
Online Geometric Reconstruction∗

Bernard Chazelle
chazelle@cs.princeton.edu

C. Seshadhri
csesha@cs.princeton.edu

Department of Computer Science
Princeton University
Princeton, NJ 08540

ABSTRACT
We investigate a new class of geometric problems based on
the idea of online error correction. Suppose one is given
access to a large geometric dataset though a query mecha-
nism; for example, the dataset could be a terrain and a query
might ask for the coordinates of a particular vertex or for the
edges incident to it. Suppose, in addition, that the dataset
satisfies some known structural property P (eg, monotonic-
ity or convexity) but that, because of errors and noise, the
queries occasionally provide answers that violate P . Can
one design a filter that modifies the query’s answers so that
(i) the output satisfies P ; (ii) the amount of data modifica-
tion is minimized? We provide upper and lower bounds on
the complexity of online reconstruction for convexity in 2D
and 3D.

1. INTRODUCTION
Classical error correction assumes the prior availability of

exact data. In this way, we can encode the data in redundant
form so as to allow its recovery after transmission through a
noisy channel. But what if the data D comes to us already
corrupted? If the clean data is out of reach, then obviously
the very notion of corruption requires an assumption about
prior state. Indeed, what justification would one have to call
a signal noisy if we have no idea what clean data might look
like. The prior could be a distribution or, more generally,
a property P . For example, the data could be the facial
representation of a cell decomposition and P could specify
that it be a Voronoi diagram. Or D could be a terrain that
P constrains to be monotone or convex. Or D might consist
of an architectural design, with P enforcing certain angular

∗This work was supported in part by NSF grants CCR-
998817, 0306283, and ARO Grant DAAH04-96-1-0181.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’06, June 5–7, 2006, Sedona, Arizona, USA.
Copyright 2006 ACM 1-59593-340-9/06/0006 ...$5.00.

constraints (eg, right angles between adjacent walls). Or D
could be a cloud of points in high dimensions that P forces
on or near a low degree algebraic manifold.

In all cases, the same question arises: Is it possible to filter
the data online so that (i) it satisfies P and (ii) the amount
of modification is minimized? Such a filter can be used as
the front-end to geometric codes whose correctness depends
on certain properties (such as convexity, monotonicity, axis-
parallelism). The offline version of the problem is a form of
generalized regression: among all datasets satisfying P , find
the one nearest D. The problem assumes a metric between
datasets, which could be geometric, combinatorial, or a mix-
ture of both. In this paper, it will be purely combinatorial.
The true novelty of our setting is its online nature. To see
why being online changes everything, think of an architec-
tural scenario where objects are required to be isothetic.
Suppose that the first query reveals the position of a door
and its adjacent wall. If the door is ajar, the online filter
has two equally valid options in order to enforce isotheticity:
either it can move the door or it can move the wall. The
latter option would have dire consequences, however, likely
to lead to the modification of the entire structure. This
simplistic example points to the main challenge of online
filtering: early decisions are crucial.

We use the filtering model defined in [8]. Access to the
dataset is provided by means of an oracle f . The client
specifies a query x and the oracle returns f(x). The query
could specify the index x of a wall, with f(x) providing the
coordinates of its vertices; or the index of an adjacent wall.
One should not think of f as a single function but rather as
the set of methods (in the OOP sense) available to access the
dataset and its underlying data structures. The filter works
like this: given a query x, instead of simply returning f(x),
the filter provides the client with the cleaned-up answer g(x).
Figure 1 illustrates its inner workings. Upon receiving the
query x, the filter spawns auxiliary queries a, b, c, . . . and
computes g(x) on the basis of of f(a), f(b), f(c), . . . The filter
may go through several rounds before producing g(x) and
adaptively produce queries based on the previous answers.
The set of all possible values g(x) specifies a dataset Df that
satisfies property P . The filter’s decisions are irreversible:
once a feature of Df has been established, it can never be
undone.

The quality of a filter is determined by how close Df is to
the object that satisfies P and differs from D as little as pos-
sible. This requires a metric ∆ between datasets (defined on
a case-by-case basis). For the purpose of this paper, we re-

dataset clientfilter

a,b,c...

f(a),f(b),f(c)... g(x)

x

Figure 1: The online filter responds to a query x.

quire that all filters obey the constant-distortion condition:

∆(Df ,D) = O(min {∆(D,D′) | all D′ satisfying P }).

Obviously, the true quality of a filter will also depend on how
big the big-Oh constant factor is. In other cases, for the sake
of speed, one might allow nonconstant distortions (but we
won’t in this paper). Note that, most often, setting the con-
stant to 1 makes the reconstruction NP-hard. There are two
aspects to a filter’s complexity which we might sometimes
want to distinguish: the lookup complexity is the number
of dataset lookups (ie, a, b, c, . . .); the processing complexity,
which cannot be smaller, is the running time of the filter per
query. The distinction is useful in instances where dataset
access is slow or expensive (as is often the case in biology,
medicine, geology, etc). In this paper, however, all query
times refer to the processing complexity. Our emphasis also
is on worst case query times. Obviously, it is also interesting
to keep the amortized complexity low—and we’ll do that—
but keep in mind that to focus only on amortized complexity
would render the online problem meaningless (since we could
always solve the offline version and charge the first query for
it). Worst case complexity is, indeed, an essential feature of
online reconstruction.

