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Abstract—The aim of this work is to give a full, elementary exposition of a recently introduced algorithmic technique for renormalizing

dynamic networks. The motivation is the analysis of time-varying graphs. We begin by showing how an arbitrary sequence of graphs

over a fixed set of nodes can be parsed so as to capture hierarchically how information propagates across the nodes. Equipped with

parse trees, we are then able to analyze the dynamics of averaging-based multiagent systems. We investigate the case of diffusive

influence systems and build a renormalization framework to help resolve their long-term behavior. Introduced as a generalization of the

Hegselmann-Krause model of multiagent consensus, these systems allow the agents to have their own, distinct communication rules.

We formulate new criteria for the asymptotic periodicity of such systems.

Index Terms—Dynamic networks, influence systems, renormalization
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1 INTRODUCTION

THERE is by now a wide, well-established body of techni-
ques for decomposing networks into smaller pieces [3],

[8]. These include methods based on spectral partitioning,
SDP relaxation, diffusion, coarsening, flows, metric embed-
dings, local search, etc. By comparison, the cupboard of
decomposition tools for dynamic networks looks bare.
Allowing edges to come and go puts basic connectivity
questions in a new light and calls for a novel set of tools
[11]. This need, of course, hinges on the relevance of
dynamic graphs in the first place. It is easy to argue that, in
practice, networks rarely come with a fixed set of edges. On
the web, for example, hyperlinks are added and deleted all
the time. The same is true of social networks and virtually
any large graph subject to failure. The present motivation
for investigating dynamic networks emanates from a spe-
cific concern, however: the dynamics of multiagent systems
and, more ambitiously, the emergence of collective behavior
in living systems.

Think of how fireflies synchronize their flashes, birds
form V-shaped flocks, ants find shortest paths, and bacte-
ria perform quorum sensing. The standard approach to
modeling such systems is to look at the individual organ-
isms as agents endowed with two kinds of rules: communi-
cation rules to specify which agents “listen” to which ones
under what circumstances; and action rules to instruct the
agents on what to do with the information they acquire.
Communication between the agents is channeled through
a dynamic network whose topology changes endoge-
nously as the system evolves over time. Before we desc-
ribe our approach to analyzing such systems, we provide
a few words of intuition.

1.1 Parsing Dynamic Networks

The analysis relies on specific methods for tracking the
propagation of information at all scales. This means moni-
toring how often any two groups of agents of any size com-
municate with each other. This, in turn, opens the door to
divide-and-conquer. To take an extreme example, suppose
that the agents can be partitioned into two subsets that
never exchange information. If so, each subgroup is
decoupled from the other and can be analyzed separately.
Somewhat trickier is the case of two groups A and B with
no edges pointing from B to A. Since information runs in
the reverse direction of the edges,1 the group B is decoupled
and can be analyzed on its own. The same is not true of A,
however, since the group relies on information from B for
its dynamics. What to do then? The key observation is that,
should the system B eventually settle around a fixed point
or a limit cycle, its predictable behavior will allow us to treat
the group B, after a suitable period of time, as a single block-
agent: think of it as some sort of super-agent with static or
periodic behavior. In this way, the original system can now
be analyzed by first working on B and then turning our
attention to a block-directional system of jAj þ 1 agents (þ1
because of the block-agent). Think of an Ancient R�egime
monarchy where the royal court B has its own internal
dynamics, one that is vital to the dynamics of A yet entirely
oblivious to it.

How do we choose the partition? There are many consid-
erations at play but one of them stands out: updating A and
B should be as infrequent as possible. To take a fanciful
example, consider a basketball game. It might be sensible to
choose one team to be A and the other one B on the grounds
that the ball stays within a given team more often than not.
On the other hand, this might not be true when the action is
near the basket and possession switches rapidly between
shooters, blockers, and rebounders. One could then imagine
changing the choice of the groups A and B every now and
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1. An edge pointing from me to you indicates that I am listening to
you and therefore that the information flows from you to me.
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then in order to keep the interactions between the two
groups to a minimum. Yet to find the absolute minimum is
not an option. The choice must not only mirror the flow of
information across the networks but also proceed on-line: in
particular, one should not have to look ahead into the future
to decide how to split the agents into groups A and B.2

The dynamic assignment of A and B partitions the time-
line t¼ 0; 1; 2; . . . into a sequence of consecutive intervals
within which the assignment is time-invariant. Within each
such interval, the intra-communication among the agents of
A (or B) could be itself quite complex, thus prompting us to
partition A and B. Proceeding in this way recursively pro-
duces a hierarchical decomposition of the timeline, i.e., a

parse tree such as
�
ð01Þð234Þ

��
ð5Þð67Þð8 � � �Þ

�
. In this example,

the timeline forms the root of the tree. The root has two chil-
dren associated with the time intervals 01234 and 5678 � � �,
which themselves have respectively two and three children,
with intervals 01 and 234 for one and 5, 67, and 8 � � � for the
other. As we show below, this allows us to view the trans-
mission of information across the agents at all relevant time-
scales and “renormalize” the system accordingly. The
parsing procedure is a message passing algorithm—as are,
we should point out, most spectral methods and belief
propagation algorithms used for fixed networks (a word we
use interchangeably with “graphs”).

