PRODUCT RANGE SPACES, SENSITIVE SAMPLING, AND
DERANDOMIZATION*

HERVE BRONNIMANN'Y, BERNARD CHAZELLE!Y, AND JIRi MATOUSEKS

Abstract. We introduce the concept of a sensitive e-approzimation and use it to derive a more
efficient algorithm for computing e-nets. We define and investigate product range spaces, for which we
establish sampling theorems analogous to the standard finite VC-dimensional case. This generalizes
and simplifies results from previous works. Using these tools, we give a new deterministic algorithm
for computing the convex hull of n points in R?. The algorithm is obtained by derandomization of
a randomized incremental algorithm, and its running time of O(nlogn + nLd/zJ) is optimal for any
fixed dimension d > 2.

Key words. convex hull, deterministic optimal algorithm

AMS subject classifications. 52B55, 68Q20

1. Introduction. During the last decade, randomized algorithms have been pro-
posed as an efficient and elegant solution to several geometric problems [12, 13]. De-
randomization aims at producing deterministic algorithms whose running times are
within a constant factor of the running times of their randomized counterpart [9,
19, 23]. This process has successfully produced several geometric algorithms whose
complexities are the best among those of the existing deterministic algorithms for the
problems considered [5, 6, 7, 10]. For instance, the problem of computing the con-
vex hull of n points in R? is solved deterministically in [7] in time O(nl%/2]) for any
d > 4, which is optimal. In section 3, we describe a new deterministic algorithm for
computing the convex hull of n points in R?. Its running time of O(nlogn + nl?/2])
is optimal in any fixed dimension d. It uses a method similar to the one given in
[7], but it is arguably simpler. Furthermore, there is no need to treat the two and
three-dimensional cases separately, as is done in [7].

Deterministic constructions of e-nets and e-approximations [10, 18, 20, 21] play a
key role in the derandomization of probabilistic geometric algorithms [5, 6, 7, 9, 10, 19],
and they also do for our convex hull algorithm. A range space & = (X, R) is a pair of
a set X and a collection R of subsets of X [17]. An e-approzimation for ¥ is a subset
A of X such that

‘ |R| |RNA| ‘
- — | <fc
|X| Al |~
for every set R in R. To be an e-net, A need only intersect every set R in R whose
size is greater than ¢|X|. It is a classical result [17] that the existence of small
subsets having these properties is linked to the finiteness of a parameter of the set
system, called its VC-dimension. Namely, if the range space has finite VC-dimension

*A preliminary version of this paper appeared in Proc. 34. IEEE Symposium on Foundations of
Computer Science (1993) pages 400-409.

fINRIA Sophia Antipolis, BP. 93, 2004 Route des Lucioles, 06902 Sophia Antipolis Cedex, France.

iDepartment of Computer Science, Princeton University, Princeton, NJ 08544, USA. Supported
by The Geometry Center, University of Minnesota, an STC funded by NSF, DOE, and Minnesota
Technology, Inc.

$Department of Applied Mathematics, Charles University, Malostranské nam. 25,
118 00 Praha 1, Czech Republic. Supported by Humboldt Research Fellowship and by Czech
Republic Grants GAUK 193,194 and GACR 0194.

YSupported by NSF Grant CCR-90-02352.

2 Hervé Brénnimann, Bernard Chazelle and Jifi Matougek

d, there exists an e-net of size O(de~!log(de~!)), and an s-approximation of size
O(ds~2log(de™1)) (see section 2).

In geometric applications, it is common to use the range space (X, R) consisting
of a set X of hyperplanes and the collection R of all the subsets of X consisting
of the hyperplanes stabbed by a line segment. By definition, an e-approximation
allows to estimate how many hyperplanes separate any two points (with a level of
accuracy depending on ¢). It was shown in [6] that an e-approximation can also be
used to estimate how many vertices of the arrangement formed by X lie within a given
simplex: this feature is essential in the recent work on point location [6], convex hull
[7], and weak e-nets for convex sets [§].

We generalize this idea by introducing the notion of a product range space. We
discuss the problem of sampling such a space, and we explain the apparent paradox
that product range spaces can be sampled even though they may have unbounded
VC-dimension. We prove that the product of finite VC-dimensional range spaces
can be sampled almost as efficiently as the original spaces, meaning that they admit
e-approximations and e-nets of size polynomial in 1/e and, most importantly, inde-
pendent of the size of the range spaces. We specialize these sampling theorems to
a geometric setting and we build tools for numerically integrating functions defined
over the vertices of an arrangement of hyperplanes.

We also introduce the notion of sensitive sampling. Formally, we say that a subset
A C X is a sensitive e-approzimation for ¥ if

IB RO A “(1Bl)
ORI BN RS

for every set R in R. The bound on the right hand side may appear strange,
but it arises naturally from what we expect of a random sample. Observe that a
sensitive e-approximation is at once both an e-approximation and an e2-net. For
a set system with finite VC-dimension d, we show the existence of a sensitive e-
approximation of size O(de 2 log(ds—1)). We also modify an algorithm of [10] for
computing e-approximations so that it computes sensitive e-approximations. If the
underlying range space ¥ has VC-dimension d then, under standard computational
assumptions given in section 2, a sensitive (1/r)-approximation of size O(dr? log(dr))
can be computed in time O(d)3?r>¢log®(dr)|X|. This gives an algorithm for comput-
ing a (1/r)-net of size O(drlog(dr)) for (X,R) in time O(r®log? r)|X| time, which
significantly improves on the bound O(r2?log®)| X | given in [10].

In a preliminary version of this paper, we had also claimed an O(nlog® n)-time
algorithm for deterministically computing the diameter of n points in 3-space. This
part contained an error (kindly pointed out to us by E. Ramos). In the meantime,
a simpler deterministic algorithm with the same time complexity was found by Am-
ato, Goodrich, and Ramos [3]. They use ideas akin to ours, but they use sampling
over a different geometric range space (X, R') that contains ours: given a set X of
hyperplanes, a range in R’ consist of all the hyperplanes of X that intersect a given
simplex of any dimension. We refer to their paper for a correct description of the
algorithm. For further developments in the derandomization of geometric algorithms,
we also refer to [4, 5].

2. Terminology and Sampling Theorems. In this section we consider general
range spaces. First we review standard definitions and facts [17, 20]. A range space is
a set system (or equivalently a hypergraph), whose elements are called points and sets

Products, Sensitive Sampling, and Derandomization 3

are called ranges. Let ¥ = (X*,R*) be a (possibly infinite) range space. If Y C X*,
we denote by (Y, R*|y) the subspace induced by Y, where R*|y = { RNY : Re R*}.
A subset Y C X* is shattered (by R*) if R*|y = 2¥. The maximum size of any
shattered subset of X* is called the VC-dimension of X; note that it can be infinite.
We define the shatter function ws, of ¥ as follows: 7s(m) is the maximum possible
number of sets in the subsystem of (X*,R*) induced by any m-point subset of X*. It
is well-known that the shatter function of a range space of VC-dimension d is bounded
®(m,d) = () +---+ ("), which is less that m? +1 (see for instance [2]). Conversely,
if the shatter function is bounded by a polynomial, then the VC-dimension is bounded
by a constant.

In practice, we usually deal with finite subsystems of a range space. Let X be a
finite subset of X*, and let R be a shorthand for R*|x; by abuse of terminology we
still call the pair (X, R) a range space. As we mentioned earlier, given any 0 < ¢ < 1,
a subset A C X is called an e-approzimation for the range space (X, R) if

‘@_ IRN Al
| X| Al |~

for each R € R. A subset N C X is an e-net for (X,R) if |R| > £|X| implies that
RN N # (. An c-approximation is also an e-net but the converse is false in general.

For instance, consider the range space (X*,R) mentioned in the introduction,
where X* is a set of hyperplanes in R? and R* is the collection of all the subsets of
X* consisting of the hyperplanes stabbed by a given line segment. Pick a finite subset
X of m hyperplanes. Then it can be easily verified that the subsets of X* consisting
of the hyperplanes stabbed by two line segments are identical, if the endpoints of
the segments can be paired up so that a pair lie in the same cell of the arrangement
of X. There are O(m?) such cells, therefore the shatter function 7y (m) of (X*,R)
is bounded above by O(m??). This in turn implies that the range space has finite
VC-dimension.