1.0.0.1 Our Results and Previous Work.
In the following, n denotes the size of the input and the

distance between two polygons (terrains) is defined as the
minimum number of edges (faces) whose coordinates need
to be modified to transform one into the other. All the algo-
rithms below are randomized and succeed with high proba-
bility.1 We give three filters for reconstructing convexity in
two and three dimensions:

1. An optimal eO(
√

n) time filter for reconstructing the
convexity of a simple polygon presented as a doubly-
linked list. We assume that each vertex is labeled with
its rank in the list. We also give an eO(n1/3) time ε-

tester2 and prove an Ω(n1/3) lower bound.

2. An optimal eO(log3 n) time filter for reconstructing the
convexity of a simple polygon presented as a balanced
binary tree.

3. A filter for reconstructing the convexity of a bounded

1Throughout this paper, “with high probability” is short-
hand for: with probability at least 1−n−c, for an arbitrarily
large constant c > 0, where n is the size of the input.
2 Unless indicated otherwise, all our algorithms are random-
ized. An ε-tester for a property P determines whether an
input of size n satisfies P or requires at least εn modifica-

tions to do so. We use the notation eO(f) = O(f)(log f)O(1)

and our claims of optimality are to be understood up to
polylogarithmic factors.

aspect ratio3 terrain presented in triangulated DCEL
format with a worst case query time of O(n13/14+δ +

ε
−O(1)
D) and an amortized time of O(nδ). Here, δ is an

arbitrarily small positive constant and εDn is the ter-
rain’s distance to convexity, ie, the minimum number
of faces whose coordinates need to be modified in or-
der to make the terrain convex. We also prove a lower
bound that explains why the complexity must depend
on εD.

This paper presents new results that are intriguing enough,
we hope, to inspire further work. To get a taste of why the
results are surprising, consider the fact that exact 3D re-
construction offline is not known to be in polynomial time,
so it is remarkable that allowing a constant factor approx-
imation in the distance should allow us to answer online
queries in sublinear time. Many tools are required to achieve
this result, including the planar separator theorem, balanced
trapezoidal decompositions, sampling in range spaces of un-
bounded VC dimension, and approximation algorithms for
vertex cover. Another puzzling fact is why the 2D filter’s
complexity does not depend on the distance εD but its 3D
counterpart does. By showing that online 3D reconstruc-
tion requires Ω(ε−1

D) time, we prove that this difference is
intrinsic and represents yet another complexity gap between
2D and 3D. We leave the online reconstruction of general
terrains and, most interesting, of arbitrary polytopes as an
open problem.

We are not aware of any line of work that our results
can be compared with directly—except for [8], where online
property-preserving data reconstruction was introduced and
polylogarithmic time filters were provided for reconstructing
monotone functions. Our work uses the same model but very
different techniques. Of course, offline geometric reconstruc-
tion has been studied before, but usually the metric is geo-
metric (like the Hausdorff distance) and not combinatorial.
Examples include finding the best approximation of surfaces
satisfying certain criteria [2, 4, 6, 10]. On the other hand, a
notion of combinatorial distance is certainly present when
studying the computational aspects of the Erdős-Szekeres
theorem [13] or other Ramsey-like results. Geometric prop-
erties have been well studied within the purview of prop-
erty testing [15, 17], program checking [25], and sublinear
algorithms [12]. Efficient testers have been given for con-
vexity [15, 17, 19], clustering [9, 21, 22, 27], and Euclidean
MST [14, 16], but there too the relevance to our work is
only tangential. Because of space limitations, we limit our
discussion to convexity filters for terrains.

2. A CONVEXITY FILTER FOR POLYGONS
Rather than dealing with the general case, which has a

number of technical complications that are not germane to
the 3D case, we restrict ourselves to the case of terrains.
The reason for this is that it provides a gentle warmup for
the (vastly more difficult) 3D case. It will also allow us
to highlight the fundamental difference between 2D and 3D
filtering: the complexity’s dependency on the distance to
convexity for 3D terrains.

The input is a 2D terrainD, ie, a polygonal curve p1, . . . , pn

running monotonically from left to right. We assume a

3A terrain is said to have bounded aspect ratio if the xy-
projections of the faces have bounded sides and angles.

doubly-linked list representation, which allows us to access a
random edge and walk from it in either direction. (Note that
we cannot perform a binary search among the edges, since
they are not stored sorted in a table. An alternative model
where we can—result 2 above—will also be investigated in
the full paper.) Let εDn denote the minimum number of
edges that need to be modified to make D convex. By con-
vex, we mean the upper hull of the set of vertices of D. Two
edges e = pipi+1, f = pjpj+1 are naturally ordered from
left to right if i < j, which we write as e ≺ f . We define
[e, f] = {pi+1pi+2, . . . , pj−1pj}. A pair (e, f) is a violating
if the convex hull of {e, f} does not have both edges on the
boundary.

What makes the 2D case remarkable is that a certain eas-
ily testable property allows us to classify any given edge in
one of two categories (good or bad) in a way that leads to
a filtering mechanism with a constant approximation fac-
tor. (A similar classification was used for filtering monotone
functions in [8].)

Definition 2.1. Given any 0 < δ < 1/2, an edge e is
called δ-bad if there exists an edge f such that either (i)
e ≺ f and the number of g ∈ [e, f] that violate e is at least
(1/2−δ)|[e, f]| or (ii) f ≺ e and the number of g ∈ [f, e] that
violate e is at least (1/2 − δ)|[f, e]|. The edge f is referred
to as a witness to e’s badness. An edge that is not δ-bad is
called δ-good.

The following transitivity relation is immediate: if e ≺
f ≺ g and (e, g) is a violating pair, then so is at least one
of (e, f) or (f, g). The next lemma is crucial for proving the
correctness of the filter.

