
Computing Hereditary Convex Structures∗

Bernard Chazelle
chazelle@cs.princeton.edu

Wolfgang Mulzer
wmulzer@cs.princeton.edu

Department of Computer Science
Princeton University

35 Olden Street
Princeton, NJ 08540, USA

ABSTRACT
Color red and blue the n vertices of a convex polytope P
in R3. Can we compute the convex hull of each color class
in o(n logn)? What if we have χ > 2 colors? What if the
colors are random? Consider an arbitrary query halfspace
and call the vertices of P inside it blue: can the convex hull
of the blue points be computed in time linear in their num-
ber? More generally, can we quickly compute the blue hull
without looking at the whole polytope? This paper consid-
ers several instances of hereditary computation and provides
new results for them. In particular, we resolve an eight-year
old open problem by showing how to split a convex polytope
in linear expected time.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations

General Terms
Algorithms, Theory

Keywords
convex polytope, half-space range searching, hereditary con-
vex hulls

1. INTRODUCTION
Given a set of n points in the Euclidean plane and its

Voronoi diagram, it was shown in [10] how to compute the
Voronoi diagrams of any given subset in linear time.1 The
authors asked whether the convex hull of an arbitrary sub-
set of the vertices of a convex 3-polytope can be computed
in linear time, too. An affirmative answer would, of course,

∗This work was supported in part by NSF grant CCF-
0634958 and NSF CCF 0832797.
1All our algorithms are randomized, so the complexity is to
be understood in the expected sense.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’09, June 8–10, 2009, Aarhus, Denmark.
Copyright 2009 ACM 978-1-60558-501-7/09/06 ...$5.00.

imply the previous result. This paper proves that it is in-
deed the case. We formulate the question in a hereditary
setting by assuming that the vertices of a convex polytope
P in R3 are colored red and blue. The problem is then to
“split” P and compute both monochromatic convex hulls.
We show how to do this in linear time, which answers the
main open question in [10]. We extend our techniques to
an arbitrary number of colors by showing how to compute
the convex hulls of all the color classes in O(n

√
logn) time.

Interestingly, we can do this in linear time for any set of χ
colors, as long as the coloring is random; the result holds for
any 1 ≤ χ ≤ n. We also consider the coloring induced by
halfspace range queries: given a query plane, compute the
convex hull of the points lying on one side. We show how to
do so in time O(k + logn), where k is the output size; the
data structure requires O(n logn) storage.

Our offline splitting algorithm cannot be output-sensitive,
since the output size is linear. But what if we output only
one color class? If the chosen vertices form k connected com-
ponents in the skeleton graph of P, we can compute their
convex hull in time O(n log∗ n + k log k), where n now is
the size of the subset. Our result has this intriguing corol-
lary: given a Delaunay triangulation (DT) denoted by T , the
DT of any set S of n vertices and edges in T can be com-
puted in time O(n log∗ n+k log k), where k is the number of
connected components formed by S within T . We actually
prove a slightly more general result. It is well known that the
convex hull of two convex polytopes can be stitched together
in linear time [8]. We consider the case of k disjoint convex
polytopes with a total of n vertices. If the vertices of each
polytope form a connected component in the convex hull of
their union, we can compute their common convex hull in
O(n log∗ n+ k log k) time. This assumption is motivated by
a lower bound of Ω(n log k) for the general case.

To study the complexity of hereditary computing is part of
a broader attempt to understand what makes what hard. To
compute the DT of n points in the plane requires Ω(n logn)
time, but knowing that the points are the vertices of a con-
vex polygon cuts down the complexity to linear [1,11]. Given
a spanning subgraph of degree at most d, the DT can be
completed in time O(nd log∗ n) [18]. In fact, Djidjev and
Lingas have proven linearity for any set of points forming
a monotone chain in both x and y directions [19]. This
might suggest that the hardness of DT is really confined to
sorting. Of course, we know this is not true: in the gen-
eral Euclidean case, sorting does not help (though it does
in `∞ [12]). Ranking the points in any one direction still
leaves us with a Θ(n logn) complexity [19]. The simplic-

ity of a polygon is known to “linearize” many problems that
otherwise exhibit Ω(n logn) lower bounds, eg, polygon tri-
angulation [2, 7, 26], medial axis [13], constrained Delaunay
triangulation [14,21]. Our work fits into that mold.

Hereditary algorithms are nothing new. Given a subset
of a simple polygon, Chan [5] has shown how to compute
its convex hull in linear time2 and how to triangulate it
in O(n log∗ n) time. Van Kreveld, Löffler, and Mitchell [27]
proved that any subset of a given triangulation can in fact be
triangulated in linear time. Chan [5] also gave an Ω(n logn)
lower bound for hereditary trapezoidal decompositions, and
there are many more situations in which additional “hered-
itary” information brings no benefits: if P is a point set in
R3, sorting P in a bounded number of directions does not
help in computing its convex hull [25]; nor does knowing the
convex hull of P help in finding its diameter [20].

Another way to look at our first result, the linear com-
plexity of bicolored convex hulls, is that the convex hull
problem in 3D loses its Ω(n logn)-hardness if it is embed-
ded in a larger polytope: in other words, computationally
speaking, a convex polytope “gives away” the convex hull of
any of its subsets.

2. SPLITTING POLYTOPES
We are given an n-point set P ⊆ R3 in general convex

position.3 Let B ⊆ P and let R = P \ B. The points in B
are called blue, the points in R are called red. Given convP ,
we show how to obtain convB in linear time.

Figure 1: Given their joint convex hull, we can find
the red and blue hulls in linear time.

Theorem 2.1. Let P ⊆ R3 be a set of n points in gen-
eral convex position, colored red and blue. Given convP ,
the convex hull of the blue points can be computed in O(n)
expected time.

An edge of convP is called blue if both of its endpoints
are blue, and red if both of its endpoints are red, otherwise
it is bichromatic. Blue, red, and bichromatic facets are de-
fined similarly. The splitting is performed by a recursive
algorithm SplitHull (Algorithm 1) that receives the con-
vex hull and a two-coloring of P . SplitHull first tries to
delete a red point of small degree. If this is not possible, it
removes blue points until there is a red point of small degree
again. These blue points are later reinserted into the recur-
sively computed blue hull, which can be done efficiently by
remembering a landmark from where to start the conflict
location. SplitHull is easily shown to be correct.

Lemma 2.2. SplitHull(convP) computes convB.
2Here, linear time means linear in the size of the whole struc-
ture, not just the subset.
3See Appendix A for basic definitions and notation.

Algorithm SplitHull(convP)

1. If P contains no red points, return convP .

2. If there exists a red point r in P for which we have
degP r ≤ d0 (with a suitable constant d0), then return
SplitHull(conv (P \ r)).

3. Take random blue points b ∈ B until (i) degP b ≤ 6;
and (ii) there exists a blue edge e in conv (P \ b) visible
from b.

