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Splitting a Delaunay Triangulation in Linear Time1

B. Chazelle,2 O. Devillers,3 F. Hurtado,4 M. Mora,4 V. Sacristán,4 and M. Teillaud3

Abstract. Computing the Delaunay triangulation of n points requires usually a minimum of �(n log n)

operations, but in some special cases where some additional knowledge is provided, faster algorithms can be
designed. Given two sets of points, we prove that, if the Delaunay triangulation of all the points is known, the
Delaunay triangulation of each set can be computed in randomized expected linear time.
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1. Introduction. Computing the Delaunay triangulation of n points is well known to
have an �(n log n) lower bound. Researchers have attempted to break that bound in
special cases where additional information is known.

The Delaunay triangulation of the vertices of a convex polygon is such a case where
the lower bound of �(n log n) does not hold. This problem has been solved in linear time
with a deterministic algorithm of Aggarwal et al. [1]. Chew has also proposed a very
simple randomized algorithm [8] for the same problem, which we sketch in Section 2.2.
These two algorithms can also compute the skeleton of a convex polygon in linear time
and support the deletion of a point from a Delaunay triangulation in time linear in its
degree.

Another result is that if a spanning subgraph of maximal degree d of the Delaunay
triangulation is known, then the remaining part of the Delaunay triangulation can be
computed in O(nd log� n) expected randomized time [14]. The Euclidean minimum
spanning tree is an example of such a graph of bounded degree 6. This O(n log� n)

result applies also if the points are the vertices of a chain monotone in both the x and y
directions but, in this special case, linear complexity has been achieved by Djidjev and
Lingas [15], generalizing the result of Aggarwal et al. for convex polygons.

Beside these results, where knowing some information on the points helps to construct
the Delaunay triangulation, it has been proven that knowing the order of the points along
any one given direction does not help [15].
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Breaking a lower bound by using additional information arises similarly in some other
problems. One of the most famous is the triangulation of a simple polygon in linear time
[6], [18], [2]. Other related problems are the constrained Delaunay triangulation of a
simple polygon in O(n) time [17]; the medial axis of a simple polygon in linear time
[10]; the computation of one cell in the intersection of two polygons in O(n(log� n)2)

time [12]; and the L∞ Delaunay triangulation of points sorted along the x and y axes in
O(n log log n) time [9]. Also, given the three-dimensional convex hull of a set of blue
points and the convex hull of the set of red points, the convex hull of all points can be
computed in linear time [7].

The problem we address in this paper is the following: given the Delaunay triangula-
tion DT (S) of a point set S in E2 and a partition of S into S1, S2, can we compute both
DT (Si ) in o(n log n) time?

The reverse problem, given a partition of S into S1, S2, to reconstruct DT (S) from
DT (Si ), can be solved in linear time [7]. Indeed, the three-dimensional convex hull of
the vertices of two convex polyhedra can be computed in linear time [7] and, by standard
transformation of the Delaunay triangulation to the convex hull, we get the result. This
reverse operation can be used as the merging step of a divide and conquer algorithm.

In this paper we propose an O(n) randomized algorithm in the spirit of Chew’s
algorithm for the Delaunay triangulation of a convex polygon.

In some applications, we need to simplify a triangulation by removing several vertices
at the same time (see for example [20]), this is usually done by choosing an independent
set of small degree vertices to ensure good complexity. This paper allows us to relax that
constraint and to have more flexibility to choose the vertices to remove according to the
need of the application.

2. Preliminaries. We assume in what follows that a triangulation allows constant
time access from a triangle to its three neighbors and to its three vertices, and from a
vertex to one incident triangle. This is provided by any reasonable representation of a
triangulation, either based on triangles [4] or as in the DCEL or winged-edge structure
[13, pp. 31–33].

2.1. Classical Randomized Incremental Constructions. Randomized incremental con-
structions have been widely used for geometric problems [11], [3] and specifically for
the Delaunay triangulation [5], [16], [14]. These algorithms insert the points one by
one in a random order in some data structure to locate the new point and update the
triangulation. The location step has an O(log n) expected complexity. The update step
has constant expected complexity as can easily be proved by backwards analysis [19].
Indeed, the update cost of inserting the last point in the triangulation is proportional to
its degree in the final triangulation. Since the last point is chosen randomly, its insertion
cost is the average degree of a planar graph, which is less than 6.