1.2 Temporal Renormalization

The systems are deterministic, so a given starting configura-
tion of the agents yields a single orbit. The question is under
which conditions is the orbit attracted to a limit cycle.
Whereas attraction to a fixed point can often be analyzed by
looking at the orbit of interest and setting up a suitable
Lyapunov function for it, asymptotic periodicity does not
lend itself to this kind of investigation as easily. It is often
necessary to reason about the space of all orbits, which is, of
course, a source of complication: as though trying to under-
stand the behavior of an infinite sequence of networks was
not hard enough, we must consider the space of all possible
such sequences at once. How do we even encode such a
structure? Each orbit gives rise to a parse tree, so the chal-
lenge is how to organize the set of all possible parse trees
into a single structure: this is the role of the coding tree. By
way of analogy, consider the set of all English sentences.
Via lexicographic ordering, we can organize this set as an
infinite coding tree whose paths are in bijection with the
sentences. Such data structures are known in computer sci-
ence as prefix, digital, or radix trees. Being associated with a
sentence, each path can be parsed in accordance with the
rules of English grammar. The key insight is that sentences
whose paths share long prefixes will have parse trees with
big overlaps: this in turn allows us to infer a hierarchical
decomposition of the coding tree itself. In other words, we
can interpret the coding tree as a tree whose nodes are
themselves trees whose nodes are themselves trees, etc.
This is a way of parsing not just individual paths, but the
entire coding tree itself.

In the case of influence systems, the coding tree is infinite
and each path in it corresponds to a (chronological)
sequence of communication networks. The trick is to infer
from the parse trees associated with the paths a recursive
decomposition of the entire coding tree itself. This can be
thought of as a form of temporal renormalization not car-
ried out in closed form but algorithmically (a remark the
discussion below should help clarify). What makes the cod-
ing tree useful for the analysis is that it is not merely a com-
binatorial structure but a geometric one as well: indeed, a
path of the coding tree corresponds to a whole set of nearby
orbits that share the same sequence of networks. These look
like “tubes” in spacetime Rn �N. For example, an influence
system with two agents would produce a coding tree in
three dimensions that might look a bit like a real tree of the
sort we encounter in nature (with the difference that distinct
branches can occupy the same space). Paths are branches
whose cross-sections have an area (or volume in higher
dimensions). For reasons we discuss below, bounding the
rate at which new branches are formed (entropic growth)
and how thin they get as we move further from the root
(dissipation) is the key to the analysis. Roughly speaking,
bushy trees with thick branches correspond to chaotic sys-
tems. We have proven in a suitable model that a tiny ran-
dom perturbation of the input sends the agents into a limit
cycle almost surely [6]. We follow a different tack here and
establish a more general result under plausible heuristic
assumptions. To replace these assumptions by established
facts appears to be a major mathematical challenge which is
left as an open problem. As a side-benefit, our approach
gives us a platform for working out the renormalization
scheme in full, something that was not needed in [6].

We define the model of diffusive influence formally in the
next section (Section 2) and discuss specific constructions as
a warmup. In Section 3 we show how to parse an arbitrary
sequence of networks. The section is of independent interest.
By generalizing the idea of breadth-first search, this gives us
a principled way of tracking the propagation of information
(be it rumors, viruses, or trends) in dynamic graphs. We
sketched the idea earlier [6] but we provide here the first
complete treatment of the technique. In Section 4 we lay
down the foundations of algorithmic renormalization and
explain in Section 5 how to use the framework to mediate
between the two “forces” driving the system: entropy and
dissipation. Finally, we show how to analyze a diffusive
influence system in Section 6 by setting up the relevant recur-
rence relations. It bears mentioning that the first three sec-
tions are highly general and apply to any sequence of
directed graphs over a fixed set of nodes. It is only in Section 4
that the piecewise-continuity of the dynamical system is
used and in Sections 5 and 6 that the “averaging” nature of
diffusive influence systems is exploited. In particular, the
algorithmic renormalization scheme applies to any discrete-
time network-based dynamics.

2 THE MODEL

The model is inspired by the classic Hegselmann-Krause (H-
K) model of opinion dynamics [9]. Part of the appeal is the
simplicity of its definition: Fix a real parameter r > 0 and
initialize n agents on the real line R. At each time step, each

2. At the risk of belaboring the obvious, we mention that this con-
cerns only the analysis of the dynamical system: the choice of A and B
has no incidence on the dynamics itself.
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agent moves to the mass center of its neighbors, in this case,
any agent at distance r or less. In other words, the position

xi 2 R of agent i becomes xi  jNij�1
P

j2Ni
xj at the next

step, whereNi ¼ f j : jxi � xjj � r g. The updates are carried
out synchronously and repeated ad infinitum. Numerical
simulations suggest fast convergence. Although the typical
relaxation time has yet to be pinned down, it is known that,
within polynomial time, the agents end up frozen in single-
point clusters at least r away from each other [1], [5], [10],
[12], [13], [14], [15].

2.1 Generalized HK-Systems

There are three natural ways to extend the original Hegsel-
mann-Krause model. One of them is to lift the agents into
higher dimension instead of confining them to the real line.
Regardless of the dimension, the agents will still converge to
a fixed configuration in polynomial time [1]. Another modifi-
cation is to replace the update rule with a weightedmass cen-
ter. Assuming nonzero self-weights, convergence is still
guaranteed but it might become asymptotic. To see why, con-
sider two agents at distance less than r moving toward each

other one third of the way at each step: x1  1
3 ð2x1 þ x2Þ and

x2  1
3 ðx1 þ 2x2Þ. In the phase spaceR2, any orbit is attracted

exponentially fast to the line x1 ¼ x2. The third type of exten-
sion is to redefine what it means to be a “neighbor.” Despite
massive empirical evidence that the system should converge
to a fixed point, a change as simple as allowing a different
threshold ri for each agent i produces a dynamics that is still
unresolved. On the other hand, certain minor variants are
known to produce periodicity and even chaos [6]. To grasp
the subtleties at play, we need a more expressive palette to
work with. We begin with a slight generalization of HK sys-
tems (lin-DNF) and then push the generalization to its natural
limit (diffusive influence systems). Though looking vastly
different to the naked eye, this is an illusion: the two formula-
tions are in fact equivalent (modulo an adjustment in the
number of agents).