4. Call SplitHull(conv (P \ b)) to compute conv (B \ b).

5. Using e as a starting edge, insert b into conv (B \ b)
and return convB.

Algorithm 1: Splitting a bichromatic convex hull.

Proof. The proof is by straightforward induction on |P |.
We only comment on Step 5. Let B− = B\b and P− = P \b.
If e is a blue edge visible from b in convP−, then the same
holds in convB−: since e has both endpoints in B−, a sup-
porting plane for e in convP− supports e also in convB−,
and since convB− ⊆ convP−, the triangle spanned by b and
e intersects convB− only in e. Thus, we can walk from e to
determine b’s conflict set Db and replace Db by new facets
incident to b. This takes time O(|Db|) [17, Chapter 11.2].
When implementing the algorithm, care must be taken that
the pointer to e obtained in Step 3 is not invalidated by
the recursive call in Step 4. We can easily do it as follows:
when deleting a blue edge in Step 4, retain the correspond-
ing record in memory and reuse it when the edge is recreated
in Step 5.

The bulk of the analysis lies in bounding the running time.

Lemma 2.3. The expected time needed for one invocation
of SplitHull is constant, not counting the time for the re-
cursive calls.

Proof. We argue that each step takes constant expected
time. This clearly holds for Step 1: just use a counter for the
number of red points. Step 2 is also easy: keep a linked list
L for the red points with degree at most d0. During prepro-
cessing, determine the degrees and initialize L accordingly.
When the hull is altered in Steps 2 and 4, update the degrees
and L. Since all relevant vertices have bounded degree, we
merely lose a constant factor. The most interesting part lies
in the analysis of Step 3. We show that there is a good
chance of sampling a point with the required properties.

Lemma 2.4. Let eB be the subset of the blue points b with
the following properties: (i) degP b ≤ 6; and (ii) b is a vertex
of a blue facet of convP or E[P \ b] \E[P] contains at least
one blue edge. There exists a constant d0 such that if all red

points have degree at least d0, then | eB| ≥ |P |/5.

Proof. Call a blue point pleasant if it satisfies the prop-
erties in the lemma, and ghastly otherwise. By Euler’s for-
mula, a large fraction of blue points has degree at most 6.
If a blue point b is ghastly, then either (i) b is incident to
a facet with a red edge; or (ii) b’s neighborhood has only
bichromatic edges and to delete b from convP creates no
blue edge. We bound (i) and (ii) separately and then finish
the analysis with a union bound.

In the following, we will assume that d0 is a large enough
constant. By general convex position, we have |E[P]| = 3n−
6. Let B′ be the set of blue points b with degP b ≤ 6. Since
convP is three-connected [22, Theorem 5.3.3], and since all
red nodes have degree at least d0 ≥ 7, we get 6n − 12 =P
p∈B′ deg p+

P
p∈P\B′ deg p ≥ 3|B′|+ 7(n− |B′|). Thus

|B′| > n/4. (1)

A similar calculation using that all red points have degree
greater than d0 shows |R| < 4n/d0 (for d0 large enough).
Let ER denote the set of red edges in convP . Since every
red edge of convP is an edge of convR,

|ER| ≤ |E[R]| ≤ 3|R| − 6 < 12n/d0. (2)

For b ∈ B′, let Γb be the simple polygon formed by b’s
neighbors in convP , and let C be the set of points b ∈ B′
such that Γb contains a red edge. Since an edge is incident
to two facets, for each e ∈ ER there are at most two points
p, q ∈ C such that e is in Γp and Γq. Hence, by (2),

|C| ≤ 2|ER| < 24n/d0. (3)

Now, let D ⊆ B′ be the set of points b such that Γb has no
monochromatic edge. For any such b, red and blue points
alternate along Γb and degP b ∈ {4, 6}. Let Eb = E[P \ b] \
E[P]. We say that b creates Eb. Note that Eb contains only
diagonals of Γb. Any edge e is created by at most two points
in D, namely the endpoints of an edge in E[P] that occludes
e in convP . Furthermore, every b ∈ D creates at least
one monochromatic edge, since every triangulation of a two-

Figure 2: Every triangulation of a two-colored sim-
ple polygon contains at least one monochromatic di-
agonal (dashed lines).

colored simple polygon contains at least one monochromatic
diagonal (there has to be a diagonal between two points at
distance 2 along the polygon, see Figure 2). Let D′ be the
set of points in D that create no blue edge. By the previous
discussion and (2),

|D′| ≤ 2|E[R]| < 24n/d0. (4)

To finish, we observe that all the points in the set B′ \ (C ∪
D′) are pleasant and that by (1, 3, 4) it contains at least
(1/4− 48/d0)n > n/5 points, for d0 large enough.

By Lemma 2.4 we expect five iterations in Step 3, each
taking constant time, since all points under consideration
have bounded degree. The same holds for Step 4 without
the recursive call, as degP b ≤ 6. Finally, we use backwards

analysis to handle Step 5. Take eB as in Lemma 2.4. Because

| eB| > |B|/5, the average degree of a point in eB is less than
30, by Euler’s formula. Hence, to delete a random point

b ∈ eB from convB takes constant expected time, which is
exactly the cost of inserting b into conv (B \ b) [17, Chap-
ter 11.2].

Theorem 2.1 follows from Lemmas 2.2 and 2.3, since the
number of recursive calls is O(n).

3. SPLITTING RANDOM COLORINGS
Now, we extend SplitHull to handle more than two col-

ors: for P ⊆ R3, let c : P → {1, . . . , χ} be a coloring of P .
For i ∈ {1, . . . , χ}, we let Ci = c−1(i) denote the point set
colored i, the ith color class. The coloring c is called ran-
dom, if each point p is colored uniformly and independently
with a color in {1, . . . , χ}. This section deals with random
colorings, the next one is about arbitrary colorings.

Theorem 3.1. Let P ⊆ R3 be a set of n points in gen-
eral convex position, and let c : P → {1, . . . , χ} be a random
coloring of P . Given convP , we can compute the convex
hulls convC1, . . . , convCχ in O(n) expected time (the expec-
tation is over the coloring and the random choices of the
algorithm).

The algorithm for Theorem 3.1 is called RandMultiSplit

(Algorithm 2). It receives the convex hull and a coloring of
P , and it computes the convex hull of a random sample S
into which the points of each color class are then inserted
separately. As we will see below, this can be done quickly
because c is random. Finally, it uses SplitHull to remove
the points from S.

Algorithm RandMultiSplit(convP) (* see Figure 3a *)

1. Pick a random sample S ⊆ P of size n/χ and compute
convS.

2. For each p ∈ P , determine a facet fp ∈ F [S] in conflict
with p.

3. For each color i:

(a) Insert all points of Ci into convS.

(b) Extract convCi from conv (Ci ∪ S).

Algorithm 2: Splitting random colorings.

Clearly, the algorithm correctly computes the convCi.
Using SplitHull, Step 1 requires O(n) time. The analy-
sis of Step 2 needs more work.