Lemma 2.2. (i) The 0-good edges have no violating pairs;
(ii) at least εDn edges are 0-bad; and (iii) no more than
(3 + 8δ/(1− 2δ))εDn edges are δ-bad.

Proof. (from [7]) Note that by transitivity, for any e ≺ f
such that (e, f) is a violating pair, either e or f (or both) is
0-bad. Therefore, if we were to remove all the 0-bad edges,
the remaining edges would be in convex position; hence (i)
and (ii).

We start by assigning to each δ-bad e a witness fe to its
badness (if many witnesses exist, we just choose any one).
If fe � e, then e is called right-bad; else it is left-bad. (Obvi-
ously, the classification depends on the choice of witnesses.)

Let C be a set of εDn edges where D can be modified to
make it convex. To bound the number of right-bad edges,
we charge C with a credit scheme. (Then we apply a similar
procedure to bound the number of left-bad edges.) Initially,
each element of C is assigned one unit of credit. For each
right-bad e 6∈ C (in reverse order from right to left), spread
one credit among all the g such that e � g � fe and (e, g)
is a violation (note that g must be in C). We use the word
“spread” because we do not simply drop one unit of credit
into one account. Rather, viewing the accounts as buckets
and credit as water, we pour one unit of water one infinites-
imal drop at a time, always pouring the next drop into the
least filled bucket.

We now show that no edge in C ever receives an excess
of 2 + 4δ/(1− 2δ) units of credit. Suppose by contradiction
that this were the case. Let e be the right-bad that causes
some edge g’s (g belongs to C) account to reach over 2 +
4δ/(1 − 2δ). By construction e is not in C; therefore, the

excess occurs while right-bad e is charging an edge g such
that e ≺ g � fe and (e, g) is a violation. Note that, because
e 6∈ C, any g satisfying these two conditions belongs to C
(let us denote the number of such edges by l) and thus gets
charged. With the uniform charging scheme, this ensures
that all of these l elements of C have the same amount of
credit by the time they reach the excess value, which gives a
total greater than l(2 + 4δ/(1− 2δ)). By definition of right-
badness, l ≥ (1/2 − δ)|[e, fe]|. But none of these accounts
could be charged before step fe; therefore,

(1/2− δ)|[e, fe]|(2 + 4δ/(1− 2δ)) < |[e, fe]|,

which is a contradiction.
Of the total of at most 2+4δ/(1− 2δ)εDn units of credit,

εDn units of credit came from initially assigning the edges
of C one unit of credit each. Therefore, there are at most
1 + 4δ/(1 − 2δ)εDn right-bad edges. By applying a similar
argument for left-bad edges (this time charging from left to
right), we prove (iii).

By repeating the procedure below a logarithmic number
of times we can, with high probability, find whether an edge

e is δ-bad or 2δ-good in eO(
√

n) time.

Goodness-Tester(e, δ)

S ← portion of D that stretches
√

n edges

on both sides of e
if, for some f ∈ S, a fraction (1

2
− δ) of

edges (e, g) ∈ [e, f] (or (g, e) ∈ [f, e]) are violating

then output δ-bad
R← random set of O(δ−2√n) edges in D
sort R from left to right

if, for some f ∈ R, a fraction 1
2
(1− 3δ) of edges

(e, g) ∈ [e, f] ∩R (or (g, e) ∈ [f, e] ∩R) are violating

then output δ-bad
output 2δ-good

The convexity filter for 2D terrains works as follows: If
the query edge e has been committed, then we return it
unchanged. Similarly, if Goodness-Tester(e, δ) outputs
“2δ-good”, we output the edge e and commit to its current
value. Otherwise, we find the closest committed edges to the
left (el) and to the right (er). Let S be the portion of D that
stretches

√
n edges on both sides of e. By using a modifi-

cation of the algorithm in [8], we can find a “close” 2δ-good
edge in S that precedes (resp. follows) e, which we denote
by el

S (resp. er
S). The meaning of close is that the edge,

say el
S , lies in the smallest interval [f, e] ⊆ S that contains a

fraction of 2δ-good edges in S that lies in the interval [δ, 2δ].
Next, pick a random sample R of O(δ−2√n log n) edges in
D, and sort R from left to right. Repeating the closeness
procedure above with respect to R (instead of S) gives us
the two edges el

R and er
R. Among the three edges, el, el

S , el
R,

(resp. er, er
S , er

R), let l∗ (resp. r∗) denote the closest one to
e. Join the right endpoint of l∗ to the left endpoint of r∗

with a segment σ that is used to reconstruct the interval
[l∗, r∗]. Lift to σ all the edges in [l∗, r∗] and commit to all
of them. Output the new value of e (which has been lifted

to σ). We omit the proof of correctness, which is technical,
and simply summarize the main features of the filter.

Theorem 2.3. Any n-edge 2D terrain has a convexity fil-

ter with a worst case query time of eO(
√

n) time and an
amortized time of O(log n).

3. A CONVEXITY FILTER FOR 3D TER-
RAINS

The dataset is an n-face triangulated terrain D repre-
sented in standard DCEL fashion. We assume that the
xy-projection of any face of D is a triangle with both edge
lengths and angles bounded above and below by constants
(bounded aspect ratio condition). The reconstructed terrain
Dc is convex in the sense of being the boundary of the upper
hull of its vertex set. There are various equally reasonable
definitions of the parameter εD. For simplicity, we define
εDn as the minimum number of faces of D that need to be
removed in order to make the terrain convex. Note that this
definition does not require us to “patch the holes.” Choos-
ing to do so, however, would only increase the distance by
a constant factor, which, for the purpose of our filter, is im-
material. The edge table allows us to sample random edges.
From this, it is elementary to implement a uniform sampler
for triangular faces as well. (To sample vertices would be
more difficult but, fortunately, we do not need that feature.)