A lin-DNF is a set of linear constraints expressed as a dis-
junction of conjunctions, i.e., P1 _ P2 _ � � �, where each Pl is

of the form Q1 ^Q2 ^ � � � and each Qk is a halfspace uTx � v

(or uTx < v), where u; x 2 Rn. We define the communication
graph GðxÞ by associating a node to each agent. The edges of
the n-node graph GðxÞ depend on x ¼ ðx1; . . . ; xnÞ: for each
pair i 6¼ j, we choose a lin-DNF fij and we declare ði; jÞ to
be an edge of GðxÞ if fijðxÞ is true. A natural extension of

HK systems is provided by the update rule: for i ¼ 1; . . . ; n,

xi  
1

jNij
X
j2Ni

xj and Ni ¼ f j j ði; jÞ 2 GðxÞ g: (1)

Note that the original HK system is put in lin-DNF form
very simply by setting fijðxÞ as�

xj � xi � 0 ^ xi � xj � r
�
_
�
xi � xj � 0 ^ xj � xi � r

�
:

(2)

2.2 Diffusive Influence Systems

The definition of a diffusive influence system is identical to
that of an HK system, with the only difference coming from
the communication network, specifically the criterion used

to include a pair ði; jÞ as an edge of GðxÞ. We equip the pair
with its own first-order predicate fijðxÞ and make ði; jÞ an
edge of GðxÞ if and only if fijðxÞ is true. Recall that a first-

order predicate over the reals is a logical sentence consisting
of universal and existential quantifiers bound to real varia-
bles y1; . . . ; ym, along with (strict and nonstrict) polynomial
inequalities from Q½x1; . . . ; xn; y1; . . . ; ym� tied together by
Boolean connectives _;^. Formulation (2) is a particularly
simple instance of a first-order predicate, as it lacks quanti-
fiers and bound variables, and uses only linear polynomials.

Do we really need the full first-order theory of the reals?
The answer is yes. Here is a simple example taken from the
field of robotics [2]. The agents are represented by points in a
room littered with obstacles: this means that xi is now a point

in R3 instead of a single real number. The graph GðxÞ is
defined as the “constrained Delaunay graph”: thismeans that
ði; jÞ is an edge ofGðxÞ if there exists a sphere passing through
the agents i and jwith no agent or obstacle protruding inside.
An edge ði; jÞ is characterized by the truth-condition of a first-
order formula with both existential and universal quantifiers.
In plain English, the formula reads as follows: “There exist a
center and a radius such that, for all points p on an obstacle or at an
agent, p does not lie in the corresponding ball.” This is formally
expressed as a first-order predicate over the reals: the formula
contains the symbols 9; 8, Boolean connectives, and a number
of bound variables, along with a set of polynomial inequal-
ities with rational coefficients. We see that, even for a simple
communication network from robotics, alternating quanti-
fiers are already necessary.

Whereas the update rule itself (1) is kept deliberately
simple, it is the high expressiveness of the language in
which the communication network is specified that gives
diffusive influence systems their distinctive feature. Because
virtually any edge selection rule is acceptable, the definition
meets the primary objective of the model, which is to allow
the agents to have their own, distinct communication rules:
indeed, any two agents can use entirely different criteria to
pick their neighbors.

2.3 Equivalence of the Models

Phrased in the language of first-order logic, diffusive influ-
ence systems seem far removed from the lin-DNF formula-
tion of generalized HK systems. The two definitions are in
fact equivalent. Indeed, any diffusive influence system can
be put in lin-DNF form after suitable transformation. This
involves a number of steps including quantifier elimination,
linearization, tensoring, addition of new agents, etc. See [6]
for details. It might seem surprising that polynomials of
arbitrary degree can thus be replaced by linear ones, but
this is made possible by the “convex” nature of the map (1).

We can go further and rid the lin-DNF formulation of all
its Boolean connectives. To do that, we consider the set D of
hyperplanes formed by the linear constraints in the formu-
las fij. By adding a variable if necessary,3 we can always

assume that these hyperplanes, called the discontinuities, are

of the form uTx ¼ 1. They form an arrangement whose full-
dimensional cells c, the continuity pieces of f , are each

3. For example, x1 ¼ 0 might becomes x1 þ x0 ¼ 1, with x0 set to 1.
Perturbation now involves both x0 and x1.
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assigned a directed n-node graph Gc. We extend the label-
ing to all of Rn by defining GðxÞ as the graph with no edges
if x lies on a discontinuity and GðxÞ ¼ Gc if x lies in cell c.

For convenience (specifically, to avoid cluttering the nota-
tion), we assume that the number of hyperplanes in D is at
most polynomial in n, so that the number of graphs is

bounded by nOðnÞ. After a translation along the all-one vector
1 and rescaling if necessary, we can always choose the unit
cube X , ½0; 1�n as the phase space, so the continuity pieces
are bounded open n-dimensional polyhedra. We summarize
themain features of a diffusive influence system:

Definition 2.1. A diffusive influence system ðf;XÞ is a piece-
wise-linear system specified by a map f from X to itself,
x 7! P ðxÞx, where P ðxÞ is the incidence matrix of the commu-
nication graph GðxÞ augmented with self-loops, with each row
rescaled so as to sum up to 1. The matrix P ðxÞ is constant over
the cells of a hyperplane arrangement in Rn.

We assume a positive diagonal to avoid spurious perio-
dicities of little mathematical significance.4 We define P ðxÞ
as the identity matrix for any x on a discontinuity or on the
boundary of the unit cube. Our discussion generalizes easily
to update rules based on weighted mass centers, and we use
uniform weights across each matrix row only for notational
convenience.