Lemma 3.2. Step 2 takes O(n) expected time.

Proof. For Q ⊆ P and p ∈ Q, let ΓQ(p) denote the
neighbors of p in convQ. First, we show how to compute
the conflict facets for points that are neighbors in convP of
a point in Q.

Claim 3.3. Let Q ⊆ P and p ∈ Q. Assume that both
convQ and convP are available. In O(degQ p + degP p)
time, we can compute a conflict facet fq ∈ F [Q] for every
neighbor q ∈ ΓP (p) of p.

(a) (b)

(α) (β) (γ)

p

ΓP (p)

ΓQ(p)

Figure 3: Splitting random colorings: (a) the algorithm (α) computes convS and conflict facets for Ci, (β)
inserts Ci into convS, and (γ) extracts convCi. The points in Ci are shown as boxes, S as circles. (b) Claim 3.3:
the facets F [Q] are shown dashed, F [P] solid. Merge ΓP (p) with ΓQ(p) to determine its conflict facets.

Proof. Consider an overlay of convQ and convP , ie, a
central projection of their vertices and edges onto the unit
sphere centered at a point O ∈ convQ. Let q ∈ ΓP (p) and
let f ∈ F [Q] be the facet incident to p that is intersected
by the line segment pq in the overlay. Then q is in conflict
with f : let hf be the plane supporting f . If q did not
conflict with f , then q would lie in h−f and at least part
of the line segment pq would be strictly inside convQ. But
then pq could not be an edge of convP , as convQ ⊆ convP .
Thus, conflict facets for ΓP (p) can be computed by merging
the cyclically ordered lists ΓP (p) and ΓQ(p) with respect to
some overlay of the hulls, see Figure 3b. This takes time
O(degQ p+ degP p).

The conflict facets for P can now be found by BFS,using an
algorithm named SubsetConflictWalk (Algorithm 3).

Algorithm SubsetConflictWalk(convQ, convP)

1. Let queue be a queue with the elements in Q.

2. While queue 6= ∅.

(a) Let p be the next point in queue.

(b) If p 6∈ Q, insert p into convQ, using a previ-
ously computed conflict facet fp for p as a starting
point.

(c) For each neighbor q ∈ ΓP (p), find a conflict facet

f̃q in conv (Q ∪ p), using Claim 3.3.

(d) Using the f̃q’s, find conflict facets fq ∈ F [Q] for
ΓP (p). If q ∈ ΓP (p) has not been encountered
yet, insert it into queue.

Algorithm 3: Determining the conflict facets in a subset.

Step 2 maintains the invariant that a conflict facet fp ∈
F [S] is known for each p ∈ queue \ S. Using standard tech-
niques, Step 2b takes O(degS∪p p) time [17, Chapter 11.2].
Furthermore, by Claim 3.3, the conflict facets of ΓP (p) can
be found in O(degS∪p p + degP p) time. Finally, Step 2d

takes time O(degP p): every facet f̃ ∈ F [S ∪ p] shares at
least one edge e with an f ∈ F [S], and if q can see e in
convS, it conflicts with at least one facet adjacent to e.
Thus, fq can be computed from f̃q in constant time. The to-
tal running time of SubsetConflictWalk is proportional to

E
hP

p∈P
`
degS∪p p+ degP p

´i
. Now, since4 degS∪p p� dp

for p 6∈ S, where dp is the conflict size of p in convS, this is
proportional to

E

24X
p∈S

degS p+
X

p∈P\S

dp +
X
p∈P

degP p

35
� E

24n
χ

+
X

f∈F [S]

bf + n

35 ,
by (5). The lemma follows, since we have E

hP
f∈F [S] bf

i
�

n by Lemma B.2(6) (bf is the conflict size of f).

Now we consider Step 3. Fix a color i, and for each
f ∈ F [S], let af = |Ci ∩ Bf |. Since the coloring is random,
conditioned on bf , the size af is distributed like a sum of in-
dependent Bernoulli random variables with mean bf/χ. By
standard moment bounds [9, Lemma A.1], E [a2

f]� (bf/χ)2.

By Lemma B.3, Step 3a takes time E
hP

f∈F [S] af log af
i
,

and by Lemma B.2(6), we get

E

24 X
f∈F [S]

af log af

35� E

24 X
f∈F [S]

a2
f

35
� E

24 1

χ2

X
f∈F [S]

b2f

35� χn

χ2
=
n

χ
.

Using SplitHull in Step 3b, convCi can now be computed
in O(|Ci| + n/χ). There are χ colors, so Step 3 takes O(n)
time, and Theorem 3.1 follows.

4. SPLITTING ARBITRARY COLORINGS
We now consider arbitrary colorings. With SplitHull as

a black box, we can easily split a χ-colored polytope in time
O(n logχ). For large χ, this can be improved.

Theorem 4.1. Let P ⊆ R3 be a set of n points in gen-
eral convex position, and let c : P → {1, . . . , χ} be an
arbitrary coloring of P . Given convP , we can compute
convC1, . . . , convCχ in O

`
n
√

logn
´

expected time.

4We use the Vinogradov notation f � g for f = O(g) and
f � g for f = Ω(g).

As in RandMultiSplit, we use random sampling for ge-
ometric divide-and-conquer. For this, however, we need to
avoid small color classes. Thus, the algorithm first com-

putes the convex hull of every Ci with |Ci| ≤ 2
√

logn in time
O(|Ci| log |Ci|) [17, Chapter 11]. Let K denote the remain-
ing colors, and let Q =

S
i∈K Ci, n1 = |Q| and n2 = n− n1.

We begin with a useful sampling lemma.

Lemma 4.2. Let Q ⊆ R3 be an m-point set in general
convex position, and let α ∈ {1, . . . ,m}. Given convQ, in
O(m) time we can compute subsets S,R ⊆ Q and a partition
R1, . . . , Rβ of R such that

1. |S| = α, |R| = Ω(m), maxi |Ri| = O
`
m
α

logα
´
.

2. For i = 1, . . . , β, there exists a facet fi ∈ F [S] such
that all points in Ri are in conflict with fi.

3. Every point in R conflicts with constantly many facets
of convS.

4. The conflict sets for two points p ∈ Ri, q ∈ Rj, i 6= j,
are disjoint and no conflict facet of p shares an edge
with a conflict facet of q.

Furthermore, the convex hulls convS, convR1, . . . , convRβ,
conv (Q \ (R ∪ S)) can be computed in expected O(m) time.

Proof. We call a subset S ⊆ Q decent if it has two
properties: (i)

P
f∈F [S] bf � m; and (ii) maxf∈F [S] bf �

m(logα)/α, where bf denotes the conflict size of f .

Claim 4.3. A decent subset S ⊆ Q of size α together with
convS and the conflict sets Bf , f ∈ F [S], can be found in
expected time O(m).