Efficient deterministic constructions of e-nets and e-approximations were given in
[20] for the particular range space described above; see also [10] for slightly simpler
proofs that are expressed in terms of general range spaces. Let d be the VC-dimension
of &, or for that matter, any constant such that ms(m) = O(m?). We assume that
the range space admits a subsystem oracle of dimension d, meaning that, given any
Y C X, all the sets of R|y can be computed explicitly in time O(|Y|?*!). This
assumption is justified in practice, as can be checked for instance on the range space
given above: one may simply construct the arrangement of Y, choose a point inside
each cell, and each pair of points yields a segment s and a range R of the hyperplanes
stabbed by s; moreover, each range is enumerated exactly once in this process. Given
any 7 > 1, one can in time O(d)?*r??log®(dr)|X| compute a (1/r)-approximation for
(X, R) of size O(dr? log(dr)) and a (1/r)-net of size O(dr log(dr)). These time bounds
are linear in | X| dif r is a constant.

2.1. Sensitive Approximations. Let ¥ = (X,R) be a range space of di-
mension bounded by a constant d. It is known that if one wants to get a (1/r)-
approximation for ¥, it suffices to pick a random sample A C X of size O(r?logr).
Such a sample, however, has still better approximation properties if we are only in-
terested in small ranges. The fact that A is, with high probability, a (1/t)-net for &
with t being almost r2 can be seen as a manifestation of this phenomenon. If we look
at the dependence of the error with which a random sample approximates a range
on the size of that range, we arrive at the following definition. A subset A C X is a

4 Hervé Brénnimann, Bernard Chazelle and Jifi Matougek

sensitive e-approximation for ¥ if

IR |RnAl| </ [IR]
Ll B < Z ki
‘|X| 4] <5(|X|+E)’

for every set R € R. In [5], it is shown that a random sample of size O(dr? log(dr)) pos-
sesses the sensitive (1/r)-approximation property. It follows from the definition that a
sensitive e-approximation is an e-approximation as well as an £2-net. By this observa-
tion the next result gives an immediate improvement over the O(d)3%r>? log®(dr)|X|-
time construction of a (1/7)-net given in [20], while at the same time keeping the
same size bound.

THEOREM 2.1. Let (X, R) be a range space with a subsystem oracle of dimension
d. Given any r > 1, one can in time O(d)**r**log®(dr)|X| compute a sensitive
(1/7)-approzimation for (X,R) of size O(dr? log(dr)).

COROLLARY 2.2. Let (X,R) be a range space with a subsystem oracle of dimen-
sion d. Given any r > 1, one can in time O(d)3*r%log®(dr)|X| compute a (1/r)-net
for (X, R) of size O(drlog(dr)).

Proof. Proof of Theorem 2.1:

We begin with a restriction of Theorem 2.1 to the case where ¢ is very small. We
then adapt a recursive construction given in [10] to generalize this result and establish
the theorem.

LEMMA 2.3. Let (X,R) be a range space of finite VC-dimension, where | X| =n
is even and large enough, and let m = |R|. In O(nm) time it is possible to compute
a sensitive e-approzimation for (X,R) of size n/2, for e = 15/In(6m + 6)/n.

Proof. We select a random sample A; C X of expected size n/2 by picking
every element independently with probability 1/2. Tail estimates show that A; (or its
complement X \ A;) has the sensitive e-approximation property with high probability,
to be made precise below. To obtain an approximation of size exactly n/2, we then
show how to trim some elements from the bigger of A; and X \ A; while keeping the
trimmed set a sensitive e-approximation.

Given 0 < p < 1, let z1,...,z, be independent random variables, each equal to
p — 1 with probability p, respectively to p with probability 1 — p. The following tail
estimate can be found in [2]:

Prob [‘imz
i=1

Select a subset Ag C X by picking each element of X with probability p. Define an
auxiliary function

> A ‘ < 2e~ 2%/,

A(z) = /xln(6m + 6)/2

and let R' = RU{X}. Given R € R’, the previous tail estimate indicates that, for
our choice of A, the following holds with a probability greater than 1 — 1/(3m + 3):

(2.1) IR0 Ao| = plRI | < A(RD).
Assume that Ay satisfies (2.1) for each R € R’. We call such a subset p-good for

(X,R'): note that a random A is p-good with probability at least 2/3. Set p = 1/2
and let A; be the larger of the two sets Ag and X \ Ao. Trivially, A; consists of at

Products, Sensitive Sampling, and Derandomization 5

least n/2 elements and is p-good. As an effect of adding X as a range, A; has also
little more than n/2 elements, namely at most n/2 + A(n).

We now want to remove some elements from A; so that it has exactly n/2 elements
(this exact halving will be convenient in the forthcoming algorithm). If our goal were
an e-approximation only, we could remove an appropriate number of elements quite
arbitrarily (as it is done in [20]). Removing arbitrary elements could, however, destroy
the sensitive e-approximation properties for small ranges, so we choose the elements
to remove more carefully — we use a suitable random sample from A;.

Let ¢ = 4A(n)/n; note that the finite VC-dimension hypothesis implies m =
n%M) so g < 1 for n large enough. With probability at least 2 /3, a random sample
As C Ay (with each element chosen independently with probability ¢) is a g-good
subset for (A1,R'|4,). For such an Aj, since A; = X N A; is a range in R'|4,, we
have

n n
ol > alAs] = AlAL]) 2 57— An) 2 A(n) > |41] - 3,

and therefore we can pick [A;| — n/2 elements in Ay (any of them) and remove them
from A;, thus producing a subset A C X of size n/2.

Note that our probabilistic construction of A can be derandomized in a straight-
forward fashion by using the method of conditional probabilities of Raghavan and
Spencer [2, 23, 24]. With a little care, this can be accomplished in O(nm) time: see
[3, 20] for a similar construction.

It remains to show that A is a sensitive e-approximation for (X, R), for a choice

of e = 154/log(6m + 6)/n. We have

\|RnA|—|—§"g 1R A| - B0 Ay |+]|R0 4] - |R|

<|RNAsl+A(R|) <

g4y 0 Bl +20(R) < T (g 4 2)a(R).

As g < 1 for n large enough and ¢|R|/2 = 2|R|A(n)/n < 2A(|R|), we obtain ||R n
A - |R|/2‘ < 5A(|R|), and hence,

[RNA| |R| IRI
- = —5A R|) R|In(6m + 6 2<
B (7) = 2 iRTEm v 672 < 5/
which proves lemma, 2.3. a

Sensitive approximations can be refined (Lemma, 2.4) and composed (Lemma, 2.5)
in a fashion similar to standard e-approximations [10].

LEMMA 2.4. If A is a sensitive e-approzimation for a range space (X, R) and B is
a sensitive 6-approzimation for (A, R|a), then B is a sensitive (&+ 26)-approzimation
for (X, R).

Proof. Consider a range R € R. For short, we write px = |R|/|X]|, pa =
|[RNA|/|B|, pg = |RN B|/|B|. We have

€)
X — PB| > X — PA A — PB| > 35 X - A
lox —pB| < lpx — pal +p p|<2(\/p +€)+2(\/p + 6)

6 Hervé Brénnimann, Bernard Chazelle and Jifi Matougek

by the definition of a sensitive e-approximation. We estimate

VIR <\ fox+ 5 (Vix o) < B+ |5 (Vi + o) < v+ LS

where we used the AG-mean inequality vab < (a + b)/2 in the last step. With this
estimate, we calculate

lox — pal < & (ox +2) + (A+ a+6) 2 (Jpx + < +26).
Since this is true for any R € R, the proof is complete. d

LEMMA 2.5. Let (X,R) be a range space and let {X;}1<i<m be a partition of
X into m equal-size subsets. If A; is a sensitive e-approzimation for (X;,R|x,) and
all the A;’s have the same size, then A = U;A; is a sensitive e-approzimation for
(X,R).