A more substantive simplification in this paper is our
assumption that the systems are locally coupled, meaning
that each fi;j depends only on xi; xj and not on the other
agents. Local coupling means that the presence of the edge
ði; jÞ in GðxÞ is indicated by the sign-condition of x with

respect to discontinuities uTx ¼ 1 for which only the coeffi-
cients ui and uj may be nonzero. To summarize, a diffusive
influence system ðf;XÞ is specified by an arrangement of
hyperplanes, where each continuity piece c (an open n-cell)
is labeled by a directed graph whose edges ði; jÞ depend
only on the projection of c onto the ðxi; xjÞ plane. Fig. 1 illus-
trates the case of two agents.

2.4 A New Brand of Renormalization

Most dynamic regimes can be observed in low dimensions
(e.g., fixed-point attraction, periodicity, quasi-periodicity,

chaos, strange attractors), which is why research in dynam-
ics has had a tendency to focus on systems with few degrees
of freedom. At the opposite extreme, statistical mechanics
prefers infinite-dimensional systems because of the mathe-
matical benefits given by the thermodynamic limit. Influ-
ence systems sit in the “mesoscopic” middle: many agents,
but still too few, too diverse, and too autonomous for any
classical treatment. These network-based systems seek to
model the emergence of collective behavior through the
multiplicity of individual interactions. But how do we go
about analyzing the endogenous interaction of many
diverse agents?

The physical analogue would be to allow each particle in
a gas to follow its own laws of physics. While this feature
alone may push influence systems beyond the purview of
statistical mechanics, the shared concept of renormalization
plays a key role—just as it does in low-dimensional dynam-
ics (e.g., the logistic map). The basic idea is to rescale a sys-
tem while retaining its dynamics. In our case, scaling is
with respect to both time and the number of agents.
Renormalizing an influence system is to produce another
one with fewer agents and a behavior resembling a coarse-
grained version of the original one. If the communication
graph was fixed then graph clustering techniques might
suggest a way to do that: agents interacting with their
neighbors in a grid, for example, can be clustered into sub-
grids, so that a

ffiffiffi
n
p � ffiffiffi

n
p

grid of n agents can be renormal-

ized as a
ffiffiffiffiffiffiffiffi
n=4

p
�

ffiffiffiffiffiffiffiffi
n=4

p
grid of “block-agents” consisting of

four agents each. Naturally, this decomposition is to be iter-
ated recursively.

This form of block-spin renormalization, famously intro-
duced by Kadanoff for the Ising model, works only if the
interaction among the block-agents can be understood rea-
sonably well without having to track the precise behavior of
their constituent agents. In other words, a block-agent needs
to be able to “hide” the internal role of its agents from the
outside. The other requirement is that the coarse-grained
system should look like a “blurred” version of the larger
one. To achieve this, it is customary to view the coarse-
graining process itself as a dynamical system mapping an
Ising model to another, simpler one. The goal is then to
adjust the coarse-graining parameters to home in on a fixed-
point attractor and thus allow the basic behavior to be
retained throughout the renormalization steps.

What is the role of time in the case of influence systems?
Presumably, a block-agent has a characteristic timescale: the
time it takes its own agents to settle in their long-termmode.
If this time is the same for all the block-agents, then we can
rescale the time axis by redefining its basic unit at every step
in the coarse-graining hierarchy. To carry out this plan, of
course, one needs to cope with the ever-changing topology
of the communication graph. Worse, the changes being
endogenous, one cannot postulate a prior on the graph dis-
tribution. Determinism is not necessarily an impediment to
using tools from statistical mechanics [4] because the bifur-
cation analysis needs to focus on the “edge of chaos,” a
region replete with pseudorandomness.

In [6] we outlined an approach to network-based renorm-
alization and derived sufficient conditions for the asymptotic
periodicity of diffusive influence systems. We revisit the
method here and show how to replace a certain timing

Fig. 1. A map f for n ¼ 2. Note that the continuity piece c is mapped con-
tinuously but fðcÞ is not. It is this sort of fragmentation that makes the
dynamics difficult to analyze.

4. For example, consider the two-node cycle GðxÞ with

P ðxÞ ¼ ð 0 1
1 0

Þ.
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assumption by a general-position heuristic under which the
critical region can be shown to be of measure zero—the
details are given below in Section 6. This is an opportunity to
develop the renormalization framework to its fullest, some-
thing our earlier timing assumption [6] allowed us to bypass.
The algorithmic renormalization of dynamic networks is a
general, powerful idea likely to be useful elsewhere.

2.5 Mixed Timescales

Diffusive influence systems have been shown to span the
entire range of dynamic modes, from fixed-point attraction
to chaos. Predicting their behavior can be undecidable [6]. It
is no surprise therefore that they should exhibit periodic
orbits of any length. Remarkably, long limit cycles with
large basins of attraction can be manufactured as well: think
of them as extremely long periodic orbits robust under per-
turbation. We give such a construction below: the period is
a tower-of-twos of height proportional to the number of
agents. This type of behavior may be pathological but it
touches upon a phenomenon at the heart of influence sys-
tems: the mixing of timescales. If one regards attraction as a
process of amnesia, then to be caught in a limit cycle means
to forget one’s origins. Indeed, an agent begins with an
unbounded amount of information (encoded in its initial
position) but, once trapped in a limit cycle, carries only a
few positional bits from then on. This near-total loss of
memory is what we term “amnesia.”

In a diffusive influence system, some agents can
“collude” to form memory devices that can hold informa-
tion over periods of time much higher than their own char-
acteristic times. These gadgets allow agents to recover their
memory just as they are about to reach amnesia, which in
turn allows them to extend their internal characteristic time
and delay the eventual attraction to a limit cycle. This archi-
val mechanism can be nested hierarchically to create bigger
and bigger timescales. Remarkably, such constructions are
robust to noise. The existence of hierarchical schemes that
combine to create new dynamical regimes points to the
need for time-based renormalization, the main theme of this
work. The ability to create higher scales both in length and
time seems a necessary component of any living system,
and the relevance of the present investigation should be
appreciated in this light.