Proof. Let S be a random α-subset of Q. We claim
that S is decent with probability at least 1/2. To see this,
first note that by Lemma B.2(6) and Markov’s inequality,
we have

P
f∈F [S] bf � m with probability at least 3/4,

and by Lemma B.1 and Markov’s inequality, we also have
maxf∈F [S] bf � m(logα)/α with probability at least 3/4.
Thus, the claimed probability follows from a union bound.

Furthermore, a decent sample can be verified in O(m)
time: by the proof of Lemma 3.2, we can find the conflict

sets Bf and Dp in time O
“
m+

P
f∈F [S] bf

”
. Hence, if

the number of steps exceeds a certain threshold of O(m),
we reject the sample. Otherwise, we can check in O(m)
time that maxf∈F [S] bf � m(logα)/α, as required. Conse-
quently, since a sample is decent with constant probability,
repeated sampling yields the desired result.

Now let S be a decent sample, and let Bf , f ∈ F [S],
denote its conflict sets. By (5) and Property (i) of a decent
sample, we have

P
p∈P dp = O(m), and hence there exists

a constant λ such that the set X = {p ∈ Q | dp ≥ λ} has
cardinality at most, say, m/100. Let R′ = Q \ X, B′f =
Bf ∩R′ and b′f = |B′f | for f ∈ F [S]. By definition, all points
in R′ conflict with at most λ facets. We now prune F [S]
to obtain a subset F of facets whose conflict sets constitute
the desired partition. For f, g ∈ F [S], let δ(f, g) denote the
BFS-distance between f and g in the dual graph of convS,
see Figure 4. The pruning is done by a greedy algorithm
PruneFS (Algorithm 4). Clearly, PruneFS takes O(m) time.
Let f1, . . . , fβ be the facets in F as computed by PruneFS,
and let R1, . . . , Rβ be the corresponding conflict sets with

respect to R′. Set R =
Sβ
i=1 Ri.

Algorithm PruneFS

1. Let F = ∅ and let queue be a priority queue containing
the facets in F [S].

2. While queue 6= ∅:

(a) Let f be a facet in queue with maximum b′f , and
let Nf = {f ′ ∈ F [S] | δ(f, f ′) ≤ 2λ}.

(b) Let queue = queue \Nf and F = F ∪ {f}.

Algorithm 4: Pruning the conflict facets.

f
g

Figure 4: The pruning step: remove all facets at dis-
tance at most 2λ from a facet with maximum con-
flict size. The points in B′f , B

′
g conflict only with the

darker facets at distance at most λ = 1.

Claim 4.4. We have |R| = Ω(m), the Ri constitute a
partition of R, and for p ∈ Ri, q ∈ Rj, i 6= j, we have
Dp ∩ Dq = ∅ and no facet in Dp is shares an edge with a
facet in Dq.

Proof. To see that |R| = Ω(m), note that |Nf | = O(1)
and b′f ′ ≤ b′f for every f ′ ∈ Nf . Thus, we have b′f �P
f ′∈Nf

b′f ′ , and therefore

|R| =
X
f∈F

b′f �
X
f∈F

X
f ′∈Nf

b′f ′ ≥ |R′| � m.

To see that (Ri)1≤i≤β is a partition, consider two sets
Ri, Rj with i 6= j, and let fi, fj be the corresponding
facets. Since any point p ∈ R has |Dp| ≤ c, and since
Dp is connected in the dual graph of convS, it follows that
Ri ∩ Rj = ∅, since Ri, Rj are the conflict sets of fi, fj and
since by construction δ(fi, fj) > 2λ. For the same reason,
we see that Dp, Dq are disjoint for p ∈ Ri, q ∈ Rj , and no
facet in Dp is adjacent to with a facet in Dq.

By now, we have established Properties 1–4. It remains
to show how to find all the convex hulls quickly. First, us-
ing SplitHull, we can compute convS, conv (R ∪ S) and
conv (Q \ (R ∪ S)) in time O(n1). It remains to consider
the Ri.

Claim 4.5. For i = 1, . . . , β, the convex hull convRi can
be computed in O(|Ri|) time.

Proof. Consider an Ri, and let fi be the corresponding
facet in convS. First, note that the subgraph of conv (R ∪ S)
induced by Ri is connected, because Ri = R∩h+

f . Let Γi de-

note the points in (R∪S)\Ri that are adjacent to a point in

Ri. We have Γ ⊆ S: if there were two points p ∈ Ri, q ∈ Rj ,
i 6= j, such that pq is an edge of conv (R ∪ S) then pq would
also be an edge of conv (S ∪ {p, q}). This implies that either
Dp ∩ Dq 6= ∅ or that there are facets f ′ ∈ Dp, f

′′ ∈ Dq
such that f ′ and f ′′ share an edge. Both are impossible by
Claim 4.

Next, we claim that |Γ| = O(1): if p ∈ Ri is adjacent
to a point q ∈ S, then it follows that pq is also an edge of
conv (S ∪ {p}), and hence Dp contains a facet incident to q.
Since |

S
p∈Ri

Dp| = O(1) and since each facet is incident to
three points, the claim follows.

Now we compute conv (Ri ∪ Γ) in O(|Ri|) time as follows:
let F1 be the set of facets in F [R ∪ S] incident to Ri and
let F2 be the set of facets in F [Ri ∪ Γ] incident to Ri. We
have F1 = F2. Clearly, F1 ⊆ F2 by the definition of Γ
and since Ri ∪ Γ ⊆ R ∪ S. If there were a facet f ∈ F2 \
F1, the half-space spanned by f would contain only points
in (R ∪ S) \ (Ri ∪ Γ). However, this would mean that in
conv(R ∪ S) all the vertices of f are adjacent to a point in
(R∪S)\(Ri∪Γ), contradicting the choice of Γ. The facets in
F1 can be extracted from conv (R ∪ S) in time O(|Ri ∪ Γ|),
and the convex hull of Ri ∪Γ can be completed in the same
time, since the remaining facets involve only points in Γ,
which has constant size. Now convRi can be extracted from
conv (Ri ∪ Γ) in linear time, either by using SplitHull or
by naively removing the points in Γ one by one.

This concludes the proof of Lemma 4.2.

We use Lemma 4.2 with α = 2
√

logn to obtain S,R ⊆ Q,
a partition of R1, . . . , Rβ of R, and their convex hulls. Re-
cursively, we split both conv (Q \ (S ∪R)) and convRj for
j = 1, . . . , β to obtain the hulls conv (Ci ∩ (Q \ (S ∪R))) as
well as conv (Ci ∩Rj). To get convCi, we then merge all
the hulls conv (Ci ∩Rj) into convS, using an algorithm to
combine 3-polytopes separated by a plane [3, Chapter 9.3].
For each j ∈ {1, . . . , β}, this takes time O(1 + |Ci ∩ Rj |),
since all new edges are incident to constantly many points
in S. Then, we extract conv (Ci ∩ (S ∪R)) in expected time
O(|S| + |Ci ∩ (S ∪ R)|) via SplitHull and compute the
union of conv (Ci ∩ (S ∪R)) with conv (Ci ∩ (Q \ (S ∪R)))
in time O(|Ci|) [8]. The total expected time is O(|K| · |S|+P
i∈K |Ci|). Recall that |Ci| > 2

√
logn for all i ∈ K. Hence,

|K| < n/2
√

logn and |K| · |S| < n. Therefore, the total run-
ning time of the algorithm is O(n2

√
logn+n), not counting

the recursive calls. The first term represents the time for the
small color classes at the beginning, the second term counts
the remaining steps. We get the following recursion for the
running time:

T (n) = T (|Q \ (S ∪R)|) +

βX
j=1

T (|Rj |) +O(n2

p
logn+ n).