The filter processes the terrain during the first query in
sublinear time and then uses the resulting data structure to
answer subsequent queries. The (sublinear) cost of the pro-
cessing is charged entirely to the first query. The idea is to
break up the terrain into connected patches of suitable size
by removing a small set F of separating faces. The fence F
decomposes the terrain into connected patches of suitable
sizes. A critical feature of F is to be of sublinear size. To
achieve this, we use a weakened version of the classical pla-
nar separator theorem. The weakening is required to make
the computation sublinear. The final processing step is to
convexify F . This is a delicate operation which cannot be
performed in isolation with the rest of the terrain: this is
a perfect illustration of why early decisions are crucial in
online filtering.

We define a suitable range space (of unbounded VC di-
mension!) whose sampling gives us enough global informa-
tion about the whole terrain to guide the reconstruction of
F . The convexified F fences off the patches in such a way
that it is possible from then on to answer any subsequent
query by treating its associated patch in isolation from the
rest of the terrain. But, before we can get to online recon-
struction, we need to define two key procedures: one is an
offline algorithm for convexifying the terrain within twice
the minimum distance; the other estimates the distance εD

in sublinear time.
Any filter must explore both global and local properties.

The difficulty lies in gathering enough information in sub-
linear time. Any approach must involve a combination of
sampling and local search. The filter essentially works as
follows: first, it estimates εD using the sublinear time proce-
dure. If the distance is very small, then the offline algorithm
is used for convexification. Otherwise, it constructs a fence
F and convexifies it. It is critical that this convexification
be done by taking the global structure into account—this
is achieved by choosing a large enough sample of faces of
D (which then is used to define the range space mentioned

Offline-Reconstruction

Initialization: T ← ∅
for each face f of D:

if f is in convex position with T
then T ← T ∪ {f}
else find face g ∈ T not in

convex position with f
T ← T \ {g}

output Dc ← T

in the previous paragraph) and convexifing F so that it is
in convex position with most of the sample. This creates
a “skeleton” which captures the global properties of D and
also splits D into a set of small connected patches. Next,
each patch is reconstructed independently, ensuring that it
stays in convex position with the convexified F . Since a
patch is a small connected portion of D, it can be visited
exhaustively by local search (thereby, the filter gains infor-
mation about the local properties of D). In the following
subsections, we discuss the various components that con-
stitute the filter. Finally, we put the pieces together and
describe the filter itself.

3.0.0.2 Offline Reconstruction.
We describe a 2-approximation offline convexification al-

gorithm, ie, one that, given D as input, returns a terrain
Dc that is convex and is at distance at most 2εDn from it.
The convexification proceeds incrementally. Beginning with
the empty terrain T , we consider each face of D one by one
and add it to T if it is in convex position4 with every face
currently in Dc. To do this in quasilinear time, we main-
tain T in a dynamic data structure which supports insertion,
deletion, and queries in O(nδ) time for any fixed δ > 0.

Denote by Tv (resp. Tp) the set of vertices (resp. face-
supporting planes) in T . A terrain face f is in convex po-
sition with T if and only if (i) its three vertices lie below
each plane in Tv; and (ii) the points of Tp all lie below
the plane supporting f . By duality, both tests can be re-
duced to dynamic halfspace emptiness in 3D: maintain a set
of points under insertion and deletion, and for any query
plane find whether whether all points lie on one side, and
if they do not, report one point on each side. Agarwal and
Matoušek [5] have given a halfspace range reporting algo-
rithm which, with minor modifications, allows us to do that
in O(νδ) amortized time for each query/insert/delete, where
ν is the number of points at the time of the operation.

Theorem 3.1. Offline convex reconstruction of an n-face
terrain can be performed with an approximation factor of 2
in O(n1+δ) time, for any fixed δ > 0.

3.0.0.3 Estimating the Distance to Convexity.
Consider the violation graph G whose nodes are the faces

of D and whose edges join any two faces not in convex po-
sition. The minimum vertex cover is of size εDn, and any

4 Two triangles are said to be in convex position if both of
them are faces of their convex hull.

maximal matching M in G is of size |M | ≤ εDn ≤ 2|M |.
Fix any constants 0 < α < β < 1 such that α ≥ 1

2
(3β − 1),

and let S be a random sample formed by picking each ver-
tex of G independently with probability p = nα−β+δ0 for
arbitrarily small δ0 > 0. Note that the offline reconstruc-
tion algorithm in effect builds a maximal matching MS for
the subgraph G|S of G induced by S. The sample S can be
easily specified in O(|S|) time, so that computing MS takes
O(pn)1+δ time, which is O(n1+α−β+δ1) for arbitrarily small
δ1 > 0. As we show below, knowing MS allows us to distin-
guish between the two cases: εD ≥ n−α and εD ≤ n−β .

1. εD ≥ n−α: If ξ is the number of edges of M in GS , then
E ξ = p2|M | and, by Chernoff’s bound [1], Prob [ξ <
1
2
p2|M |] < e−Ω(p2|M|) = e−Ω(p2n1−α) < e−nδ2

, for ar-
bitrarily small δ2 > 0. So, with high probability, G|S

contains a perfect matching of size at least 1
2

p2|M | ≥
1
4

p2n1−α. Its minimum vertex cover is at least that

size; therefore, |MS | ≥ 1
8

p2n1−α.