Proof. Consider any range R € R. For short, we put px, = |R N X;|/|Xil,
pa, = |[RNX;|/1X:|, px = |R|/|X], and pa = |[RN A|/|A|. Since the X;’s are disjoint,

we have px = L 5" px, and ps = % >, pa,, where the factor % accounts for

m

the difference in the denominators of px and the px,’s. Therefore,

lpx — pal < _Z|PX1
=1

(me) < S (Vhx +2),

where the last inequality follows by the concavity of the square root function. O

We are now ready to build a sensitive (1/r)-approximation, for any value of r.
The algorithm is almost identical to the construction of nonsensitive e-approximations
given in [10]. We begin with a simplifying observation. If n = |X| is not a power of
two, let us pad X by adding up to n — 1 artificial points so as obtain a power of two.
This gives us a new range space &' = (X U Xy, R U{Xp}); note that the set Xy of
artificial points is added as a range. Let A be a sensitive (¢/6)-approximation for this
new range space. It not hard to show that B = X N A is a sensitive e-approximation
for (X, R). Here are the details: Given any R € R, we have

|R| |RﬁB|‘ |XUX0| ‘ |R| 3 |RN B| . | X|
|X| | X U Xo| | Bl | X U Xo|
R |RnB|| |[RnB|| |X| B
2.2 2 — _—
2.2) Qwuxa * XUX |4

Using the sensitive (¢/6)-approximation property of A, we get that the difference in
the first absolute value is at most 5 (\/ |R|/|X|+ 5/6) < ¢/6, and so is the difference
in the second absolute value. Substituting this and the trivial estimate |[RNB|/|B| < 1
into (2.2), we obtain
|[RNB| _ |R|
1Bl IX]

Substituting this improved upper bound into (2.2) then yields

R |[RNB|| _ e/ [|R]
IR _IROBI| e [IAL)
1X| |B] 2\ X]

Products, Sensitive Sampling, and Derandomization 7

which shows that B is a sensitive e-approximation. This allows us to assume that n
is now a power of two.

We begin with one piece of terminology. Applying Lemma 2.3 to an even-sized
subset ¥ C X is called halving Y. Note that this results in a sensitive h(|Y])-

approximation, where
h(t) = 154/log(6t¢ + 6)/t.

It is easy to see that if t = Q(dlogd), we have h(t) < 1 and h(2t) < 3h(t). Moreover,
it is also not hard to show that h(dr?log(dr)) = O(1/r) for any r > 1. We are now
ready to describe the algorithm for constructing a sensitive (1/r)-approximation for
(X, R).

To begin with, we divide up the set X into subsets of size 2* (for some appropriate
parameter k), and we associate each subset with the leaves of a complete binary tree.
Next, we process the tree bottom-up level by level. At each internal node, we merge
together the two sets associated with its children and, if the level of the node is not
divisible by d + 2 (leaves being at level 0), we halve the union. The resulting set is
associated with the node in question. Once the tree is completely processed, i.e., the
set associated with its root has been computed, we say that the first phase is over,
and we move on to the second phase. We take the set associated with the root and we
keep halving it until its size is equal to c;dr?log(dr), for some appropriate constant
c1 > 0.

The union of all the sets associated with the nodes at level i constitutes a sensitive
g;-approximation for some e;, which we call the error at level i. During the first d+1
levels, each individual set remains of size 2* (since halving and merging alternate).
Note that halving is applied to sets of size 2¥*!. By Lemmas 2.4 and 2.5, the total
error after the first d + 1 levels is 2(d + 1)h(2%*1). At level d + 2, no additional
error is incurred since we skip the halving step. The next d + 1 steps are similar to
the first batch of d + 1, except that the size of the individual sets has now doubled:
thus, the total error incurred up to level 2d + 3 is 2(d + 1) (R(2¥+1) + h(2%+2)). From
level to level, the error follows a geometrically decreasing series, so the total error in-
curred at the end of the first phase is O(d) x h(2F). If we choose 2% = cod3r? log(dr),
for some constant ¢, large enough, this makes the error at most 1/2r. In the sec-
ond phase, the error is still bounded by a geometrically increasing series whose last
term is O(h(c;dr?log(dr))), meaning that the additional error contributed by the sec-
ond phase is O(h(cidr?log(dr))). Choosing c; large enough keeps this error under
1/2r. Combining the two phases shows that the final set, which is of the desired size
O(d)r? log(dr), is a sensitive (1/r)-approximation for (X, R).

What is the running time of the algorithm? In the first halving step, we apply
Lemma, 2.3 to | X|/2* sets of size 2¥ = O(d?)r? log(dr) each; the total time needed for
these operations is O(d)3?r??log®(dr)|X|. In the next d + 1 halving steps, the sets
remain of the same size but their numbers decrease geometrically. Thus, the cost of
processing the first level is dominant. At level d + 2, the size of each individual set
doubles, which increases the cost of applying Lemma 2.3 by a factor of 2¢*!. But the
(d + 2) previous merging steps in the previous round have reduced the total number
of sets by 2912, so the running time of the following round is at most half of the
time for previous round. Similarly, in the second phase, the running time follows a
geometrically decreasing sequence at each step. Thus, the total running time of the
algorithm is O(d)3¢r2¢1og?(dr)| X |, and the proof of Theorem 2.1 is complete. u|

8 Hervé Brénnimann, Bernard Chazelle and Jifi Matougek

2.2. Product Range Spaces. Let ¥; = (X,R) and X5 = (Y,S) be (finite)
range spaces. We define the product range space £1 ® X5 to be (X x Y, 7T), where
T consists of all subsets T C X x Y such that all the cross-sections S, = {y €Y :
(z,y) € T} are sets of S, and similarly, all R, = {z € X : (z,y) € T} are sets of R.

To illustrate this definition, consider the bichromatic arrangement of n red and
n blue lines in R?. Ranges of the blue (resp. red) space consist of blue (resp. red)
lines that intersect a given line segment. The product ¥; ® X5 of the blue space
by the red space is a range space (Z,7), where Z consists of all the bichromatic
intersections. A range is a subset 7' of Z such that the intersections in 7' that are
incident upon any given line appear consecutively (among those of Z). For example,
the bichromatic intersections that fall inside any convex set constitute a range. This
suggests that the product of finite VC-dimensional spaces might not be itself of finite
VC-dimension. Indeed, this can best be seen by observing that in our example, any
bichromatic pairing of the lines gives a collection of n bichromatic intersections, and
that any of its 2™ subsets is a valid range!

THEOREM 2.6. Let X1 = (X, R) and Iz = (Y, 8) be two range spaces. If A (resp.
B) is a 6-approzimation (resp. e-approrimation) for Xy (resp. Xa), for 0 < b,e, <1,
then A X B is a (6 + €)-approzimation of ¥1 ® Xa. It is worth observing that
even though an e-approximation of a product space is of size O(e~*log?e™!), its
representation as a set product has size only O(¢2loge™1).

A range space of infinite VC-dimension has, for infinitely many n, a shattered
subset A of size n, and clearly an e-approximation for the subspace induced by such
A must be of size at least (1 — ¢)n. This might seem to contradict Theorem 2.6.
To explain this apparent paradox, we must observe that in general a subspace of a
product range space is not itself a product range space. In particular, even though
the ground set contains very large shattered subsets, the subsystems induced by these
subsets are not product range spaces: therefore, the fact that they cannot be sampled
has no bearing on Theorem 2.6. In fact, the proper definition of a subspace in the
context of product range spaces would be the product of subspaces of standard range
spaces.

Proof. Proof of Theorem 2.6:

Given two range spaces of finite VC-dimension, £; = (X,R) and 2 = (Y, S),
recall that the product £ ® s is defined as (Z,7), where Z = X xY and 7 consists
all the subsets 7' C Z such that for any z € X and y € Y, the sets T'* and T}, are
ranges of S and R, respectively, where

T*={y: (z,y) €T},

T,={z : (z,y) €T}.

As we observed, ¥; ® X5 usually does not have finite VC-dimension. For example,
if ¥y and Xy are the (infinite) range spaces defined by two secant lines and their
intervals, the product space ranges include all the convex regions of the plane.

It is helpful to use a slightly different formulation of an e-approximation. Let
Probx be a probability distribution on X, and Probx[R | A] be the conditional prob-
ability that a random element in X belongs to R, given that it is in A. Thus, for A
to be a d-approximation for Xy, it is equivalent to say that, for every R € R,

|Probx[R|A] — Probx[R]| < 6.

Products, Sensitive Sampling, and Derandomization 9

A simple technical observation will greatly simplify our discussion below. In essence,
it is nothing else than Fubini’s theorem and asserts than we can sum the probabilities
first on x then on y, or first on y then on xz, and obtain the same result. To put it in
mathematical notation, given any A C X, B CY, and T € 7, we have

_ [Ex [Proby [T*|B]|A]
Probz [T|Ax B} = {Ey [Probx [T, | A]| B]
where Ex[-|A] denotes the expectation for a random element of X given that the
element belongs to A, and Ey [-|B] the analogous conditional expectation on ¥ . To
prove Theorem 2.6, we apply this observation twice. Recall that A (resp. B) is a
d-approximation (resp. e-approximation) of X1 (resp. Xs).