Using |R| � n1 and max1≤j≤β |Rj | � n1

√
logn/2

√
logn, we

obtain T (n)� n
√

logn, as desired.

5. POINTS IN HALFSPACES
The problem now is to preprocess a point set to report

quickly all the points contained in a query halfspace. How-
ever, we want to find not only the points, but also their
convex hull. We base our approach on a data structure by
Chan [4] that uses filtering search [6]: first, it obtains a
superset of the result with comparable size (the candidate

set), and then examines each point to find the result. By
storing not only the candidate sets, but also their convex
hulls, we obtain a data structure that reports the convex
hull of the points in a query halfspace via SplitHull. We
also show how to improve the preprocessing time over the
naive O(n log2 n).

Theorem 5.1. Let P ⊆ R3 be an n-point set in general
convex position. In O(n logn) time we can build a random-
ized data structure of O(n logn) size to answer queries of the
following kind: given an oriented plane h, compute the con-
vex hull of P ∩ h+, where h+ denotes the left halfspace of h.
The expected query time is O(logn+ k), where k = |P ∩h+|
denotes the output size.

The main obstacle in improving the preprocessing time is
this: given a sample S ⊆ P , compute the convex hulls of
the conflict sets Bf for f ∈ F [S]. In the last section, we
modified the conflict sets to obtain a simple algorithm for
this problem. This is no longer possible, and we need a more
sophisticated approach. Given a plane h, letG(h) denote the
induced subgraph of convP with vertex set P ∩h+ (ie, G(h)
has vertex set P ∩ h+ and contains all edges of convP with
both endpoints in h+). Here are some standard facts about
G(h) (eg, [8]).

Lemma 5.2. Let E be the set of edges in G(h) incident
to a facet of convP that intersects h. There exists a closed
walk5 L along the edges of E such that L separates G(h)
from the rest of convP . Every edge e ∈ E occurs in L once
or twice, depending on whether e is incident to one or two
such facets. It follows that G(h) is connected. Given G(h),
L can be found in time O(|V [G(h)]|).

The walk L is called the lace of G(h), see Figure 5a.
Knowing G(h) is enough to compute conv (P ∩ h+) quickly.

Corollary 5.3. Given convP and G(h), we can com-
pute conv (P ∩ h+) in time O(|P ∩ h+|).

Proof. The idea is to find an intermediate polytope P of
complexity O(|P ∩h+|) whose vertices contain P ∩h+. This
is done by computing (part of) the intersection of convP
with h+ and adding a few edges to ensure general position,
see Figure 5b. Using SplitHull, we extract conv (P ∩ h+)
from P in the desired time.

Let L be the lace of G(h). By Lemma 5.2, L can be
found in time O(|P ∩ h+|) from G(h). Let F = f1, . . . , fk
be the sequence of facets in F [P] that are incident to L
and intersect h, where the ordering is according to L. The
sequence F induces in h a sequence E of line segments in
convex position. As the order of E corresponds to the convex
hull order, we can compute the convex hull C of E in linear
time. Let V [C] and E[C] denote the vertices and edges of C.

The goal now is to construct a convex polytope P of com-
plexity O(|P ∩ h+|) whose vertex set contains P ∩ h+. The
set of P’s facets consists of three disjoint parts, F1,F2, and
F3: (i) F1 contains the facets of GP (h); (ii) For each line seg-
ment e ∈ E, F2 contains a quadrilateral facet spanned by e
and its corresponding edge ẽ in L.6 Furthermore, for each

5In our terminology, a walk is an arbitrary sequence of ad-
jacent vertices, whereas a path consists of distinct vertices
(except possibly the first and the last).
6That is, ẽ is the edge incident to the facet whose intersec-
tions with h create e.

h
L

p q
Dp

Dq

(a) (b) (c)

Figure 5: The halfspace range reporting algorithm: (a) A lace: h+ corresponds to the inside of the circle.
The lace L is shown as a dashed line. (b) The three stages of Corollary 5.3: Given G(h), find an intermediate
polytope that contains the result, and split it. (c) Finding the conflict facets for an edge. D{p,q} is darkest,
while Dp, Dq are lighter. Dp is bounded by a dashed line, Dq by a dotted line.

e ∈ E[C] \E, F2 contains a triangular facet fe spanned by e
and the point in P ∩h+ incident to the edges whose intersec-
tions with h determine e; (iii) Let Z be the unbounded prism
with base C that extends into h−. Pick a point q ∈ Z∩convP
infinitesimally close to h. F3 contains all facets spanned by
q and an edge in E[C]. It is easily seen that the facets in
F1 ∪ F2 ∪ F3 are in convex position and bound a convex
polytope P with O(|P ∩ h+|) vertices. Since all the facets
of P have bounded complexity, and since all vertices in V [C]
have bounded degree, we can perform a local perturbation
of V [C] to obtain a polytope P ′ in general position. Now we
compute conv (P ∩ h+) in time O(|V [P ′]|) = O(|P ∩ h+|)
using SplitHull.

For Corollary 5.3, we need to compute all the graphs
G(hf) for f ∈ F [S] (recall that hf denotes the plane sup-
porting f in convS).

Lemma 5.4. Let S ⊆ P be a random subset. Then the
graphs G(hf) for f ∈ F [S] can be computed in O(n) expected
time.

Proof. By Lemma B.2 the total size of the sets P ∩ h+
f

and hence the total complexity of the graphs G(hf) is O(n).
Let e = (p, q) ∈ E[P], and let De = Dp ∩Dq be the conflict
facets of p and q. We will compute the sets De for e ∈ E[P]
and then use them to construct the graphs G(hf). Let Te
denote the graph on vertex set De where two vertices f1, f2

are adjacent if f1, f2 share an edge in convS that is removed
in conv (S ∪ {p, q}). Since Te is connected7, it suffices to
compute one facet fe ∈ De (if it exists). The remaining
facets can be found by traversing Te.