THE VERY SLOW CLOCK (VSC). We describe an n-agent diffu-
sive influence system with a limit cycle of length roughly
equal to a tower-of-twos of height n=2. This is “two to the
two to the two...” repeated n=2 times. The design relies on a
small gadget which converts an ðn� 2Þ-agent system with

period pn�2 ¼ k into an n-agent system with period pn � 2k.
All gadgets share two static agents a; b positioned at �1 and
1, respectively; for convenience, we do not count them in n.
Each gadget also has its own pair of mobile agents. Apply-
ing the construction (roughly) n=2 times leads to the desired
result. As an inessential but convenient exception, we allow
zero entries in the matrix diagonals. The n (mobile) agents
are at positions x1; . . . ; xn. The update rules will automati-
cally ensure that, for all i: xi � 0 precisely when the time t is

�1ðmod pnÞ; and xi ¼ ð�1Þi precisely when t ¼ 0ðmod pnÞ.
For n ¼ 2, we use a; b to (easily) engineer the system so that
ðx1; x2Þ follows the periodic orbit ð�1; 1Þ; ð1; 1Þ; ð1;�1Þ; ð�1;
�1Þ. In general, to form GðxÞ, we extend the communication

graph of the ðn� 2Þ-agent system by adding to it the two
nodes n and n� 1, together with the edges specified below:

i) If xi 	 0 for some i < n� 1, then add the self-loop
ðxn�1; xn�1Þ and the edge ðxn�1; xnÞ. Note: agent
n� 1 moves half way toward agent n; this case is the
most frequent, as it occurs whenever t 6¼ �1ðmod kÞ.

ii) Otherwise, add ðxn�1; aÞ; if xn � 0 then add ðxn; bÞ else
add ðxn; xn�1Þ. Note: in the first (resp. second) case,
agent n moves to the location of agent b (resp. agent
n� 1) and agent n� 1 moves to �1; this occurs only
when t ¼ �1ðmod kÞ, which is typically very rare.

The mechanism of the clock is quite simple. The n-agent
system consists of a subsystem of n� 2 agents (the
“subclock”) and a gadget that interacts only with the static
agents a; b. There is never any edge between the gadget and
the subclock: their interaction is mediated entirely through
the positional constraints.

At time 0, the odd-labeled agents are at �1 and the others
at 1. Rule (i) kicks in for the next k� 1 steps, pulling agent

n� 1 toward agent n, so they end up separated by � 2�k. At
time k� 1, the subclock is entirely in negative territory, so
rule (ii) kicks in. If agent n (which stays always to the right
of agent n� 1) is still at a positive location, then it slides left
to the position of agent n� 1 while the latter is repositioned
at �1. This is the key moment: in k steps, the system has

managed to move agent n to the left by as little as � 2�k. As
long as xn > 0, we can repeat these k steps, which means

the subclock can run through roughly 2k cycles. (The left-
ward slide of agent n varies a little in length at each iteration

but always remains on the order of 2�k.) Note that we do not
rush to reset the subclock as soon as xn � 0 but, rather,
allow it to complete its natural cycle. The initial position of
the agents does not require fine calibration and the astro-
nomical period is robust under perturbation.

The recursive construction of the Very Slow Clock suggests
how renormalization should proceed. The n-agent system
VSCn results from nonlocal-coupling between a clock VSCn�2
and a gadget consisting of two private agents and two shared
ones. The characteristic timescale of the gadget is exponen-
tially higher than that of the VSC with which it is coupled.
Renormalizing the system is easy because it was essentially
put in by hand. In general, to tease out the subparts of the
dynamics that can be “factored out” is no easy task. In the
end, renormalization is about dimension reduction. When
the graph never changes, the dynamics can be expressed by
the powers of a fixed matrix and the dimension reduction is
done by breaking down the system into its eigenmodes.
When the communication topology keeps changing, how-
ever, linear algebra is of little use. The dimension reduction
cannot be carried out in “closed form.” It would seem that it
can only be performed as a step-by-step process that evolves
alongside the dynamics of the system. This is what algorith-
mic renormalization tries to achieve. Note that the VSC is not
locally coupled. In fact, to avoid its pathological (yet robust)
behavior is the reason for assuming local coupling.

Theorem 2.2. For any n > 2, there exists an n-agent diffusive
influence system with a periodic orbit of length equal to a
tower-of-twos of height proportional to n. The dynamics is
robust under perturbation.
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3 PARSING GRAPH SEQUENCES

The algorithmic renormalization of influence systems
relies on a general procedure of independent interest: a
method for parsing arbitrary graph sequences. Recall that
the analysis of influence systems rests crucially on our
ability to decompose an infinite sequence of communica-
tion graphs hierarchically. By building a tree on top of
the network sequence, we are thus able to break down
the original system into subsystems. This is similar to
forming the parse tree of an ordinary English sentence:
whereas the latter is driven by the rules of syntax, what
sort of rules shall we then use to parse a sequence of
communication graphs? In a nutshell, the idea is to track
the propagation of information across the networks (think
of a virus spreading in a population) and use the pauses
(for example, due to poor connectivity) as breakpoints to
guide the construction. The parsing algorithm can be
seen as a grand generalization of breadth-first search for
dynamics graphs.