Proby [T'|A x B] = Ex [Proby [T*|B]| A]
=Ex [Proby [T?]| A]+ ¢’
= Ey [Probx [Ty | A]]+ ¢’
= Ey [Probx [T,]] + 6" +¢'
=Probyz [T]+6 +¢',

where |¢'| < ¢, |¢'| < é, which completes the proof of Theorem 2.6. a

A similar result exists for sensitive approximations but the formulas are a lit-
tle more complicated. It is easy to show, however, that the product of a sen-
sitive -approximation with a sensitive e-approximation is a sensitive v/2(§ + &)-
approximation [5].

Finally, we should note that the product described here is associative. We can
thus take the d-fold product £ ® --- ® X of a range space ¥ = (X,R). Theorem 2.6
may be extended straightforwardly.

COROLLARY 2.7. If A is an e-approximation for a range space X, then the d-
fold Cartesian product A% is a (de)-approzimation of the d-fold product £ ® --- ®
3. For sensitive approximations, the theorem can be extended similarly. It is easy
to show that the d-fold product of a sensitive s-approximation is a sensitive (d¢)-
approximation [5].

Let us show for instance how to use this range space product to estimate the
number of vertices of an arrangement of hyperplanes inside a convex region. The
range space & = (X, R) under consideration here is the one described above: given a
set H of hyperplanes in R?, R is the collection of all the subsets of H consisting of the
hyperplanes stabbed by a given line segment. We let £¢ be the d-fold product of . Of
particular interest is the subset H(¥) of H? consisting of the d-tuples of hyperplanes
of H in general position: such d-tuples intersect in a unique point of R? which is a
vertex of the arrangement of H. Let us denote by V(H) the set of these vertices. For
a convex region o (not necessary full-dimensional), consider the arrangement of the
intersections of hyperplanes of H with the affine hull of ¢, and let V(H, o) be the set
of vertices of this arrangement lying inside o.

THEOREM 2.8. Let H be a set of hyperplanes in general position, and A be an
e-approzimation for ¥ = (H,R). Then, for any conver region o of dimension j in
R?,

V(H, o)l _ V(49| .
|H|’ 14 1=

10 Hervé Brénnimann, Bernard Chazelle and Jifi Matougek

Proof. This theorem was already shown in [6] for the particular case of simplices.
The proof in terms of range space products is particularly simple. We may assume
that o is d-dimensional, otherwise the result may be proved by considering the j-fold
product of X.

Let (h1,...,hq) be a d-tuple in H@_ and let f(h1,...;ha) = hiN...N hg be
the corresponding vertex of V(H). Note that because the hyperplanes are in general
position, f is a d! to one map.

Given any convex region o, the inverse image T = f~1(V(H,)) is a range in X%
Indeed, it suffices to prove that its sections T(ihl,..., ha) consisting of the hyperplanes h
such that (hi,...,h;—1,h, hiz1,...,hq) is in T, are exactly the hyperplanes stabbed
by some segment s in R?. Note that N;;h; is a line in RY, and that it intersects o
along such a segment s. Moreover, a d-tuple (h1,...,h;—1,h, hit1,...,hq) is in T if
and only if h is stabbed by the line segment s.

Finally, we note that the size of T = f~'(V(H,0)) is d! times the number of
vertices of V(H, o). Using corollary 2.7, we conclude that

V(H.0)| _[V(4,0)| _ de
|H| |4

A similar result can be proved for sensitive approximations, with slightly worse
approximation bounds. For instance, it is proved in [5] that

V(H)| V(A _ 4 [[V(EH)
_ < — _— .
Y ap |2 L

for a set H of hyperplanes in general position, an e-approximation A for ¥ = (H,R),
and any convex region ¢ of dimension j in R?.

3. Computing Convex Hulls. We describe a new deterministic algorithm for
computing the convex hull of n points. Its running time of O(nlogn + nl%/2l) is
optimal in any fixed dimension d. Our strategy is similar to the derandomization
scheme used in [7]. In particular, it is still built around Raghavan and Spencer’s
method of conditional probabilities [2, 23, 24]. The main difference is in the underlying
probabilistic model and the maintenance of approximation tools. The result is an
algorithm that is arguably simpler.

The convex hull problem is reducible, by duality, to computing the intersection of
n halfspaces. This problem can be solved in optimal expected time by a randomized
incremental algorithm [13]: the halfspaces are inserted in random order, and the
current intersection is maintained after each insertion.

We aim at derandomizing such an algorithm. For technical reasons, we use a
slightly different randomized algorithm as a basis, to be described below.

3.1. Notation and preliminaries. Let H be a fixed collection of n hyperplanes
in R?, and let O (the origin) be a given point not lying on any hyperplane of H. Using
simulation of simplicity if necessary [16], we may assume that the hyperplanes of H
are in general position. We also may enclose R? in a box which contains all the
vertices of the arrangement of H. The set Hy of hyperplanes bounding this box is
added to H. In the sequel, when we let R be a subset of H, we assume that R is a
subset of H that contains Hy. This ensures that we always deal with polytopes and
not polyhedra, and thus clears the issue of unboundedness.

Products, Sensitive Sampling, and Derandomization 11

Let R be a subset of H. We let R" denote the closure of the cell enclosing O of the
arrangement of R. In the sequel, the word ‘simplex’ always means a relatively open
simplex. Similarly, the word ‘face’ always means a relatively open face of a polytope
or of an arrangement.

Given a simplex s, let R|, denote the subset of hyperplanes of R that intersect s
but do not contain it.

Given a polytope P (such as R™), we let V(P) denote the set of vertices of P.
If R is a set of hyperplanes, we let V(R) be the set of vertices of the arrangement of
R. For a simplex s (not necessary full-dimensional), consider the arrangement of the
intersections of hyperplanes of R with the affine hull of s, and let V(R, s) be the set
of vertices of this arrangement lying inside s.

For a vertex v € V(H), we define the conflict list of v, denoted H|p,, to be the
set of hyperplanes separating v from the origin. The level of v, denoted by n,, is the
size of H|p,. Similarly we define the conflict list for a simplex s, denoted by H|o,,
as the set of hyperplanes of H intersecting the relative interior of the convex hull of
s U {O}. We note that the conflict list of a simplex is the union of the conflict lists
of its vertices. We set ny = |H|p,| (note that but n, and |H|,| may be different for
simplices s on the boundary of R").

In our algorithm, we use a special kind of triangulation for R", called the geode of
R and denoted by G(R). Formal definitions and important properties are given in [7].
The geode consists of a triangulation of the boundary of R™ along with a central lifting
of that triangulation towards the origin O. The triangulation is defined recursively
and is similar to the so-called bottom vertezx triangulation [11]. To triangulate a face
f of dimension k of OR", we first triangulate its faces of dimension < k — 1 and then
we lift these triangulations to the apez of f, where the apex is the vertex contained
in this face with the smallest conflict list (ties being broken using some systematic
rule, such as taking the vertex with lexicographically smallest coordinate vector). The
resulting geode contains O(nl?/2]) simplices, and the choice of the apex leads to the
following property.

LEMMA 3.1 ([7]). For any integer c, and any R C H, there is a constant b = b(c)
such that for any ¢’ < ¢, we have

(3.1) Yoni<bh > oag

s€G(R) vEV(RN)

Proof. The proof is the same as in [7], but the result there is stated for H|, instead
of ns (even though the proof itself is actually stated in terms of ns). We recall it for
completeness.

We let f denote the closure of a face f of R". We prove by induction that, for

any k-face of R, the sum 3- g g)n7né, denoted Ay, is at most

B2+ > ng.

veV(RMNF

The lemma follows from the case k = d, where f is the interior of R™.

The case k = 0 is immediate, as the 0-faces of R" are precisely its vertices.
Assume the induction hypothesis is true for some £k — 1 < d. We observe that, by
choosing the apex of f as the lifting vertex for the geode (or the origin, if k¥ = d),
Ap <(2°+1) 3, Ay, where g ranges over all the (k — 1)-faces of R" incident upon f.
The term 1 comes from the contribution of the faces incident upon f, while the term

12 Hervé Brénnimann, Bernard Chazelle and Jifi Matougek

2¢ accounts (conservatively) for the effect of lifting g toward the apex w (or w = O
if k = d; note that n,, < n, for any s contained in the closure of g, by definition
of w). By our general position assumption, a vertex cannot belong to more than k
(k — 1)-faces, so we cannot count it more than k times in the above sum ranging on
g. Substituting for A, with the induction hypothesis gives the result. O

In our algorithm and analysis, various constants will appear (dependent on d, as
a rule). To avoid complicated implicit dependencies between them, we express most
constants as functions of two basic parameters C' and c¢. For all estimates to work,
one first chooses ¢ as a sufficiently large constant, and then C as a still much larger
constant. The O() notation in the proofs may hide constants dependent on ¢ (and
d), but not on C; where the hidden constant does depend on C, we use the O¢g()
notation.