We extend SubsetConflictWalk to find conflict facets of
edges by changing Step 2d as follows: when considering a
neighbor q ∈ ΓP (p), we not only compute the conflict facet
fq, but also a conflict facet fe for the edge e = {p, q}, if
it exists. To do this, let Γp denote the simple polygon in

convS that bounds the conflict region of p. The facet f̃q ∈
F [S ∪ p] is adjacent to an edge eq on Γp, and q conflicts
with at least one facet in convS incident to eq. Let f1, f2 ∈
F [S] be the facets incident to eq, where f1 conflicts with
p while f2 does not. Now, if q conflicts with f1, we set

7We define the empty graph to be connected

fq = fe = f1, otherwise, we set fq = f2 and f{p,q} = ⊥.
This takes constant time, and therefore the running time of
the algorithm is linear, as we saw in the proof of Lemma 3.2.
To prove correctness, we claim that if De 6= ∅, then f1 ∈ De.
Indeed, let T be the graph on vertex set Dp∪Dq, where two
vertices g1, g2 of T are adjacent if g1, g2 share an edge in
E[S] that is destroyed in conv (S ∪ {p, q}). We have that Te
is a subgraph of T and that T is a tree (by convex position).
Observe that eq corresponds to the edge e∗q = {f1, f2} of T .
Let T1 be the connected component of T \ e∗q , with f1 ∈ T1.
Note that Dp ⊆ V [T1]. Furthermore, at least one of f1, f2 is
in conflict with q, hence Dq∩{f1, f2} 6= ∅. Since the induced
subgraph T |Dq is connected, it follows that if V [T1]∩Dq 6= ∅,
then Dq contains f1, and hence f1 ∈ Dp ∩ Dq = De, as
desired.

Using the setsDe, we can compute a DCEL representation
of the graphs G(hf) in O(n) time through careful pointer
manipulation (Algorithm 5).

Algorithm ComputeSubgraphs

1. For every e ∈ E[P], if fe 6= ⊥, use fe to compute De.
For each f ∈ De create records for the two half edges
corresponding to e in G(hf).

2. For every point p ∈ P , use fp to find Dp. For each
f ∈ Dp, create a record pf corresponding to p inG(hf).
Every facet in Dp has a pointer p which we set to pf .
For each incident edge e of p in cyclic order, iterate
through all facets f ∈ De. Use the pointer p of f to
find the record pf corresponding to p in G(hf) and add
the appropriate half edge to the edge list of pf .

Algorithm 5: Computing the subgraphs.

Proof of Theorem 5.1. We rely on a variant of Chan’s
data structure [4] due to Ramos [24]. The candidate sets are
the conflict sets of an appropriate gradation of P . By Corol-
lary 5.3 and Lemma 5.4, we can find their convex hulls in
time O(n logn). To process a query, we extend the original
query algorithm to use SplitHull on the candidate set after
coloring the points in h+ blue.

The details are as follows: take a gradation ∅ = P−1 ⊆
P0 ⊆ · · · ⊆ Plogn = P of P , where Pi−1 is derived from Pi by
sampling every point with probability 1/2. We compute the
convex hulls convPi in time O(n logn). Using Lemma 5.4
and Corollary 5.3, we then find the convex hulls convBf for
all the conflict sets Bf , f ∈ F [Pi], i = 0, . . . , logn. Since
this takes O(n) time for each i, the total time is O(n logn).
Now we switch into dual space. For this, we use duality
with respect to the unit paraboloid which turns upper con-
vex hulls into upper envelopes and lower convex hulls into
lower envelopes [23, Chapter 2.4.1]. We compute two data
structures, one for the upper envelope and one for the lower
envelope, focussing the discussion on the lower envelope. For
each i = 0, . . . , logn, we find the set of planes Hi dual to
Pi and a canonical triangulation Ti of the lower envelope of
Hi (this takes linear time since we know convPi). Then we
construct a point location structure for the xy-projection of
Ti. Every facet ∆ of Ti is incident to at most three points
of the lower envelope of Hi, corresponding to at most three
facets f1, f2, f3 of convPi. Let B∆ = Bf1 ∪ Bf2 ∪ Bf3 . We
compute convB∆ in linear time [8] and store it with ∆. By
the properties of canonical triangulations and the arguments
given by Chan [4], the preprocessing phase takes expected
time O(n logn) and uses expected space O(n logn). Then
we repeat the process to obtain two independent data struc-
tures D1, D2.

Now suppose that we are given a query plane h. We need
to find all the planes in H below h∗, the point dual to h.
Let ` be the vertical line through h∗. Perform the follow-
ing procedure simultaneously on D1 and D2, until one of
them yields the answer: For i = log(n/ logn), log(n/ logn)−
1, . . . , 0, locate the facet ∆i of Ti intersected by ` in O(logn)
time with the point location structure. Stop when the dual
point h∗ lies below the lower envelope of Hi. Now find the
planes in H below h∗ by inspecting the conflict set B∆i , and
use SplitHull to compute conv (P ∩ h+) in O(|B∆i |) time.
As was argued by Ramos [24, Section 2.2.1] such a query
takes expected time O(logn+ |P ∩ h+|), as claimed.

6. UNION OF HULLS
Finally, we consider the problem of output-sensitivity: if

we are only interested in the hull of the blue points, under
which circumstances can it be computed quickly without
looking at the whole polytope? For this, we will look at the
following problem DisjUnion: given point sets P1, . . . , Pk ⊆
R3 and their convex hulls convP1,. . ., convPk such that
convPi ∩ convPj = ∅ for i 6= j and such that P =

Sk
i=1 Pi

is in convex position, we would like to compute convP . In
general, we cannot do better than to repeatedly merge pairs
of the hulls.

Theorem 6.1. Any algorithm that solves DisjUnion re-
quires Ω(|P | log k) comparisons.

Proof. We use an old lower bound [8, Section 4A] and
combine it with Seidel’s method of including the index as a
coordinate [25]. We reduce from the list merging problem, in
which k sorted lists of numbers need to be merged into one.
We lift the lists onto the unit paraboloid y = x2, using the
z-coordinate to represent the index of the list. Clearly, the
lifting and the individual convex hulls, which are pairwise
disjoint, can be found in time O(n). A simple geometric
argument now shows that the merged list can be derived
from the convex hull of the union in linear time, see Figure 6.

x

y

z

0

5

10

15

10
5

0
2
4

Figure 6: The lower bound for (5, 9, 12, 14), (1, 8),
(2, 4, 6, 7, 10, 13), and (3, 11). Edges between consec-
utive elements are bold.

More precisely, consider the problem ListMerge: given k
sorted integer sequences L1, . . . , Lk, compute the sorted list
L =

Sk
i=1 Li. A straightforward counting argument shows

that any algorithm for ListMerge requires Ω(|L| log k) com-
parisons. We describe a linear time reduction from List-
Merge to DisjUnion: let Li = (r1, . . . , rj). We map Li to a
point set Pi ⊆ R3 by mapping each rz to p (rz) =

`
rz, r

2
z , i
´
.