2.2. Chew’s Algorithm for the Delaunay Triangulation of a Convex Polygon . Chew’s
algorithm [8] for the Delaunay triangulation of a convex polygon uses the ideas above
for the analysis of the insertion of the last point. The main idea is to avoid the location
cost using the additional information of the convex polygon.
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As noticed earlier, for any vertex v we know one of its incident triangles. In the case
of Chew’s algorithm, it is required that the triangle in question be incident to the convex
hull edge following v in counterclockwise order.

The algorithm can be stated as follows:

1. Choose a random vertex p of the polygon P .
2. Store the point q before p on the convex hull.
3. Compute the convex polygon P\{p}.
4. Compute DT (S\{p}) recursively.
5. Let t be the triangle pointed to by q.
6. Create a triangle neighbor of t with p as the vertex, flip diagonals if necessary using

the standard Delaunay criterion, and update links from vertices to incident triangles.

By standard backwards analysis, the flipping step has expected constant cost. Other
operations, except the recursive call, require constant time. Thus we get a linear expected
complexity.

The important thing is that we avoid the location step. Thus Chew’s algorithm applies
to other cases where the location step can be avoided, e.g., deletion of a point in a
Delaunay triangulation.

3. Algorithm

3.1. General Scheme. The main idea is similar to Chew’s algorithm, that is, to delete
a random point p ∈ Si from DT (S), to split the triangulation, and then to insert p
in the triangulation DT (Si\{p}) avoiding the usual location step. The location of p
can be done by computing the nearest neighbor of p in Si , which can be done in time
T (p) log T (p) for some number T (p) depending on p, whose expectation is O(1).
However, it is possible for example to have one point p, chosen with probability 1/n
such that T (p) = n, which brings the expected cost to E(T (p) log T (p)) = �(log n).
The idea is to choose two points pα , pβ and to take for p the better of the two, in order
to concentrate the distribution around its mean. Here is the algorithm:

Given DT (S):

1. Choose two random points pα, pβ ∈ S. Let i, j ∈ {1, 2} such that pα ∈ Si and
pβ ∈ Sj (i and j do not need to be different).

2. Look simultaneously for the nearest neighbor of pα in Si and the nearest neighbor of
pβ in Sj . As soon as one of the two is found, say the neighbor q of pα in Si , stop all
searching and let p be pα .

3. Remove p from DT (S) to get DT (S\{p}).
4. Recursively compute DT (S1\{p}) and DT (S2\{p}) from DT (S\{p}).
5. Determine the triangle of DT (Si\{p}) incident to q that is traversed by the seg-

ment pq .
6. Apply the usual Delaunay flip procedure to obtain DT (Si ) from DT (Si\{p}).

3.2. Combination Lemmas. Note that in the algorithm, p is not a random point uni-
formly distributed among S, but one chosen among two random points. In this section
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we investigate how this choice influences the mean value of some variable depending
on p.

Let X (p) be a positive random variable depending on a point p chosen uniformly at
random among n points. X (p) is bounded by n and E(X) is the expected value of X . Y
is an independent, identically distributed copy of X .

LEMMA 1.

E(max{X, Y }) ≤ 2 · E(X).

PROOF. This is a direct consequence of

E(min{X, Y }) ≥ 0 (since X and Y are positive),

E(max{X, Y } + min{X, Y }) = E(X + Y )= E(X) + E(Y )=2 · E(X).

LEMMA 2. If f is a nonnegative concave nondecreasing function, then

E(min{X, Y } · f (min{X, Y })) ≤ E(X) · f (E(X)).

PROOF.

2·E(min{X, Y }· f (min{X, Y }))
≤ E(min{X, Y }· f (max{X, Y })+max{X, Y }· f (min{X, Y }))
= E(X · f (Y )+Y · f (X))

= E(X)·E( f (Y ))+E(Y )·E( f (X)) (since X and Y are independent)

= 2·E(X)·E( f (X))

≤ 2·E(X)· f (E(X)) (by concavity of f ).

3.3. Algorithmic Details and Randomized Analysis. Referring to the six different steps
of the algorithm, here is a detailed cost analysis:

Step 1. Done in time O(1).

Step 2. The nearest neighbor in Si of a point p ∈ Si can be found in the following way.
Start considering all the Delaunay edges incident to p in DT (S). Put them in a priority
queue by increasing order of their distance to p. Explore the queue in the following way:
each time that we consider a point q, there are two possibilities:

• If q ∈ Si , we are done: q is p’s nearest neighbor in Si .
• If q ∈ Si , insert in the queue all its Delaunay neighbors, delete q, and proceed to the

following point in the queue.