Given a (finite or infinite) sequence G ¼ G0G1G2 � � � of
directed graphs over the same set of n labeled nodes, make
the lowest-labeled node “wet” and declare wet any node
pointing to a wet node in G0. Next, switch to G1 and call
wet any node that is either already wet or points to a wet
node via an edge of G1. Water flows only to immediate
neighbors in a single step and wet nodes remain wet. We
use water as an anology but we could substitute rumor
propagation or viral contagion. Transmission runs in the
reverse direction of the edges, following the principle that
information is acquired only by pointing to it. As soon as all
the nodes become wet (if ever), the subsequence of graphs
considered up to this point is said to form a wave. When this
occurs, we dry up all of the n nodes and repeat the entire
process, restarting from the current graph in the sequence.
We begin the second wave at the same lowest-labeled node
used earlier. It might happen that some nodes never get wet
or that wetness propagation is interrupted for long periods
of time before resuming again. What to do in such cases is
at the heart of the parsing procedure, which is called the
flow tracker.

3.1 Making Waves

We treat the sequence G as a word in a language over an

alphabet of 2n
2
letters, where each letter represents an n-node

graph (or, equivalently, an n-by-n 0-1 matrix). Parsing
the sequence means producing a parse tree T ðGÞ: this is
a rooted tree whose leaves are associated with the graphs
G0; G1; G2; . . . from left to right and whose internal nodes
reflect important transitions during the flooding. As we shall
see, evenwhen the sequence G is infinite, the depth of the tree
remains finite. For example, if all the graphs are strongly con-
nected (or if the graphs are connected but undirected), then5

T ðGÞ ¼ ð ðG0 � � �Gi1Þ
wave ðGi1þ1 � � �Gi2Þ

wave � � � Þseq; (3)

where ik is the time at which the graph becomes entirely
wet for the k-time. The tree T ðGÞ has depth only two

because it is a simple case. The superscripts indicate the
nature of the nodes: the node ð� � �Þseq is the root of the
parse tree of the original sequence; its children ð� � �Þwave
correspond each to a wave and their number can be infi-
nite; the leaves of the tree are given by G0; G1, etc. In this
particular case where all the graphs are assumed to be
strongly connected, the waves are less than n-long since
every step causes at least one dry node to get wet. In gen-
eral, there is no a priori bound on the wavelengths. The
first two levels of any parse tree look like (3); most trees
have higher depth, however, and recursive rewriting
rules are needed to express them.

We now put this informal description on a more rigorous
footing. Recall that G is an arbitrary (bounded or not)
sequence of directed graphs over n labeled nodes. We
denote by B the set of nodes initialized as wet. So far, we
have considered only the case where B is the singleton con-
sisting of the lowest-labeled node. A variant of the proce-
dure will soon require wetting more than one node at the
outset, hence the use of the set B. We put together a partial
parse tree in the form of ðwavemaker ðG; BÞÞseq, which we
then proceed to refine. This is how wavemakerworks:

wavemaker ðG; BÞ “ G is a graph sequence and B 
 ½n� ”

W0  B and print ‘ ð ’
for t ¼ 0; 1; . . .

print ‘Gt’
Wtþ1  Wt [ f i j 9j 2Wt such that ði; jÞ 2 Gt g
if jWtþ1j ¼ n thenWtþ1  B and print ‘ Þwaveð ’

print ‘ Þwave ’
We bend standard programming language conven-

tions by allowing the last print statement to be executed
even if the sequence G, hence the for-loop, is infinite.6

The output of wavemaker looks like the right-hand side
of (3). A wave can be either complete or incomplete,
depending on whether all the nodes get wet: a wave is
complete if it is terminated by the successful outcome of
the conditional “if jWtþ1j ¼ n.” For that reason, an infi-
nite wave is always incomplete but the converse is not
true: a finite sequence G might simply run out of graphs
to flood all the nodes, hence leaving an incomplete final
wave. If G is infinite, then either all the waves are finite
but their number is not (as is the case with strongly con-
nected graphs) or there are a finite number of waves but
the last one is infinitely long. In this case, the partial
parse tree ðwavemaker ðG; BÞÞseq is of the form:

ð ðG0 � � �Gi1Þ
wave � � � ðGilþ1 � � �Þ

wave Þseq: (4)

Why isn’t this the end of the story? The reason is that
waves themselves need to be parsed, especially when they
are very long. For example, suppose that B is a singleton
and its node is always disconnected from the other ones.
In that case, water never flows anywhere and wavemaker

parses G as ððG0G1G2 � � �ÞwaveÞseq, which is as simple as it is
useless. Clearly, parsing must be carried out even during
flooding delays. We explain now how to do this.

5. We shall often represent trees as nested parenthesis systems. Here
is a tree whose root has two children, with the leftmost one having two
children of its own:

� �
ð Þð Þ

� � � �
.

6. In the odd chance that wavemaker prints a single spurious ð Þwave
at the end, we simply erase it.

6 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 2, NO. 1, JANUARY-MARCH 2015



3.2 Parsing a Wave

A flooding delay implies that the current “wet” set Wt stops
growing: it could be momentary or permanent (there is no
way to tell ahead of time). A delay occurs when the graphs
Gk have no edges pointing from the dry nodes to the wet
ones, i.e., from ½n� nWt toWt. This motivates the definition of
a block-sequence as any subsequence of G0G1G2 � � � such that,
for some partition ½n� ¼ A [B of the nodes, no edge from the
subsequence points from B to A: the block-sequence is said
to be of type A!B. Let G ¼ G0G1G2 � � � be a wave. Recall
that, in the case of a complete wave, this means that all the
nodes are wet at the end but not earlier. As usual, B is set to
the singleton consisting of the lowest-labeled node. By defi-
nition of a wave, wavemaker ðG; BÞ terminates at or before
the first time jWtþ1j ¼ n. Let t1; t2; . . . be the times t at which
Wt 
Wtþ1 (i.e., strict inclusion). These coupling times indicate
when the water propagates. They break down the wave G
into block-sequences Gk via ðblockseqmaker ðG; BÞÞwave.
Using superscripts to distinguish the wave nodes from the
block-sequence kind, the output is of the form:

ð ðGA0!B0
Þbseq Gt1 ðGA1!B1

Þbseq

Gt2 ðGA2!B2
Þbseq Gt3 � � � Þ

wave:
(5)

blockseqmaker ðG; BÞ “G is a wave and B 
 ½n� ”

W0  B and print ‘ ð ’
for t ¼ 0; 1; . . .