All the points lie on the parabolic surface y = x2, and hence
P =

Sk
i=1 Pi is in convex position. Furthermore, each Pi is

contained in the plane z = i, and hence convPi∩convPj = ∅
for i 6= j. The convPi can be computed in linear time, since
the lists Li are sorted. Now, if r, s are consecutive in the
sorted list L, then p(r)p(s) is an edge of convP : let p̂(r),
p̂(s) denote the projection of p(r), p(s) onto the xy-plane,
and let h denote the plane orthogonal to the xy-plane that
contains the line segment p̂(r)p̂(s). By definition, h con-
tains p(r) and p(s), and hence also the line segment p(r)p(s).
Furthermore, all other points of P are on the same side of
h. For this, fix i ∈ {1, . . . , k}, and consider the parabola
Zi = x 7→ (x, x2, i). Clearly, h intersects Zi in the points
(r, r2, i) and (s, s2, i), cutting off the part of Zi between r
and s. Since r and s are consecutive in L, this part contains
no points in Pi. It follows that h supports the line seg-
ment p(r)p(s), making it an edge of convP . Consequently,
it takes Ω(|P | log k) time to compute convP , since otherwise
we could recover the sorted list L by examining the O(|P |)
edges of convP .

Intuitively, what makes our lower bound instance hard is
the fact that we need to switch often between the convPi.
By imposing additional constraints to avoid this, we can do
better.

Theorem 6.2. Let Q ⊆ R3 be in general convex position.
Let P =

Sk
i=1 Pi ⊆ Q with |P | = n such that the Pi are

pairwise disjoint and the subgraphs convQ|Pi are connected.
Then, given spanning trees T1, . . . , Tk for convQ|Pi , we can
compute convP in expected time O(n log∗ n+ k log k).

Proof. We follow Seidel’s strategy for polygon triangu-
lation [26]: we pick a subset K ⊆ P that meets each Ti
in exactly one point, and an appropriate gradation S0 ⊆
· · · ⊆ Sβ = P \ K with β � log∗ n. Then we compute
conv (S0 ∪K) in time O(n + k log k) and successively each
conv (Si ∪K) in O(n). Here, the bottleneck is to locate the
conflict facets for Si+1 in conv(Si ∪K). This is done using
the spanning trees Ti and an appropriate variant of Subset-
ConflictWalk.

We may assume that k < n/2, since otherwise the theorem
is easy. Let K ⊆ P such that K contains exactly one point
of each Pi, and let m = n − k. Let z = max{k,m/ logm}
and choose 1 ≤ α ≤ log∗m such that m/ log(α−1) m < z ≤
m/ log(α) m, where log(i) m denotes the i-th iterated loga-
rithm8 of m. Let β = log∗m − α + 1. Compute a gra-
dation of subsets S0 ⊆ · · · ⊆ Sβ = P \ K, such that Si
is a random subset of Si+1 with |S0| = z and |Si+1| =

|Si| log(α+i) m/ log(α+i+1) m for 0 ≤ i < β. By induction,

it follows that |Si| ≤ m/ log(α+i). For i = 0, . . . , β, leteSi = Si ∪K. We will show how to compute conv eSi+1 from

conv eSi in time O(n) for each i. Furthermore, conv eS0 can
be computed in time O(n + k log k) with a regular convex
hull algorithm, as |S0∪K| = O(n/ logn+k). Hence, it takes

O(n log∗ n+ k log k) steps to compute convQ = conv eSβ .

To derive conv eSi+1 from conv eSi we proceed in two steps:

first, we determine the conflict sets Bf for f ∈ F [eSi]. Below,
we will argue that this can be done in linear time. Then, we

use the algorithm from Lemma B.3 to compute conv eSi+1.
This takes time proportional to„

|Si+1|+ k
|Si+1|
|Si|

«
log
|Si+1|
|Si|

≤ 2|Si+1| log

„
log(α+i) m

log(α+i+1) m

«
� m

log(α+i+1) m
log

„
log(α+i) m

log(α+i+1) m

«
,

since k ≤ |S0| ≤ |Si|. The last term is O(n), as claimed.
It remains to show how to find the conflict sets Bf in

time O(n). For each j = 1, . . . , k, we determine conflict
facets for Pj as follows: let rj = Pj ∩K. We use a variant of

SubsetConflictWalk: merge the neighbors of rj in conv eSi
with the neighbors ΓTj (rj) of rj in Tj in order to find a
conflict facet fp for each p ∈ ΓTj (rj). Then continue in a
BFS-manner along Tj , inserting in turn each p ∈ ΓTj (rj)

into conv eSi, and so on. As in Section 3, we see that the
total time is proportional to

X
p∈eSi

deg eSi
p+

kX
j=1

X
p∈Tj

degTj
p+

X
p∈P\Si

dp

� |eSi|+ |P \ eSi|+ X
f∈F [eSi]

bf

� |P |+ n− k + k
|Si+1|
|Si|

,

by Lemma B.2. Since k ≤ |Si| and |Si+i| ≤ n, the last term
is linear. This finishes the proof.

For our original question, this means that we can quickly
compute the blue hull without considering the whole poly-
tope, as long as the number of induced blue components is
small.

Corollary 6.3. Let P ⊆ R3 be a finite point set in gen-
eral convex position, and let B be a subgraph of conv(P)
with n vertices. Then conv(V [B]) can be computed in time
O(n log∗ n + k log k), where k denotes the number of con-
nected components of B.

8We set log(0) m = m and log(log∗m+1) m = 1.

In particular, we get the following nice fact about Delau-
nay triangulations.

Corollary 6.4. Let T = (V,E) be a Delaunay triangu-
lation and let S ⊆ T be a set of n vertices and edges of T with
k connected components. Then the Delaunay triangulation
of S can be computed in time O(n log∗ n+ k log k).

7. REFERENCES
[1] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A

linear-time algorithm for computing the Voronoi
diagram of a convex polygon. Discrete Comput.
Geom., 4(6):591–604, 1989.

[2] N. M. Amato, M. T. Goodrich, and E. A. Ramos.
Linear-time triangulation of a simple polygon made
easier via randomization. In SCG ’00: Proceedings of
the sixteenth annual symposium on Computational
geometry, pages 201–212, New York, NY, USA, 2000.
ACM.

[3] J.-D. Boissonnat and M. Yvinec. Algorithmic
geometry. Cambridge University Press, New York,
NY, USA, 1998.

[4] T. M. Chan. Random sampling, halfspace range
reporting, and construction of (≤ k)-levels in three
dimensions. SIAM J. Comput., 30(2):561–575, 2000.

[5] T. M. Chan. Three problems about simple polygons.
Comput. Geom., 35(3):209–217, 2006.

[6] B. Chazelle. Filtering search: a new approach to
query-answering. SIAM J. Comput., 15(3):703–724,
1986.

[7] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete Comput. Geom., 6(5):485–524, 1991.

[8] B. Chazelle. An optimal algorithm for intersecting
three-dimensional convex polyhedra. SIAM J.
Comput., 21(4):671–696, 1992.

[9] B. Chazelle. The discrepancy method: randomness and
complexity. Cambridge University Press, New York,
NY, USA, 2000.