We need an estimate for the higher moments of the binomial distribution:

LEMMA 3.2. Let X = X[l,n] = X1+ Xo+...4+ X,, where the X; are independent
random variables, each attaining value 1 with probability p and value 0 with probability
1 —p. Then for any natural number ¢, E[X¢] < (¢ + np)¢. This must be part of
the folklore, but since we haven’t discovered an explicit reference, we include a short
proof.

Proof. We prove more generally that E[(X + a)°] < (¢ + np + a)°, for all natural
numbers n, ¢, and a. The inequality is clear if n = 0, or ¢ = 0,1. Assuming this is
true for some ¢ and for all n and a, we derive by induction that

E[(X +)™ =) pE[(X +a)°|X; = 1] + aE[(X + a)°]
i=1
= npE[(X[1 n-1] + @ +1)°] + aE[(X + a)]
<nplc+(n—1Dp+a+1)+alc+np+a)°
<(c+1+np+a)th O
3.2. The underlying randomized algorithm. In our underlying randomized
algorithm, hyperplanes are inserted in rounds. In the first round, a suitable con-
stant number ¢ of hyperplanes are chosen (arbitrarily, not necessarily at random) and
inserted. Suppose that after the (j — 1)st round, a set R C H has been inserted,
|R| = r. We assume a suitable representation of G(R), the geode of R. We also keep
the conflict list of every simplex s € G(R).
In the jth round, we fix a probability

_2 T
T 3n—r

p

and we choose a random sample S from H \ R by picking each hyperplane of H \ R
into S randomly and independently with probability p. For each simplex s € G(R),
we compute the portion of the arrangement of S lying within s, then we isolate the
portion of (RU S)™ within s from it, and we glue these pieces together, obtaining the
facial lattice of (RU S)". Using the conflict lists of the vertices, we finally compute
the geode G(R U S) and the conflict lists of its simplices.

The expected number of hyperplanes in S is %r, thus the size of R increases
geometrically between rounds and the expected number of rounds is O(logn). When
the number of hyperplanes in R exceeds n/c, we insert all the remaining hyperplanes
of H\ R (in a manner similar to adding a new sample S) and finish.

Products, Sensitive Sampling, and Derandomization 13

The work in the jth round of this algorithm is at most proportional to

(3.2) > (1Si041* +ms)

s€G(R)

(see also [7] for a more detailed description of the required computations and of their
time complexity). Intuitively, we should expect the sizes n; of the conflict lists to
be about n/r and each S|p, to have about constant size. This is not quite true
of all simplices in the randomized algorithm (and even less so in the derandomized
version). However, as was observed by Clarkson in a somewhat different context [12],
the averages of |S|0,|° and of (n,)¢ over all simplices of G(R) are expected to be
bounded by a constant in the randomized algorithm, for any constant ¢, and this is
what we will also aim at in the derandomized version. From this point of view, we
might appropriately call the quantities |S|p,| and n, = quasi-constant. To simplify
the notation, we introduce the symbols

QS:nS£+17
n
7‘3=|S‘OS|+1.

The basic property of a quasi-constant quantity x, is that its moment of order c is
Y ecq(r) e = Oc(1)rl#/2] | for a constant C that will be determined later. Note that
this also implies the same property for the moments of order ¢’ < ¢, by a routine
application of Holder’s inequality.

The rest of this section is devoted to proving that the above quantities g5 and r,
are expected to be quasi-constant.

Following [7], we say that the geode of R is a semicutting if

ne < N oplar) (Y
= ()

Again, a routine application of Holder’s inequality shows that

> wg <crr (M)

veV(RN)

for any 0 < ¢’ < ¢. Note that the definition of semicutting involves only the conflict
lists of the vertices and not of the simplices of the geode. This has no bearing on the
analysis, however; recall from Lemma 3.1 that the particular triangulation of R" we
use, the geode, is chosen in such a way that we also have

domi ong

s€G(R) veV(RN)

for any 0 < ¢’ < ¢ and for some constant b = b(c¢'). Note that this implies that
Y ecd(R) ¢¢ = Oc(1)rl4/2l and hence that ¢, is quasi-constant.

Inductively, we assume that the geode of R built in the previous rounds of the
algorithm is a semicutting. For the sample S, we postulate the following conditions:
Cl. r/2<|8|<r.

C2. Y ,cgm s < Corla2l
C3. The geode of RU S is a semicutting.

14 Hervé Brénnimann, Bernard Chazelle and Jifi Matougek

As we will see shortly, the randomized algorithm yields these properties with high
probability®.

Corresponding to these properties, we introduce three functions measuring the
quality of the sample S. We put

1 2 \?
RS =3 (199-3r)

1 c
Fy(S) = 02y La/2] Z Ts)
s€G(R)

1
F5(8) = >
veV((RUS)M)

Further we define the quantities
&; = EF;(S)

for j = 1,2,3, where the expectation is taken with respect to a random choice of S
(it implicitly depends on R, which we consider fixed). We put £ = &1 + > + E3. The
quantities £ and &; will be referred to as energy (for reasons more apparent later).
We now bound £.

LEMMA 3.3. We have & < 1/6.

var |S n—r
Proof. Tt is immediate that & = 151 =

1
4 4r)p(l_p)ﬁg- a
LEMMA 3.4. If the geode of R is a semicutting, then £2 = O(1/C).
Proof. Consider a simplex s € G(R). The contribution of every hyperplane
h € H|ps to |S|0s| is a0/1 random variable attaining value 1 with probability p, and so
by Lemma 3.2 we have E [S|0,|° < (c+p|H|0s])¢ < (c4+pns)° = O(¢S) . Summing over
all the simplices s € G(R) shows that the expectation of 3 5y 75 = O(X,cq(r) €5)-

Using (3.1), the latter expression is O(Crl%/2]), which proves the lemma. O

The next lemma concerns £3. Unlike the previous lemma, it does not assume that
the geode of R is a semicutting, thus, no matter how ‘bad’ R might be, a random
S guarantees that the geode of RU S is a semicutting (with high probability). This
robustness property will be crucial: in the derandomized version, the computed R
won’t presumably be as good as a true random sample would be, but the error will
not propagate between rounds, as each new round alone would suffice to produce a
semicutting for any R provided that S is random or imitates a random sample well
enough.

LEMMA 3.5. Let R C H be arbitrary, ¢ < |R| =1 <n/c, and let S be a random
sample from H\ R obtained by choosing each hyperplane independently with probability
p. Then

1 dy Ny, C
(3.3) &= > pRA-p)ag=0(1/C),
veV(H)NR"

where d, denotes the number of hyperplanes of H \ R passing thru v.

1The reader might wonder why we look at high moments when the complexity of the randomized
algorithm only involves ns and the dth power of rs. The reason is that in the derandomization, we
need auxiliary computations whose complexity is a larger polynomial in ¢s and 7s.

Products, Sensitive Sampling, and Derandomization 15

Proof. For a vertex v € V(H) N R", the probability of appearing as a vertex
in V((RU S)") is equal to p? (1 — p)®, and thus the middle sum in (3.3) is the
expectation of

Cc
v

n
vEV((RUS)M)

which equals N&;. Recall that N = Crl#/2l(n/r)e.)
To prove the upper bound of O(1/C), we consider another sample S drawn from
H \ R with probability p = p/2. Let @ denote the quantity

> ta-pm.
veV(H)NRN

This sum is nothing else than the expected number of vertices of (RUS)", which is
at most E |RU §|%/2] = O(rl4/2]), using the Upper Bound Theorem and Lemma 3.2.
We estimate

1—5
1_p Zl—}—p/QZep/‘lZer/S".
-p

Then we rewrite

_ 1_p Ny B
— dy dy RN 7% d dy 2\ N T/8n
B @=Lptrtaop ([05) 22 et e

-p

We have

. (8071) ¢ rmury© 8en\© ... /8n
Ny = | — () <{—) e™ .
r 8en r
Substituting this estimate into the middle sum in (3.3) and comparing with the lower
bound for @ in (3.4), we obtain

St -prns <24 (50) Q= 0lw/nr) o). o

Putting these three lemmas together shows that £ < 1/2 for an suitable choice
of C. Using Markov’s inequality, this shows that Fy(S) + F5(S) + F3(S) < 1 or also
that conditions C1-C3 are satisfied, with probability at least 1/2.