Wtþ1  Wt [ f i j 9j 2Wt such that ði; jÞ 2 Gt g
ifWt ¼Wtþ1 then print ‘Gt’

else print ‘ Þbseq Gtð ’
print ‘ Þbseq ’

As was the case with wavemaker, we remove empty
parenthesis pairs ð Þbseq ; so, for example, in the case of
strongly connected graphs, the output of blockseqmaker
for a wave will simply be Gt1Gt2 � � � (ti ¼ i� 1) since there

are no delays. In general, the block-sequence GAk!Bk
is a

maximal subsequence of the wave G that witnesses no
water propagation: it is of type Ak!Bk, where Ak ¼Wtkþ1,

Bk ¼ ½n� nAk, and B � Ak 
 Akþ1. The initialization req-
uires setting t0 ¼ �1 so that A0 ¼W0 ¼ B. Note how the let-
ters A and B switch roles (more on this below). Until now,
B has been a singleton: parsing block-sequences, our next
topic, will change all that.

3.3 Parsing a Block-Sequence

We have built the first three levels of the parse tree so far.
The root is associated with the full sequence and its chil-
dren with its constituent waves. The root’s grandchildren
denote either single-graphs (leaves of the tree) or block-
sequences. Parsing the latter repeats the treatment of gen-
eral sequences described above with two small but crucial
differences. Let GA!B denote a block-sequence of type
A!B. First, we break it down into block-waves by applying
wavemakerðGA!B;BÞ. The output is of the form

ð ðG0 � � �Gi1Þ
bwave ðGi1þ1 � � �Gi2Þ

bwave � � � Þbseq: (6)

We note that B is now wet at the outset. This contrasts with
the circumstances behind the creation of a block-sequence
of type A!B, which feature wet A, dry B, and delay in

water propagation. This radical change in wetness status
explains the need for a recursive method that encapsulates
wetness status by local variables hidden from the outside. It
is in that sense that the renormalization is truly algorithmic.

The block-waves constitute the children of the node
associated with the block-sequence GA!B. Let H denote
any one of the subsequences of the form Gikþ1 � � �Gikþ1
(i0 ¼ �1). To extend the parse tree further, we replace in

(6) each occurrence of the block-wave ðHÞbwave by

ðblockseqmaker ðH; BÞÞbwave. Introducing new notation,
we parse each block-wave as�

ðGAkBÞdec Gt1 ðGA1!B1
Þbseq

Gt2 ðGA2!B2
Þbseq Gt3 � � �

�bwave
:

(7)

The parsing of a block-wave differs from that of a wave (5)
in two ways:

� First, we notice the difference in the first term GAkB.
As we scan through the sequence H, we may have to
wait for a while before some edge actually joins A to
B. Since there is no edge from B to A, the two sets
are decoupled until then (hence the superscript dec).
In other words, A and B form a cut in all the graphs
in the sequence GAkB: such “decoupled” sequences

are parsed as a single leaf in the tree.
� The second difference is more subtle. When parsing

an ordinary wave, recall that the block-sequence
GAk!Bk

satisfies Ak ¼Wtkþ1. In the case of a block-

wave, instead we have Ak ¼Wtkþ1 nB (and, as

usual, Bk ¼ ½n� nAk). Note that it is still the case that
Ak 
 Akþ1. This assignment of Ak satisfies the main
requirement of a block-sequence of type Ak!Bk,
namely the absence of any edge from Bk to Ak.

We had to amend the old invariant Ak ¼Wtkþ1 because
of inductive soundness. Here is an example to illustrate
why: Let G0 ¼ a!b c ; G1 ¼ a!b!c ; G2 ¼ a b!c ;
G3 ¼ a b!c; and G4 ¼ G1. In this notation, G0 has a single
edge ða; bÞ. The block-wave G0 � � �G4 of type fa; bg!fcg is
parsed as

ð ðGfa;bgkfcgÞdec G1 ðGfbg!fa;cgÞbseq G4 Þbwave; (8)

where Gfbg!fa;cg ¼ G2G3. The reason why setting Ak ¼Wtkþ1
is a bad idea is that the block-sequence G2G3 would then be
interpreted as Gfb;cg!fag, which would have the effect of

making a block-sequence of type fb; cg!fag a child of
another one of type fa; bg!fcg. To ensure the soundness of
the recursion, we need the cardinality of the A-set to drop
by at least by 1 as we go from from parent to child: this
property is ensured by setting Ak ¼Wtkþ1 nB since this

implies that Ak 
 A.
There is a subtlety in the recursion (for the curious reader

only). The arrival of G4 brings in the edge ða; bÞ, which is
incompatible with a block-sequence of type fbg!fa; cg. It is
therefore no surprise to see Gfbg!fa;cg in (8) terminate and

give way to the single-graph G4. Actually this is not the rea-
son for the termination of the block-sequence. Indeed, if G4

were of the form b!a!c, the block-sequence would still
terminate regardless of its continuing compatibility with the
type fbg!fa; cg. In other words, the rule is not to parse the
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current sequence Gfbg!fa;cg as long as one can. The true

cause of termination is the growth of Wt: both a and b are
now wet. This shows that to parse a node requires knowing
the relevant parameters of its ancestors.