[10] B. Chazelle, O. Devillers, F. Hurtado, M. Mora,
V. Sacristán, and M. Teillaud. Splitting a Delaunay
triangulation in linear time. Algorithmica, 34(1):39–46,
2002.

[11] L. P. Chew. Building Voronoi Diagrams for Convex
Polygons in Linear Expected Time. Technical Report
PCS-TR90-147, Dartmouth College, Computer
Science, Hanover, NH, 1990.

[12] L. P. Chew and S. Fortune. Sorting helps for Voronoi
diagrams. Algorithmica, 18(2):217–228, 1997.

[13] F. Chin, J. Snoeyink, and C. A. Wang. Finding the
medial axis of a simple polygon in linear time.
Discrete Comput. Geom., 21(3):405–420, 1999.

[14] F. Chin and C. A. Wang. Finding the constrained
Delaunay triangulation and constrained Voronoi
diagram of a simple polygon in linear time. SIAM
Journal on Computing, 28(2):471–486, 1998.

[15] K. L. Clarkson. A randomized algorithm for
closest-point queries. SIAM Journal on Computing,
17(4):830–847, 1988.

[16] K. L. Clarkson and P. W. Shor. Applications of
random sampling in computational geometry. II.
Discrete Comput. Geom., 4(5):387–421, 1989.

[17] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational geometry.
Springer-Verlag, Berlin, revised edition, 2000.
Algorithms and applications.

[18] O. Devillers. Randomization yields simple O(n log∗ n)
algorithms for difficult Ω(n) problems. Internat. J.
Comput. Geom. Appl., 2(1):97–111, 1992.

[19] H. N. Djidjev and A. Lingas. On computing Voronoi
diagrams for sorted point sets. Internat. J. Comput.
Geom. Appl., 5(3):327–337, 1995.

[20] H. Fournier and A. Vigneron. A tight lower bound for
computing the diameter of a 3D convex polytope.
Algorithmica, 49(3):245–257, 2007.

[21] R. Klein and A. Lingas. A linear-time randomized
algorithm for the bounded Voronoi diagram of a
simple polygon. Int. J. Comput. Geometry Appl.,
6(3):263–278, 1996.

[22] J. Matoušek. Lectures on discrete geometry, volume
212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002.

[23] K. Mulmuley. Computational Geometry: An
Introduction through Randomized Algorithms.
Prentice-Hall, Englewood Cliffs, 1994.

[24] E. A. Ramos. On range reporting, ray shooting and
k-level construction. In SCG ’99: Proceedings of the
fifteenth annual symposium on Computational
geometry, pages 390–399, New York, NY, USA, 1999.
ACM.

[25] R. Seidel. A method for proving lower bounds for
certain geometric problems. Technical Report
TR84-592, Cornell University, Ithaca, NY, USA, 1984.

[26] R. Seidel. A simple and fast incremental randomized
algorithm for computing trapezoidal decompositions
and for triangulating polygons. Comput. Geom.,
1(1):51–64, 1991.

[27] M. J. van Kreveld, M. Löffler, and J. S. B. Mitchell.
Preprocessing imprecise points and splitting
triangulations. In S.-H. Hong, H. Nagamochi, and
T. Fukunaga, editors, ISAAC, volume 5369 of Lecture
Notes in Computer Science, pages 544–555. Springer,
2008.

APPENDIX
A. DEFINITIONS AND NOTATION

Given a finite point set P ⊆ R3, let convP denote the con-
vex hull of P . We denote the edges and facets of convP by
E[P] and F [P]. For a point p ∈ P , let degP p be the number
of edges in E[P] incident to p. Throughout, we will assume
that convex hulls are given in a standard planar graph repre-
sentation, eg a DCEL [17, Chapter 2.2]. Our point sets will
usually be in general convex position, ie, every three points
in P are linearly independent and p 6∈ conv (P \ p) for every
p ∈ P . In particular, convP is simplicial and all the points
in P are vertices of convP .

We use classical geometric random sampling [16, 23]; see
Appendix B. We quickly review the concept of conflict sets.
Given a point set P ⊆ R3, an edge e ∈ E[P], and a point p 6∈
convP , we say that p can see e in convP or that e is visible
from p, if the triangle spanned by e and p intersects convP
only in e. All the planes we consider are oriented, that is, one
of the two halfspaces defined by a plane h is designated the

left halfspace of h, h+, and the other one is designated the
right halfspace of h, h−. We use the convention that every
supporting plane of convP is oriented such that P lies in
the right halfspace h−. Let Q ⊆ P , f ∈ F [Q], and hf be the
supporting plane for f . A point p ∈ P is in conflict with
f if p lies in h+

f . Let Bf ⊆ P denote the points in conflict
with f , and bf the size of Bf . Conversely, for a point p ∈ P ,
we let Dp ⊆ F [Q] denote the facets in conflict with p, and
let dp be its size. The sets Bf and Dp are the conflict sets
of f and p, and bf and dp are the conflict sizes. By double
counting, X

f∈F [Q]

bf =
X
p∈P

dp. (5)

B. CLARKSON-SHOR TOOLBOX
We review a few tools from geometric random sampling

theory [16,23]. First, we have a Chernoff-type bound for the
conflict size of a random sample.

Lemma B.1. Fix 0 ≤ p ≤ 1 and let S ⊆ P be a random
subset of size pn. Fix t ≥ 2 and let F≥t = {f ∈ F [S] | bf ≥
t/p}. Then

E [|F≥t|]� t2e−t/2pn.

Using this bound, we can show that the sum of every well-
behaved function over the conflict sizes of a random sample
gives the value one would expect. This remains true if a few
points from P must be included in the sample.

Lemma B.2. Fix 0 ≤ p ≤ 1 and let S ⊆ P \ K be a
random subset of size p(n−k). Let g be a function such that
g(tn)� exp(t)g(n) for all t ≥ 0. Then

E

24 X
f∈F [S∪K]

g(bf)

35� (p(n− k) + k) · g (1/p) .

In particular, choosing k = 0 and g : n 7→ nγ for γ ≥ 0, we
have

E

24 X
f∈F [S]

bγf

35� np1−γ , (6)

and choosing g : n 7→ n logn, we get

E

24 X
f∈F [S∪K]

bf log bf

35� „
(n− k) +

k

p

«
log

„
1

p

«
. (7)

The following lemma is a standard application of geomet-
ric divide-and-conquer [9, 15, 16] and asserts that a convex
hull can be computed faster if a random partial hull and the
corresponding conflict information are known.

Lemma B.3. Fix 0 ≤ p ≤ 1 and let S ⊆ P \ K be a
subset of size p(n − k). Suppose that conv (S ∪K) and the
conflict sets Bf ⊆ P for f ∈ F [S ∪K] are available. Then
we can find convP in expected time

P
f∈F [S∪K] bf log bf .

In particular, if S is a random subset, the running time is
O ((n− k + k/p) log (1/p)).