We can now finish the running time analysis of the randomized algorithm, under
the condition that at each round, the sample S picked by the algorithm satisfies
conditions C1-C3. Indeed, the work in the jth round is given in (3.2). Due to
condition C2, the first term of the inner sum adds up to Oc(rl%/2!) over all the
simplices of the geode, while condition C3 implies that the second term adds up to
Oc(rl4/21)2 = O¢(nrl4/21=1). Suppose that after the (j — 1)st round, r hyperplanes
have been inserted. The work in the jth round is then O¢ (r14/2] 4 nrl4/21=1)_ Finally,
condition C1 implies that the size of the sample grows geometrically between rounds.
Thus, if conditions C1-C3 are satisfied at every round, the total running time sums
up as O¢(nlogn + nl?/2]).

In the derandomized algorithm, conditions C1-C3 will be fulfilled at all rounds.
The total running time of the deterministic algorithm will thus be O¢(n logn+nl?/21)

16 Hervé Brénnimann, Bernard Chazelle and Jifi Matougek

plus whatever time is needed to perform the deterministic computation of a suitable
sample at each round.

The randomized algorithm does not check if the conditions are satisfied, however.
Thus a bad sample at a given round could severely slow down the algorithm, however
unprobable this may be. Nevertheless, the expected time of the algorithm is, by linear-
ity of expectations, the sum of the expected times of all the rounds, and the expected
time of a round is bounded by O¢ (rl%/2] 4 nrl4/21-1) as shown by Lemmas 3.3 to 3.5.
Therefore, the expected time of the randomized algorithm is O¢(nlogn + nl?/2]).

3.3. Derandomization — a first attempt. Let us first consider a straight-
forward derandomization of the above described algorithm by the Raghavan-Spencer
method, recalling the basic strategy of that method and introducing some more nota-
tion. We are at the beginning of a round, with the geode of R as a semicutting, and
we want to find S C H \ R such that F;(S) + F»(S) + F3(S) <1 (thus satisfying con-
ditions C1-C3). We order the hyperplanes of H \ R into a sequence hy, ha, ..., hy_r
(arbitrarily), and we process them one by one, deciding for each h; whether to accept
it (that is, to include it in S) or to reject it (not to include it in S).

Having processed hi,..., hx, let S*) denote the set of accepted hyperplanes

among them. We define the energies £](-k) as the conditional expectations
eM - g (Fj(S) 1SN {h,... h)} = 5<’“>)
and £(*) is again their sum. Further we let
S (Fj(S) 1SN Ay b} = SO, byt € s)
measure what the energy would be after accepting hx41, and similarly
gMR — g (Fj(S) 1S {he,. . ki) = S®, hyys & 5)

for what the energy would be after rejecting hg1.

The strategy dictated by the Raghavan-Spencer method is as follows: the hy-
perplane hyy1 is accepted or rejected, whichever decision gives a lower total energy
E(+1) | The key property of the energy is

(3.5) W) = petlA) 4 (1 — p) IR

This together with the decision rule implies that £*+Y < £*) for k = 0,1,...,n —
r — 1, therefore the final energy is at most 1, and since it equals >, F;(8(=")) for

the (already fixed) sample S(*~ "), this sample will satisfy the required conditions.
The evaluation of ka) and Sék) is easy (at least with a limited but sufficient
accuracy) and requires no more time than the other operations of the randomized
algorithm itself. On the other hand, Eék) appears much more demanding, and we
cannot evaluate it exactly, so we use a suitable approximation instead, denoted by
Aggk). The sum AE®) = Efk) + Sék) + .Aggk) will be called the approzimate energy.

Here is a rough outline of our strategy. We shall be careful to define AE gk) in such
a way that it obeys an equation analogous to (3.5). Then we apply Raghavan-Spencer
method with the approximate energy instead of the actual energy, producing a sample
S(»=7) for which the approximate energy does not exceed the initial approximate
energy AE ©), To make everything work, we show the following:

Products, Sensitive Sampling, and Derandomization 17

LEMMA 3.6. For every k =0,1,...,n —7, |83(k) - AEgk)| < 1/3. The lemma
is proved in the next section, where we explain how to compute the approximate
energy. Using this for k = 0 together with £(®) < 1/3 (which follows from the results
of section 3.2), we see that the initial approximate energy is smaller than 2/3, and
hence so is the final approximate energy. This in turn implies that the final energy
£(™=7) is less than 1, and hence that the sample S("~") satisfies conditions C1-C3.

3.4. Approximating the energy. In this section we define the approximate
energy AE gk) and establish Lemma 3.6, assuming the existence of a certain oracle.
The implementation of the oracle is discussed in the next section.

We begin by setting the initial value AE go). Consider the expression for £5 = 53(,0)
n (3.3). We split the sum according to the simplices of G(R) containing the respective
vertices, and we get

CREETD DD DI Gl

sEG(R) veV (H)Ns

By a suitable general position assumption, we may suppose that a j-dimensional
simplex s € G(R) contains no vertices of V(H) unless it is a part of a j-face of the
polytope R", and thus a vertex of V(H) in such a j-simplex is contained in d — j
hyperplanes of R and j hyperplanes of H\ R, or in other words, d, = j = dim s. In this
sense, all the vertices within s are of the same type and we have V(H)Ns =V (H,s).
This implies that

o _ 1 d S
(3.6) & =5 2 2 prr-pmng.

s€EG(R)veEV (H,s)

We describe an oracle, to be constructed later, that performs an approximate
evaluation of the sums over a given simplex s. Let O be an oracle whose input is a
j-simplex s € G(R), and whose output is a number O(s), satisfying

. e 1
(3.7) 0= > P-prmg <BE— e,
vEV(H,s) C2q5

(Here is an attempt to give the reader some intuition about the choice of the error
term E;: the simplex s contains at most nJ vertices of V(H), and for each vertex the
summand is at most p/n¢, thus the exact sum does not exceed ncq%. The approxima-
tion’s relative accuracy is thus a suitable quasi-constant factor.)

We then define the initial approximate energy by

def 1
Ag() ¥ 2 00).
s€EG(R)
Assuming (3.6) and (3.7), we have
0 _ 0] o1 1 ~Ve — 2
(38) [As el <5 Y B < Y €V =001/C?)
s€G(R) s€G(R)

by the semicutting property of R, which establishes Lemma 3.6 for £ = 0, provided
C is big enough.

18 Hervé Brénnimann, Bernard Chazelle and Jifi Matougek

We proceed to the definition of Aﬁgk). For a vertex v € V(H) N (RU S®)",
let m,, denote the number of hyperplanes among {hg41,...,hn—} in its conflict list?
(that is, not counting the rejected hyperplanes). We also let d, be the number of
hyperplanes among {hg+1,...,hn_r} passing through v. In a manner analogous to
the above expression for £3, we can write

1

(k) _ doy My C
(3.9) & = N;p (1—p)™ns,

where the summation is taken over all vertices v of the arrangement of R U S®*) U
{hks1s--->hn_r} lying in the (closed) polytope (R U S)7.

We describe an oracle O*)| which can approximately evaluate a part of this sum
over a suitable cell (the oracle O above can be seen as a weaker version of O(?)). The
input of @) is a j-dimensional cell o. We assume that the affine span of o is either
R? or contained in the intersection of hyperplanes of H (under a suitable general
position assumption, other cells do not contain any relevant vertices) and that o is
completely contained in a single simplex s € G(R) (this latter requirement is not so
important for the current section, but it is needed in the construction of the oracle).
The oracle returns a number O*)(¢) with

3.10 0k (g) — i(1—p)™nt| < E LI
(3.10) (o) P(1—p)™n;| < E;

= \/E 9
vEV({hkt1,--shn—r},0) C?%qs

where E; is defined as in (3.7).

It might now seem natural to evaluate the approximate energy AE gk) as follows:
keep the portions of the arrangement of S*) within each simplex s € G(R), and call
the oracle O®) on each cell from the resulting arrangements. It turns out that the
error introduced in this way would be too large. Instead we compute the approximate
energy incrementally, using the oracle to approximate the difference in energy caused
by adding or rejecting a hyperplane.