2. εD ≤ n−β: If χ denotes the number of vertices of M
in S, then Eχ = 2p|M | and, by Chernoff’s bound,

Prob [χ ≥ 2p|M | + y] < e−y2/|M|, for any y > 0.
Setting y = 1

8
p2n1−α − 2p|M | > 1

9
p2n1−α, we find

that Prob [χ ≥ 1
8

p2n1−α] < e−Ω(p4n1+β−2α) < e−nδ3
,

for arbitrarily small δ3 > 0. Since the vertices of M
provide a vertex cover for G, it follows that, with high
probability, |MS | < 1

8
p2n1−α.

Theorem 3.2. Given any small δ > 0 and any constants
0 < α < β < 1 such that α ≥ 1

2
(3β − 1), we can compute

a 0/1 bit b(D) in O(n1+α−β+δ) time, such that b(D) = 0 if
εD ≥ n−α, b(D) = 1 if εD ≤ n−β , and b(D) takes on any
value otherwise.

3.0.0.4 Fencing Off the Terrain.
Here we describe an algorithm that finds a sublinear set

of faces (the fence) of D whose removal breaks D into con-
nected components (patches) also of sublinear size. As we
discussed earlier, this procedure will be run in the first query.
Let G be the planar triangulation formed by the projection
of D onto the xy-plane. Pick a random sample of r = na

edges in G, for fixed 0 < a < 1, and build its (say, x-
oriented) trapezoidal mapMr. As is well known, with high
probability, each trapezoid intersects O((n/r) log n) trian-
gles. Consider the dual Hr graph of Mr, where each node
is a trapezoid and two nodes are joined if the corresponding
(closed) trapezoids intersect. The graph is planar and so,
by iterated application of the planar separator theorem [23],
for any fixed 0 < b < 1, we can find, in O(r log r) time,

a set V of O(r1−b/2) nodes whose removal leaves Hr with
no connected component of size exceeding rb. The fence F
is defined as the polyhedral surface formed by the terrain’s
faces whose projections intersect the trapezoids associated
with the nodes of V . With high probability, the fence con-
sists of O(r1−b/2(n/r) log n)) = O(n1−ab/2 log n) triangles
and its removal from the terrain leaves connected patches,
each one consisting of O(n1+ab−a log n) triangles. Note that,
because it involves triangles (and not trapezoids), the re-
moval may create much greater fragmentation than is caused
within Hr by the removal of V . Finding the fence takes time

Figure 2: The thick black line, the fence, is a itself

collection of o(n) triangles.

O(na log n+n1−ab/2 log n) time, Renaming ab by b, we have
proven:

Lemma 3.3. For any 0 < b < a < 1, in O((na+n1−b/2) log n)

time, it is possible to find a fence F consisting of O(n1−b/2 log n)
triangles, whose removal from the terrain leaves connected
patches consisting of O(n1+b−a log n) triangles each.

3.0.0.5 Reconstructing the Fence.
It might be tempting to convexify the fence by apply-

ing the offline algorithm to it, but this could doom future
reconstruction (the “crucial early decisions” phenomenon).
Instead, we must allow the global shape of the terrain to
influence the reconstruction. To do so, we choose a ran-
dom sample Σ of the faces of D—the size of Σ shall be set
later. Let Σc be the offline convexification of the terrain
Σ provided by Theorem 3.1, and let Σf the intersection of
the halfspaces bounded above by the planes supporting the
faces of Σc (the dual convex hull). The reconstructed fence
Fc is obtained by lifting the triangles of F vertically and
“wrapping” them over the surface of Σf . Note that such a
lifting could replace one fence face by many faces, but based
on the bounded aspect ratio condition, we have a bound
(proven later in this section) for the total size of Fc. (The
bound holds only when Σ is sufficiently large, but our choice
of Σ will ensure that.)

Lemma 3.4. The size of Fc is O(n1−b/4 log n).

We now explain why Fc captures the global structure of
D. We define a range space (X,R), which, although of un-
bounded VC dimension, has enough sampling power to guide
the convexification of the fence. Regarding both D and F as
sets of triangles, we define the ground set X = D\F . Given
two sets S, T of triangles, let κ(S, T) be the set of triangles
in T that are not in convex position with at least one trian-
gle of S. Considering all possible sets Γ of |Fc| triangles, we
define R = {κ(Γ, X) : |Γ| = |Fc| }. A triangle is specified

by 9 reals, and so, viewing Γ as a point in pΓ ∈ R
9|Fc|, it

is easy to see why the convex position status of each of its
triangles with respect to X is completely specified by the
location of pΓ in a certain 9|Fc|-dimensional arrangement
of O(n|Fc|) hyperplanes. It follows that the primal shat-

ter function ϕ grows as ϕ(m) = O(m|Fc|)9|Fc|, and that,
with high probability, if Σ is chosen to be a random sample
of X of size O(r2|Fc| log |Fc|) = O(r2n1−b/4 log2 n), it is a
(1/r)-approximation for (X,R), for any r > 0.