The correctness of this process is based on the fact that it simulates the way in which a
circle centered in p would grow. In other words, if q ∈ Si is the point we are looking for,
the algorithm computes and orders all the points that are closer to p than q (obviously,
none of them belongs to Si ). The proof is based on the following observation.
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Fig. 1. The points s and pi are Delaunay neighbors.

FACT. Let S be a set of points. Let C be any disk in the plane that contains a point
s ∈ S on its boundary. Let p1, . . . , pk be all the points of S contained in C . Then s must
have a Delaunay neighbor among p1, . . . , pk .

PROOF. Grow a circle Cs through s, tangent to C and interior to C , until it reaches
the first point pi (see Figure 1). The emptiness of Cs is obvious, and therefore spi is a
Delaunay edge.

In this procedure we have explored and ordered all the points that lie closer to p than
q , together with all their neighbors. Can T (p), the number of such points, be too big
on average? As the randomly chosen point can belong either to S1 or to S2, we want to
bound the following amount:

E(T ) = 1

n

(∑
p∈S1

∑
q∈D(p,N N1(p))

deg(q) +
∑
p∈S2

∑
q∈D(p,N N2(p))

deg(q)

)
,

where N Ni (p) denotes the nearest neighbor of p in Si , D(p, s) is the disk of center p
passing through s, and deg(q) denotes the degree of q in DT (S).

We bound the summands in the following way:∑
p∈S1

∑
q∈D(p,N N1(p))

deg(q) =
∑
q∈S2

∑
p s.t. q∈D(p,N N1(p))

deg(q)

=
∑
q∈S2

deg(q) number{p s.t. q ∈ D(p, N N1(p))}

≤ 6
∑
q∈S2

deg(q).

The last inequality is due to the fact that the number of disks of the kind D(p, N N1(p))

that can contain a point q ∈ S2 is at most six, because in the set S1 ∪ {q} such a point p
would have q as closest neighbor, and the maximum indegree of q in the nearest neighbor
graph of S1 ∪ {q} is at most 6.

Thus we get

E(T ) ≤ 6

n

(∑
q∈S2

deg(q) +
∑
q∈S1

deg(q)

)
≤ 36.
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Since the algorithm requires a priority queue, the cost of searching for q is O(T log T )

if we use a balanced priority queue or even O(T 2) if we use a simple list to implement
the queue and E(T 2) cannot be bounded by a constant. However, the time for deciding
which of pα and pβ will be p is the minimum of the times for finding the neighbors
of pα and pβ and thus expected to be constant by Lemma 2. This step has expected
cost O(1).

Step 3. It is known that it can be done in time proportional to the degree of p in
DT (S) with Chew’s algorithm. Since for a random point, the expected degree is 6, the
expected degree of p is smaller than 12 by Lemma 1. Hence, this step has expected
cost O(1).

Step 4. If the cost of the algorithm is denoted C(n), this step can be done in C(n − 1).

Step 5. Exploring all the triangles incident to q takes time proportional to the degree
of q in DT (Si\{p}). However, q is not a random point, but the nearest neighbor of p,
itself chosen among two random points. We prove below that the degree of the nearest
neighbor in Si of a random point p ∈ Si is at most 42, and thus by Lemma 1 the expected
degree of q is less than 84 and this step can be done in time O(1).

FACT. Given a random point p in a set of points R, the expected degree in DT (R\{p})
of the nearest neighbor of p in R is at most 42.

PROOF. We have to consider the degree of a point in several graphs. Let degN N (q) be
the indegree of q in the nearest neighbor graph of R, let deg(q) be the degree of q in
DT (R), and let degp(q) be the degree of q in DT (R\{p}). It is known that degN N (q) is
at most 6. When p is removed from DT (R) the new neighbors of q are former neighbors
of p, thus degp(q) ≤ deg(p) + deg(q). The expected value of degp(N N (p)) is

E(degp(N N (p))) = 1

n

∑
p∈R

degp(N N (p))

≤ 1

n

∑
p∈R

(deg(p) + deg(N N (p)))

≤ 6 + 1

n

∑
p,q∈R q=N N (p)

deg(q)

= 6 + 1

n

∑
q∈R

(degN N (q) deg(q))

≤ 6 + 1

n

∑
q∈R

(6 deg(q))

≤ 6 + 36 = 42.
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Step 6. It is known that this step can be done in time proportional to the degree of p in
DT (Si ), that is, in expected time O(1) by Lemma 1.