Let us look at what happens with the contribution of various vertices to the
total energy €3 when a hyperplane hry; is accepted or rejected; we begin with the
accepting case. The contribution of vertices strictly above hpy1 remains unchanged
(we say ‘above’ meaning ‘on the same side of hy11 as the origin’). The contribution of
all vertices strictly below hj41 becomes zero, and finally for each vertex on hiy1, d,
decreases by one so that its contribution to the energy is multiplied by 1/p. Denoting
by &%) the contribution of the vertices on hiy1 to the sum (3.9) and Séfl)ow the
contribution of the vertices below, we have

A _ g8 _ gt (119 _ 1) £®)

below

Thus, an appropriate action after accepting hy41 is the following: we let ¥,,, be
the set of all faces o of the polytope (RU S)7 N hyyq within s for all s € G(R). We
set

Ag(R) def P 3 0¥ (o).

N
0EXon

2To be formally consistent, we should also superscript m, by (k), but this would overburden the
notation.

Products, Sensitive Sampling, and Derandomization 19

(Note that the oracle includes the pdi™ ¢ multiplicative factor, while an appropriate
factor for a vertex on hp41 in &Sﬁ) is pdim o+1. this is why the factor p appears in the
definition.)
Then we gather the portion of (R U S®))" (strictly) below hyy; inside each s,
obtaining a set Xpe;0r Of cells, and set
(k) def 1 (k)
A = % D O0W(0).

below
0€Zpelow

We define

e 1
AL L AP = A — aglh) + (5 ~ 1) AER).

The discussion of the case when hy41 is rejected is similar. The contribution of
all vertices lying on hjp41 to the energy vanishes, and the number m, for all vertices
below hiy1 decreases by one, thus their contribution to the energy is multiplied by
1/(1 — p). Hence an appropriate incremental definition is

e 1
ALV L eI = pe®) 4 (—1 = 1) Ae)

below

-4l

From these definitions, the promised analogy to (3.5), namely
(3.11) AEP) = pAeMIM 4 (1 - p) AEPIR)

follows immediately.

As usual, we accept hyyq if AEFID < Ag*IR) (otherwise, we reject it). Let us
remark that since we have already established AE (30) < 2/3, we know that the final
approximate energy A£(™ ") < 2/3, and in particular that conditions C1 and C2 hold
for the final sample S("~7). Thus, any intermediate sample S*) satisfies |S*)| < r as
well as condition C2. We are thus free to use these conditions further on. From now
on, the quantity r, will be defined with respect to the final sample S(*~") computed
by the algorithm, that is, r, = |S{5.")] +1.

Proof. Proof of Lemma, 3.6:

Let us analyze the approximation error. We have

e - As)| < |ef® - e +

> (Jeti - st

i; h; €ES(F)

p i—1 i—1
Z (?p Séelou? - ‘Agl()elou)l
i€{l,...,k}; higS*)

i ‘55,2‘” — Agl-D D +
P

+

el - ast))

From (3.8), we know that the first term is O(1/C'). Let us consider the contri-
bution of a single simplex s € G(R) to the second and third terms; we consider the
accepting and rejecting cases separately. The sets X,,, and Xpei0n have no more than
O(r?) cells, and there are fewer than r, accepted hyperplanes cutting s or separating
it from O. For an accepted hyperplane h;, the error of the oracle given by (3.10) is
multiplied by (1 —p)/N < 1/N for the cells in X, and by 1/N for the cells in Zpejo0-
The total error for the accepted hyperplanes is thus O(r¢t1E; /N).

20 Hervé Brénnimann, Bernard Chazelle and Jifi Matougek

For a rejected hyperplane h;, the error for cells in ¥,,, gets multiplied by p/N,
and for cells in Zpejon by p/(1 — p)N < 2p/N. Thus, the contribution to the error is
at most O(nsrépEs/N) = O(gsr2E,/N). Substituting for E; and N, we get that the
total contribution to the error for s does not exceed O(g: ™Y+ rd+1/C3pld/2]),

We have bounds for the sums of cth moments of the r; and of the ¢s. In order
to deal with the product of their powers, we use the inequality xy < z* + y*, where

the exponents satisfy 1/u + 1/v = 1. In our case we have z = rd*+! y = qﬁfﬁﬂ <

@V u=2c,v =1/(1-1/u) = ¢/(c—/c/2). Then rd+1gVerl < 2(@H1Vey e
The total error over all simplices thus becomes

0o(1) 2(d+1)v/e c
el D DIRE +) @
s€G(R) s€G(R)

The first sum is less than C?rl%/2] by condition C2, and the second sum is O(Crl?/2!)
by the semicutting property of the geode of R, hence the whole expression is O(1/C).
This proves Lemma 3.6. ad

It now remains for us to implement the oracle.

3.5. Implementing the oracle. LEMMA 3.7. It is possible to maintain a data
structure for each simplex s € G(R) such that a call to the oracle O%) with a cell o as

described in the previous sections can be answered in Oc(compl(a)qﬁ‘/z) time for an
absolute constant b, where compl(a) denotes the combinatorial complexity of o. The
total time needed for updating the data structure for s during the round is bounded by
Oc(nsrfqzﬁ).

Proof. The proof follows a similar construction in [7]. We define another quasi-
constant quantity

def ~3d+6 _3d
ps:C +qs \/E

Let H §k) denote the set of yet unprocessed hyperplanes in the conflict list of s, that is,
Hgk) ={het1,---, hn_T}|os. Whenever we want to call the oracle O%), we make sure
we have an e-approximation A™ for the set H{® (with ranges defined by segments)
available, where ¢ is such that the absolute error of the approximation does not exceed
ns/ps, and |Agk)| = 0(p?log ps). A simple way to maintain such an s-approximation
under the deletion of hyperplanes is to start with, say, a (1/2p;)-approximation Ago),
keep it unchanged for a while and recompute a fresh (1/2ps)-approximation after
every ns/2ps deletions. By the results of [20] (or by Theorem 2.1), each (1/2ps)-
approximation is computed in time conservatively estimated as O(p2¢*tin;), so the

total time for the maintenance of the e-approximations is Oc(nqu‘/E) as claimed.
Suppose that we want to answer a call to the oracle O*) with a j-cell o, that is,
approximate the sum

Y PA-p)™ag.
veV(HP o)
Let us set
aer |H")|
AW

S

Products, Sensitive Sampling, and Derandomization 21

We are ready to define the oracle value

(312) W= N adp/(1-p)™ng.
veV(A® o)

Note that the quantities m, and n, can be computed exactly for all the vertices
v e V(A® o), in time conservatively estimated as O¢(p3?n,) (we remark that we
use them as well in (3.7), (3.10) for a vertex v € V({hk+1,..., n_r},0), but these
quantities are never actually computed). Up to easy details, we have thus completely
described the algorithm implementing the oracle, and the times it takes to answer a
call or maintain the data structure can easily be shown to stay within the claimed
bounds. It remains to establish the bound on the accuracy.

In order to have a notationally simpler proof, we deal with the case kK = 0 only
(then n, = m,, and we can omit all the (k) superscripts). The case of a general k is
entirely similar and is treated in detail in [5].

Our procedure replaces a summation over a discrete but large set of vertices
by summation over a smaller suitably chosen set, and this very much resembles a
numerical integration procedure. The notation is chosen to stress this analogy, and
also the reasoning in the proof resembles simple estimates for the error of numerical
integration. From a result of [7], we know that the number of vertices of the e-
approximation within any simplex multiplied by a suitable scaling factor approximates
the number of vertices of H within the simplex with relative accuracy . Theorem
2.8 shows that this is even valid for cells of arrangements (since they are convex).
Our strategy is to subdivide ¢ into small enough cells, so that the variation of the
summand within each cell is small, but at the same time the number of small cells is
not too large. Within each small cell, we treat the summand as essentially constant
and use the vertex number approximation bound.

Here is a more detailed treatment. Our specific function f to be integrated (over
the discrete set of vertices) is

f&) =0 (1-p)'te.