By Theorem 3.1, the number of triangles in Σ that were
modified during the convexification is at most 2εΣ|Σ|. Using
an argument similar to the proof of Theorem 3.2, we can

Figure 3: The fence is reconstructed by lifting its

faces to the upper boundary of Σc.

show that, with high probability, this number is O(εD|Σ|).
This implies that |κ(Fc, Σ)| = O(εD|Σ|). Since

˛̨
˛̨ |κ(Fc, Σ)|

|Σ| − |κ(Fc, X)|
|X|

˛̨
˛̨ ≤ 1

r
,

we could easily bound the “damage” caused by the convex-
ification of the fence as follows:

Lemma 3.5. κ(Fc, X) ≤ nr−1 + O(εDn).

We now prove Lemma 3.4. For ease of notation, we shall

assume that F has O(nu log n) faces and Σ has size eO(nv).
We will be concerned only with xy-projections of D and Σf .
In the following proof, triangle refers to the xy-projection
of a face of D, while facet refers to the xy-projection of a
face of Σf . Edges refer to the edges of triangles. Note that
all facets are convex, disjoint from each other (except for
their boundaries) and contain a triangle. By the bounded
aspect ratio assumption, the radius lengths of the incircle
and circumcircle of any triangle are bounded from above
and below (by some constant). Let v′ be some value less
than v.

Definition 3.6. For α < n−(1−v′), an α-thin facet is a
facet with two edges e1, e2 such that the minimum distance

between e1 and e2 is less than n−(1−v′) and the angle between
e1 and e2 is less than α. The edges e1 and e2 are called sharp
edges. The min-thinness of a facet f is the minimum α such
that f is α-thin.

The sharp edges of an α-thin facet form a wedge that con-
tains the facet (Figure 4).

Claim 3.7. With high probability, there are at most O(αn)
α-thin facets.

Proof. Consider some α-thin facet f which contains tri-
angle t. The distance between t and the sharp edges is
at least Ω(α−1) (since t must be inside the wedge created
by these sharp edges, and has at least constant in-radius).
There exists a rectangle of Ω(α−1) width and Ω(1) height
that is present completely inside f but does not intersect
t (Figure 4). Therefore, we can also show that there exist
at least Ω(α−1) edges of D that have at least a constant
fraction of their length inside f (let these edges be bad for
f). Note that the offline convexification must have removed
these bad edges. With high probability (by taking a Cher-
noff bound for each rectangle and then a union bound over
all such rectangles, there being polynomially many relevant
ones), at least (cαn1−v)−1 of these edges are chosen in Σ

(for some sufficiently large constant c). Let the total num-
ber of α-thim facets be N . Since all facets are disjoint, an
edge can be bad for only a constant number of α-thin facets.
Therefore, the total number of bad edges is > N(cαn1−v)−1.
But this quantity has to be O(nv), since that is the number
of edges removed by convexification. This implies that the
number of α-thin facets is O(αn).

wedge

Ω(1)

Ω(α−1)

Figure 4: Wedge

Claim 3.8. For any v′ < v, the total complexity of the

lifted fence is O((n1+u−v′

+ nv′

) log n).

Proof. The complexity of lifting a fence face is simply
the complexity of the corresponding triangle when laid over
the xy-projection of Σf . A triangle is said to generate all
the faces created by overlaying. The total complexity of

all triangles generating O(n1−v′

) faces is O(n1+u−v′

log n)
(since there are at most O(nu log n) fence triangles). Con-

sider some triangle t generating k > n1−v′

faces. Each of
these faces is created by the intersection of t with a facet.

We will first show that many of these facets are k−1-thin.
Since triangles do not intersect, no facet can be completely
contained inside t. At least Ω(k) facets intersect some edge e
of t. We take a circle C of constant (but large enough) radius
such that C contains e and the minimum distance between e
and C is Ω(1). The intuition for the following proof is quite
simple—since C is a constant sized circle and many facets
intersect it, many facets have to be thin (Figure 5. Since
the area of a facet is Ω(1), there can be at most a constant
number of facets contained completely inside C. Therefore,
at least Ω(k) facets intersect both e and C. A facet can
intersect C in two ways - inward and outward (Figure 6).
Consider a facet f (containing triangle t′) that intersects
C only in the inward direction. Either more than half of
t′ is contained in C or the arc length of some intersection
between C and f is Ω(1). Only a constant number of facets
can have only inward intersection. Therefore, Ω(k) facets
intersect C outwards, and (by a Markov argument) Ω(k)
of these intersections have arc length < k−1. Consider any
such facet f ′ - the two edges intersecting C has a minimum
distance of less than k−1. Since f ′ intersects e, the angle
between the edges must be O(k−1), and f ′ is O(k−1)-thin.
This shows that for any triangle t generating k faces, Ω(k)
of these faces are O(k−1)-thin facets. We will say that t is a
witness for these O(k−1)-thin facets, since the intersection
of C with these facets shows their O(k−1)-thinness. For any

facet f of min-thinness α, note that at most (αn1−v′

)−1

triangles are witnesses for any thinness (since the minimum

distance between sharp edges is < n−(1−v′) and the angle is
α.)

We sum up the constributions (in terms of complexity) of

all triangles generating more that n1−v′

faces. Let this sum

be S. By the arguments given above, βS comes from thin
facets that are witnessed (for some fixed constant β < 1).
Some facets are counted more than once in βS because many
triangles can witness one facet. Let us consider all wit-
nessed facets with min-thinness in the range [α/2, α]. There
are at most O(αn) such facets and each is counted in S

at most 2(αn1−v′

)−1 times. Therefore, the total contribu-

tion of this in S is O(nv′

). We apply this argument for the

values α = n−(1−v′), 2−1n−(1−v′), 2−2n−(1−v′), · · · , (cn)−1

(for some sufficiently large constant c) and get that S =

O(nv′

log n).

