2−ε.
Let z0 be the supremum of all such z. Clearly, y < z0 < x (z0 cannot be x because then by continuity
of ρ we would get ρ(y, x) ≤ 1/2 − ε). We claim that z0 is a strong witness for x. Indeed, if for some
z′ : z0 < z′ < x we had ρ(z0, z

′) ≤ 1/2− ε, then it would imply ρ(y, z′) ≤ 1/2− ε, contradicting our choice
of the supremum.

For all x ∈ Cε, let y(x) be the infimum among all strong ε-witnesses of x. We claim that for x 6= x′, the
intervals [y(x), x) and [y(x′), x′) are either disjoint, or y(x) = y(x′). Otherwise, we would have, without
loss of generality, y(x) < y(x′) with both x, x′ > y(x′). But then any strong ε-witness for x that is strictly
between y(x) and y(x′) (which exists) is a strong ε-witness for x′, contradicting the choice of y(x′).

Therefore, the set Y = y(Cε) (the image of y(·)) is countable, and for any y0 ∈ Y there exists an
x(y0) > y0 which is the supremum over all x : x > y0 such that y(x) = y0. For two distinct y1, y2 ∈ Y , the
intervals [y1, x(y1)) and [y2, x(y2)) are disjoint. Let

D = ∪y∈Y [y, x(y)) .



Clearly, by continuity of ρ, for all y ∈ Y

µ([y, x(y))) ≤
µ([y, x(y)) ∩B)

1/2− ε
.

Therefore

µ(D) ≤
µ(D ∩B)

1/2− ε
.

We also have that µ(D̄) = µ(D) (where D̄ is the closure of D), because D is a union of countably many
intervals. Therefore,

µ(D̄) ≤
µ(D̄ ∩B)

1/2− ε
.

By our previous claim Cε ⊆ D̄, therefore

µ(Cε) ≤
µ(D̄ ∩B)

1/2− ε
,

and thus

µ(Cε ∪ (B\D̄)) ≤
µ(B)

1/2− ε
.

We claim that up to a set of measure zero, C is contained in Cε∪(B\D̄). Indeed, if x ∈ C, then (ΨLv)(x) = 1.
Therefore, either there exists y < x such that ρ(y, x) ≥ 1/2, in which case x ∈ Cε, or there does not exist
such a y: In this case, by definition of ΨL, x ∈ B, and also such an x cannot be in the interior of D̄.
Therefore, we have x ∈ B\D̄ (unless x ∈ ∂D). But since µ(∂D) = 0, our claim is proven. We conclude that

µ(C) ≤
µ(B)

1/2− ε
,

as desired. ut