As a conclusion, we have proven the following:

THEOREM 3. Given a set of n points S and its Delaunay triangulation, for any partition
of S into two disjoint subsets, S1 and S2, the Delaunay triangulations DT (S1) and
DT (S2) can be computed in O(n) expected time.

4. Concluding Remarks

4.1. Alternative Ideas. We should mention several simpler ideas that do not work. A
first idea consists in deleting all the points of S2 from DT (S) in a random order, but the
degree of a random point in S2 cannot be controlled; in fact if we take points on the part
of the unit parabola with positive abscissa, the Delaunay triangulation links the point of
highest curvature to all others (see Figure 2). If we split the set into two parts along the
parabola and we remove the highest-curvature half of the point set in a random order,
then the probability of removing the highest curvature point increases as the number of
points decreases and the expected time to remove half the points is O(n log n).

Another idea is to remove the points not at random, but by increasing degree, but in
that case the set of points to remove must be kept sorted by degree, although the degrees
change during the algorithm.

4.2. Convex Hull in Three Dimensions. Through the projection of the plane on a
paraboloid in three dimensions, Delaunay triangulations are closely related to convex
hulls in three dimensions.

Unfortunately, our algorithm, or more precisely its complexity analysis, does not
generalize to three dimensional convex hulls. In this paper we use the fact that the
nearest neighbor graph is a subgraph of the Delaunay triangulation having bounded

Fig. 2. Points on a parabola.
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degree, and to generalize the algorithm we would need to define a neighboring relation
which is a subgraph of the convex hull; several possibilities for such a subgraph exist
but they do not provide bounded degree and thus the analysis does not generalize.

Acknowledgments. The authors thank Oswin Aichholzer for various discussions about
this problem.

References

[1] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for computing the Voronoi
diagram of a convex polygon. Discrete Comput. Geom., 4(6):591–604, 1989.

[2] N. M. Amato, M. T. Goodrich, and E. A. Ramos. Linear-time triangulation of a simple polygon made
easier via randomization. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pages 201–212, 2000.

[3] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Applications of random sampling
to on-line algorithms in computational geometry. Discrete Comput. Geom., 8:51–71, 1992.

[4] J.-D. Boissonnat, O. Devillers, M. Teillaud, and M. Yvinec. Triangulations in CGAL. In Proc. 16th
Annu. ACM Sympos. Comput. Geom., pages 11–18, 2000.

[5] J.-D. Boissonnat and M. Teillaud. On the randomized construction of the Delaunay tree. Theoret.
Comput. Sci., 112:339–354, 1993.

[6] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485–524,
1991.

[7] B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM J. Com-
put., 21(4):671–696, 1992.

[8] L. P. Chew. Building Voronoi diagrams for convex polygons in linear expected time. Technical Report
PCS-TR90-147, Dept. Math. Comput. Sci., Dartmouth College, Hanover, NH, 1986.

[9] L. P. Chew and S. Fortune. Sorting helps for Voronoi diagrams. Algorithmica, 18:217–228, 1997.
[10] F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a simple polygon in linear time.

Discrete Comput. Geom., 21(3):405–420, 1999.
[11] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. Discrete

Comput. Geom., 4:387–421, 1989.
[12] M. de Berg, O. Devillers, K. Dobrindt, and O. Schwarzkopf. Computing a single cell in the overlay of

two simple polygons. Inform. Process. Lett., 63(4):215–219, August 1997.
[13] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms

and Applications. Springer-Verlag, Berlin, 1997.
[14] O. Devillers. Randomization yields simple O(n log∗ n) algorithms for difficult �(n) problems. Internat.

J. Comput. Geom. Appl., 2(1):97–111, 1992.
[15] H. Djidjev and A. Lingas. On computing Voronoi diagrams for sorted point sets. Internat. J. Comput.

Geom. Appl., 5:327–337, 1995.
[16] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi

diagrams. Algorithmica, 7:381–413, 1992.
[17] R. Klein and A. Lingas. A linear-time randomized algorithm for the bounded Voronoi diagram of a

simple polygon. Internat. J. Comput. Geom. Appl., 6:263–278, 1996.
[18] R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal decomposi-

tions and for triangulating polygons. Comput. Geom. Theory Appl., 1(1):51–64, 1991.
[19] R. Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, editor, New Trends in

Discrete and Computational Geometry, volume 10 of Algorithms and Combinatorics, pages 37–68.
Springer-Verlag, New York, 1993.

[20] J. Snoeyink and M. van Kreveld. Good orders for incremental (re)constructions. In Proc. 13th Annu.
ACM Sympos. Comput. Geom., pages 400–402, 1997.