C

Figure 5: Facets intersecting with C

Inward Outward

Figure 6: Inward and Outward

Noting that u = 1− b/2 and v > 1− b/4, we can set v′ =
(1+u)/2. By the previous claim, the complexity of the lifted

fence can be made O(n1−b/4 log n), proving Lemma 3.4.

3.0.0.6 Online Reconstruction.
We now have all the necessary tools required to make the

filter. As we mentioned earlier, the first query is the occa-
sion of some preliminary processing whose cost is entirely
charged to the query itself. By Theorem 3.2, we estimate
the distance to convexity in O(n1+α−β+δ) time. If b(D) = 1,
then we convexify the terrain in O(n1+δ) time by appeal-
ing to Theorem 3.1. Since εD < n−α, the running time is

O(ε−α−1+δ
D).

Assume now that b(D) = 0, which implies that εD >
n−β . By Lemma 3.5, setting r = nβ shows that κ(Fc, X) ≤
O(εDn). A crucial aspect of the reconstructed fence is that
the convexification of any patch can be done in isolation, as
long as we include the fence triangles bounding the patch in
question. This follows from this transitivity lemma, whose
proof we omit from this abstract. (We use the subscript xy
to denote the projection onto the xy-plane.)

3D-Terrain-Filter

if first query

then if b(D) = 1
then convexify D using

Offline-Reconstruction
else build fence F and convexify

into Fc and go to (1)

else

(1) identify patch containing query face f
if needed, convexify extended patch

with Offine-Reconstruction

Lemma 3.9. Let f, g be two faces of a (possibly discon-
tinuous) terrain and let F, G be two sets of faces such that:
(i) removing the region Fxy disconnects fxy from gxy; same
is true of Gxy. If f (resp. g) is in convex position with F
(resp. G), then f and g are in convex position with each
other.

Given a query f , unless b(D) = 1, the filter finds the
patch corresponding to f . If it is the first access to the
patch, then it proceeds to reconstruct the entire patch to-
gether with all its bordering fence triangles (what we call
the extended patch). Otherwise, it simply outputs the cor-
responding face in the reconstructed patch. By Lemma 3.3,
computing the fence takes O((na + n1−b/2) log n) time. By

our setting of r = nβ, to find Σ requires eO(r2n1−b/4) =
eO(n1+2β−b/4) time, and convexification can be done in time

O(n1+2β−b/4+δ). Reconstructing the fence adds nothing to
the asymptotic complexity. Any query that involves convex-
ifying the corresponding patch takes O(n1+b−a+δ). Putting
everything together, we see that in the worst case the time
for answering any query is

O(n1+α−β+δ + ε−α−1+δ
D + (na + n1−b/2) log n

+n1+2β−b/4+δ + n1+b−a+δ).

The constraints 0 < b < a < 1, 0 < α < β < 1, and α ≥
1
2
(3β−1) are all satisfied if we set α to be an arbitrarily small

positive constant and a = 13/14, b = 6/7, and β = 1/14. It
is immediate that the amortized query time is O(nδ).

Theorem 3.10. Any n-face 3D bounded aspect ratio ter-
rain D has a convexity filter with a worst case query time of

O(n13/14+δ + ε
−O(1)
D) and an amortized time of O(nδ), for

an arbitrarily small δ > 0.

3.0.0.7 Lower Bound.
We show that any 3D convexity filter has a worst case

query time of Ω(ε−1
D) time, thus revealing a fundamental

complexity gap between the two and three-dimensional cases.
Recall that the 2D filter made essential use of a certain tran-
sitivity feature of convexity violation: if e, f, g are edges in
clockwise order and (e, g) is not in convex position, then at
least one of (e, f) or (f, g) is not either. In designing our fil-
ter, we used a 3D variant of this by letting the fence play the
role of f . But, unlike in 2D, the fence cannot be a constant

Pi

Pi+1

Figure 7: The concentric rings of the xy-projection.

size object. Why this implies a lower bound is explained
below.

We appeal to Yao’s minimax lemma to deal with the fact
that our algorithms are randomized. We briefly sketch the
proof, beginning with the case εD = Θ(log n)/n. Assume
that the filter changes at most cεDn faces, for some fixed c >
1. We define a distribution of inputs and show that, for any
deterministic algorithm that performs reconstruction, some
query takes Ω(n/ log n) expected time over that distribution.

We start with a fixed D and build the distribution around
it. Fix some parameter m > 0. The xy-projection of D con-
sists of Θ(log m) concentric regular polygons P0, P1, · · · , Pk−1

centered at the origin (Figure 7): (i) the innermost polygon
P0 has a constant number of vertices; (ii) Pi has 2i−1|P1|
vertices and every other edge is parallel to an edge of Pi−1;
(iii) Pk−1 has m/(c1 log m) vertices, for fixed c1 > 0. The
radii of the Pi’s are chosen so that the boundaries are fairly
close to each other but disjoint. Next, we lift these polygons
vertically so that their edges are all horizontal tangents to
the paraboloid C : Z = −(X2 +Y 2) at their midpoints (Fig-
ure 8). Each band between consecutive polygons is trian-
gulated appropriately and the construction is lifted to C to
form a convex terrain with (lifted) P0 as its highest face. Fi-
nally, we add an extra polygon Pk that is a slightly scaled-up
version of Pk−1. The band between Pk−1 and Pk consists of
m/(c1 log m) trapezoids, each one of which is now divided up
into a stack of c1 log m parallel subtrapezoids. After lifting,
each subtrapezoid finds itself tangent to C. Triangulating
all faces produces n = Θ(m) faces.