We let My stand for its modulus of continuity My over a set T (as is done in a
somewhat different context in [22]):

Myr(h) = sup |f(t2) — f(t2)]-

t1,t0€T
|t27t1|§h

For a j-dimensional cell £ C o, let us denote

(3.13) Sef= >, fn)
veV(H,E)

and

(3.14) Sef=), alf(n).
vEV(As,L)

We want to obtain a bound for the difference |Z¢ f — Sef|. Let Ty = {no 1 v €
V(va)}7 fgmzn = mintETg f(t)a ém.az = maxtETg f(t)a and Af(f) = g’naa: _fgnzn. We
have

[V(H, OIf™ < Sef < [V(H,EIfE*

22 Hervé Bronnimann, Bernard Chazelle and Jifi Matousek
and similarly
o|V(As I < Def < |V (AL Ol
From this we get
(3.15) [Tef - Sef| < |V (40, &) = V(O] £ + [V(H A () -

Theorem 2.8 shows that, for any j-dimensional cell £ within s, we have

(3.16) IV (4,9 - [V HI| < 2

s

To estimate the total error within o, we subdivide ¢ into smaller cells. Namely, we
fix a parameter

def ~3 9./¢
v, © C32V°,

and we choose a (1/v;)-net N' C H|o, (with respect to ranges defined by segments)
of size O(vslogvs). We let E be the portion of the arrangement of A/ within o (by a
suitable general position assumption, we may consider only j-dimensional cells in =).
= is thus a subdivision of ¢ into |Z| = O((vs logvs)?) = O(v2+?!) cells.

LEMMA 3.8. For any T C [0,7], M;r(h) < hp'm¢~1(c —log(1 — p)7).

Proof. We have f'(t) = p’(1 — p)i(ct°™! + log(1 — p)t¢). By the mean value
theorem, for any t1,t; € T,

|f(t2) = f(t) < [t —t1] sup |f'(2)]

tE[t1,ta]

from which the result follows. (The reader should keep in mind that 1 —p < 1, hence
the minus sign in front of the logarithm when taking the absolute values of f'.) O

It now suffices to note, by the (1/v;)-net property, and since for any £ € = we
have sup Ty < ns, that

N Ng 5

17 adh <My (22) =0 (P nonit) = 0 (L2ne)

s VS VS

for any ¢ € =, where we have taken into account the fact that —log(1 —p) = O(r/n).

To obtain the total approximation error made by the oracle, we substitute (3.16),
(3.17), into (3.15) and this yields

S ’I'Lg mazx j qsp] c
<3 [Sef - Sef| < 00 T2 e+ O(n) s =

s
£EE

Saf - 20 f

S

d+1 ,.d d+1
14
0 (S

o ”)n5:0(Es/C),

which validates (3.7), (3.10). O

Products, Sensitive Sampling, and Derandomization 23

As mentioned in the lemma, the time needed to answer a call to the oracle within
a cell o also depends on the complexity compl(c) of that cell. However, the total
complexity of all the cells in the sets Xpeion, and X, introduced in processing a
hyperplane h; is easily seen to be in O(r?); hence, the total time spent by the oracle
when processing a hyperplane is Oc(rfqgﬁ).

With this lemma we can finish the time analysis of the whole algorithm. We
have already seen at the end of section 3.2 that the running time of the deterministic
algorithm is no more than the expected running time of the randomized algorithm
plus the cost of computing the good sample and that of the oracle calls. The total
time spent for computing local arrangements and testing each hyperplane during the
round is easily shown to be O¢(nrl4/21—1) using the fact that the geode of R defines
a semicutting. This does not account for the oracle costs. There are at most n,
hyperplanes to process within the simplex s during the computation, so the total
time needed will be at most proportional to

c n c
PR ASES-N B DI D DI e
s€EG(R) s€EG(R) s€G(R)

which is O¢(nrl?/2)=1), by a calculation similar to that given at the end of the proof
of Lemma 3.6. This is also the total running time for one round, which is then
bounded by the expected running time of one round for the randomized algorithm.
To summarize:

THEOREM 3.9. The algorithm presented above computes the conver hull of n
points deterministically in time O(nlogn + nLd/QJ) for any fixed dimension d > 2.

One final note is needed about the model of computation. The algorithm given
here works in the so-called real-RAM model [1], where elementary arithmetic opera-
tions take unit time regardless of the size of the numbers. This is the traditional model
used in computational geometry, to be contrasted with the so-called bit-model [1]
where the size of the numbers also contributes to the time complexity. Note that ex-
ponentially large quantities are needed in the course of the algorithm. Nevertheless,
because the algorithm runs in polynomial time, it is possible, while computing over
logarithmic-size words, to approximate any intermediate number in our algorithm
with a relative error smaller than an arbitrarily small constant: it is easily seen that
such errors are too small to be of consequence in the derandomization technique we
use.

REFERENCES

[1] A. V. Aro axp J. E. HopcrorT aND J. D. UrLmaN, Data Structures and Algorithms,
Addison-Wesley, Reading, MA, 1983.

[2] N. Aron anp J. SPENCER, The Probabilistic Method, John Wiley & Sons, New York, 1992.

(3]

N
N. Amato, M. GoopricH AND E. Ramos, Parallel algorithms for higher-dimensional convex
hulls, in Proc. 35th Annu. IEEE Sympos. Found. Comput. Sci., 1994, pp 683-694.
[4] N. Amaro, M. GoobricH AND E. Ramos, Computing faces in segment and simplex arrange-
ments. In Proc. 27th ACM Symp. Theor. Comput., pages 672—682, 1995.

[5] H. BRONNIMANN, Derandomization of geometric algorithms, Ph.D. Thesis, Dep. of Comput.
Sci., Princeton University, 1995.

[6] B. CuazeLLe, Cutting hyperplanes for divide-and-conquer, Disc. Comput. Geom. 9 (1993),
145-158.

[7] B. CrazeLLE, An optimal convez hull algorithm in any fized dimension, Disc. Comput. Geom.

10 (1993), 377-409.

24

Hervé Bronnimann, Bernard Chazelle and Jifi MatouSek

[8] B. CuazeLLe, H. EpELSBRUNNER, M. Grigni, L. J. GuiBas aAND M. SHARIR, Improved

bounds on weak e-nets for convez sets, Disc. Comput. Geom. 13 (1995), 1-15.

[9] B. CuazeLLE anND J. FrIEDMAN, A deterministic view of random sampling and its use in

(10]
[11]

[12]

(13]
[14]

[15]
[16]

(17]
[18]
[19]
20]

[21]
[22]

[23]

[24]

B.

K

K

R

H

geometry, Combinatorica 10 (1990), 229-249.

CHAZELLE AND J. MATOUSEK On linear-time deterministic algorithms for optimization

problems in fized dimension, J. of Algorithms 21 (1996), 579-597.

. L. CLARKSON, A Randomized Algorithm for Closest-Point Queries, SIAM J. Comput. 17
(1988), 830-847.

. L. CLARKSON, Randomized geometric algorithms, in Computing in Euclidean Geometry,
D.-Z. Du, F.K. Kwang, eds., Lecture Notes Series on Comp. 1 (1992), World Scientific,
117-162.

. L. CrLarkson, P. W. SHOR, Applications of random sampling in computational geometry,
II, Disc. Comput. Geom. 4 (1989), 387-421.

. M. DubpLEy anD R. S. WENOCUR, Some special Vapnik-Chervonenkis classes, Discrete
Math. 33 (1981), 313-318.

. EDELSBRUNNER, Algorithms in combinatorial geometry, Springer, 1987.

EDELSBRUNNER, H., MUckE, E.P. Simulation of simplicity: a technique to cope with degen-

D.

erate cases in geometric algorithms, ACM Trans. Graph. 2 (1990), 66-104.
HaussLer AND E. WELzL, e-nets and simplez range queries, Disc. Comput. Geom. 2 (1987),
127-151.

. MATOUSEK, Construction of e-nets, Disc. Comput. Geom. 5 (1990), 427-448.
. MATOUSEK, Cutting hyperplane arrangements, Disc. Comput. Geom. 6 (1991), 385-406.
. MATOUSEK, Approzimations and optimal geometric divide-and-conquer, J. Comput. System

Sci. 50:2 (1995), 203-208.

. MATOUSEK, Efficient partition trees, Disc. Comput. Geom. 8 (1992), 315-334.

. NIEDERREITER, Random number generation and quasi Monte-Carlo methods, CBMS-NSF
63, SIAM, 1992.

. RagHavAN, Probabilistic construction of deterministic algorithms: Approximating packing
integer programs, J. Comput. System Sci. 37 (1988), 130-143.

. SPENCER, Ten Lectures on the Probabilistic Method, CBMS-NSF, SIAM, 1987.