The terrain D is convex: we introduce convexity viola-
tions by choosing one stack S of subtrapezoids, and tilting
them ever so slightly so that: (i) each subtrapezoid violates
one common triangle of P1; (ii) the stack S violates O(1)
triangles per (Pi, Pi+1) band. (This requires local retrian-
gulation and the addition of O(log m) faces.) Now the crux
of the argument rests on setting c1 large enough so that
2c1 log m > cεDn. (We omit the discussion of why that
inequality can be achieved.) In this way, a query to the
common violating triangle of P1 cannot return the trian-
gle unchanged. Indeed, if it did, then the entire stack S of
2c1 log m triangles would later have to be modified, which
would prove the filter faulty. It can also be shown that to
modify the violating triangle of P1 appropriately requires
knowing where the stack S is placed around the (Pk−1, Pk)
band, which takes Ω(|Pk|) expected time. The extension to
larger values of εD uses a similar construction, and we omit
it from this abstract.

Theorem 3.11. Any convexity filter for a terrain D of n
faces has a worst case query time of Ω(ε−1

D) for any n such
that (log n)/n ≤ εD = o(n).

Pi

Pi+1

C

Pk−1

Pk

Figure 8: A hard terrain to reconstruct.

4. REFERENCES
[1] Alon, N., Spencer, J. The probabilistic method, John Wiley,

2nd edition, 2000.
[2] Agarwal, P.K., Desikan P.K. An efficient algorithm for

terrain simplification, Proc. SODA (1997), 139-147.
[3] Agarwal, P.K., Hagerup, T., Ray, R., Sharir, M., Smid, M.,

Welzl, E. Translating a planar object to maximize point
containment, Proc. ESA (2002), 42-53.

[4] Agarwal, P.K., Har-Peled, S., Mustafa, N., Wang, Y.
Near-linear time approximation algorithms for curve
simplification, to appear in Algorithmica.

[5] Agarwal, P.K., Matoušek, J. Dynamic half-space searching
and its applications, Algorithmica 14 (1995), 325–345.

[6] Agarwal, P.K., Suri, S. Surface approximation and geometric
partitions, SIAM J. Computing 27 (1998), 1016–1035.

[7] Ailon, N., Chazelle, B., Comandur, S., Liu, D. Estimating
the distance to a monotone function, Proc. RANDOM
(2004), 229–236.

[8] Ailon, N., Chazelle, B., Comandur, S., Liu, D. Property
preserving data reconstruction, Proc. ISAAC (2004), 16–27.

[9] Alon, N., Dar, S., Parnas, M., Ron, D. Testing of clustering,
Proc. FOCS (2000), 240–250.

[10] Amenta, N., Choi, S., Dey, T.K., Leekha, N. A simple
algorithm for homeomorphic surface reconstruction Proc.
SOCG (2000), 213-222.

[11] Chazelle, B. The Discrepancy Method : Randomness and
Complexity, Cambridge University Press, 2000; paperback
version, 2001.

[12] Chazelle, B., Liu, D., Magen, A. Sublinear geometric
algorithms, Proc. STOC (2003), 531–540.

[13] Chvatal, V., Klincsek, G. Finding largest convex subsets,
Congressus Numerantium: 29 (1980), 453–460.

[14] Czumaj, A., Ergun, F., Fortnow, L., Magen, A., Newman,
I., Rubinfeld, R., Sohler, C., Sublinear-time approximation
of Euclidean minimum spanning tree, Proc. SODA (2003),
813–822.

[15] Czumaj, A., Sohler, C. Property testing with geometric
queries, Proc. ESA (2001), 266–277.

[16] Czumaj, A., Sohler, C. Estimating the weight of metric
minimum spanning trees in sublinear-time, Proc. STOC
(2004), 175–183.

[17] Czumaj, A., Sohler, C., Ziegler M. Property testing in
computational geometry, Proc. ESA (2000), 155-166.

[18] de Berg, M., van Kreveld, M., Overmars, O., Schwarzkopf,
O. Computational Geometry - Algorithms and Applications,
Springer-Verlag, 1997.

[19] Ergun, F., Kannan, S., Kumar, S. Ravi, Rubinfeld, R.,
Viswanathan, M. Spot-checkers, Proc. STOC (1998),
259–268.

[20] Frederickson, G.N. Fast algorithms for shortest paths in
planar graphs, with applications, SIAM J. Comput. 16
(1987), 1004–1022.

[21] Indyk, P. A sublinear-time approximation scheme for
clustering in metric spaces, Proc. FOCS (1999), 154–159.

[22] Indyk, P. Sublinear-time algorithms for metric space
problems, Proc. STOC 1999), 428–434.

[23] Lipton, R.J., Tarjan, R.E. A separator theorem for planar
graphs, SIAM Journal on Applied Mathematics 36 (1979),

177–189.
[24] Lipton, R.J., Tarjan, R.E. Applications of a planar

separator theorem, SIAM J. Comput. 9 (1980), 615–627.
[25] Mehlhorn, K., Näher, S., Seel, M., Seidel, R., Schilz, T.,

Schirra, S., Uhrig, C. Checking geometric programs or
verification of geometric structures, Proc. SOCG (1996),
159–165.

[26] Miller, G.L. Finding small simple cycle separators for
2-connected planar graphs, J. Computer and System
Sciences 32 (1986), 265–279.

[27] Mishra, N., Oblinger, D., Pitt, L. Sublinear time

approximate clustering, Proc. SODA (2001), 439–447.