3.4 Rewriting Rules

It is convenient to think of the flow tracker (the name for the
entire parsing algorithm) as the application of certain pro-
ductions of the sort found in context-free grammars: seq,
wave, bseq, bwave are used as nonterminal symbols and sg,
dec as terminals; here, sg is shorthand for “single-graph.”
Via the formulas (3, 5, 6, 7), the flow tracker yields the fol-
lowing productions (Fig. 2):

seq ¼) ðwave; wave; Þ
wave ¼) ð bseq; sg; bseq; sg; . . . Þ
bseq ¼) ð bwave; bwave; Þ
bwave ¼) ð dec; sg; bseq; sg; bseq; sg; . . . Þ:

8>><
>>: (9)

How sensible is it to make GAkB a leaf of the parse tree?
On the face of it, not very much. Indeed, suppose that G is a
long, complicated sequence with a rich parse tree and V is

its node set. Form a new sequence G0 by adding an isolated
node a (with no edge to or from V ). Further, suppose that a
is given the lowest label so that it defines the starting single-

ton B. The flow tracker will parse G0 as the single-path tree:

T ðG0Þ ¼ ð ð ðGfag!V Þbseq Þwave Þseq;

where Gfag!V ¼ ð ð GakV Þdec Þbwave. Adding a single node
hides the richness of T ðGÞ by producing a completely trivial
parse tree. Of course, it is quite possible that picking another
node for B besides a would produce a more interesting
parse tree. But optimizing the selection of the starting sin-
gleton is out of the scope of our discussion. As for the paral-
lel treatment of A and B in GAkB, this is something for the

renormalization of the dynamical system itself to handle.
The reason we delegate this task is that A and B may not
operate along the same time scale. Indeed, in a block-
sequence of type A!B, the set B, unlike A, can be handled
separately over the entire length of the sequence. It follows
from our previous discussion that the parse tree has depth
at most roughly 2n, as a typical downward path reads:

seq, wave, bseq, bwave, bseq, bwave � � � bseq, bwave, dec/sg.

The number of waves or block-waves that are the chil-
dren of a given parent can be unbounded, however. In the
case of diffusive influence systems, large degrees express
structural properties of the dynamics and play a key role in
the analysis. We conclude our discussion of graph-sequence
parsing with a simple example of the flow tracker in action.
Let G0 ¼ G1 ¼ G4 ¼ G6 ¼ a b c, G3 ¼ G5 ¼ a!b!c,
and G2 ¼ a b!c. Setting G ¼ G0 � � �G6 and choosing a to
form the initial singleton B, we have

T ðGÞ ¼ ð
�
G0G1

�wave��ððG2Þdec G3Þbwave Þbseq

G4

�
ðG5Þbwave

�bseq
G6

�wave �seq
:

4 ALGORITHMIC RENORMALIZATION

Let ðf;XÞ be a system as in Definition 2.1. The coding tree
T fðXÞ of ðf;XÞ captures both its geometry and its symbolic
dynamics [6]. We defined it informally as a combinatorial
object tracing the graph sequences of the orbits and we
made a passing remark about the geometric information it
encodes. We formalize these ideas now. The levels of the
coding tree correspond to the times t ¼ 0; 1; 2, etc. Combina-
torially, its paths encode the entire symbolic dynamics of
the system by listing in chronological order all the possible
communication graph sequences formed by the orbits. In
addition, nodes carry geometric information about the cor-
responding orbits. Each node v of the coding tree is associ-
ated with two cells Uv; Vv, where tv is the depth of node v:
the cell Uv is a continuity piece of ftv , i.e., a maximal con-

nected subset of X ¼ ½0; 1�n over which ftv is continuous;
and Vv ¼ ftvðUvÞ (which is not necessarily n-dimensional).
The coding tree is defined inductively by starting with the
root, Uroot ¼ Vroot ¼ X, and attaching a child w to a node v
for each one of the cells c into which the discontinuities of f
break Vv (note that there could be a single c). We then set

Vw ¼ fðcÞ and Uw ¼ Uv \ f�tvðcÞ.7 We define Vt ¼
S

tv¼tVv

and note that Vt includes all the points reachable in t steps.
Any point reachable in tþ 1 steps can also be reached in t
steps (just start at the second step); therefore,

Vtþ1 � Vt : (10)

The nesting time n ¼ nðT fÞ is the smallest t such that Vt inter-
sects no discontinuity. This number cannot be bounded if
the system is chaotic; on the other hand, a finite nesting
time implies asymptotic periodicity. To see why, observe

that, for any v at depth n, fkðfðUvÞÞ does not intersect any
discontinuity for any k � n; therefore, fðUvÞ � Uw for some
node w (tw ¼ n). It follows that the symbolic dynamics can
be modeled by paths in the functional graph whose nodes
are labeled by v (tv ¼ n) and ðv; wÞ is an edge if fðUvÞ � Uw.

8

Asymptotic periodicity follows from classic Markov chain
theory: the powers of a stochastic matrix with a positive
diagonal always converge to a fixed matrix. It appears
therefore that the key question is to pin down the conditions
under which the nesting time remains bounded. A node v is

Fig. 2. The parse tree for the graph sequence G0 � � �G6, where
G0 ¼ G1 ¼ G4 ¼ G6 ¼ a b c, G3 ¼ G5 ¼ a!b!c, and G2 ¼ a
b!c, with B ¼ fag.

7. Recall that f is the identity along the discontinuities so there is no
need to define children for them. This causes a node to become a leaf if
Vv falls entirely within one of the discontinuities, which can be handled
separately and hence assumed away.

8. A graph is functional if exactly one edge points out of any node
(possibly to itself). In any such graph, infinite paths end up in cycles.
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called shallow if tv � n: only those nodes can witness an
intersection between their cell Vv and a discontinuity.
Observe also that the period (plus preperiod) of any limit
cycle is at most equal to the number of shallow nodes: the
reason is that all eventually periodic orbits trace a path in
the functional graph, whose number of nodes is itself
bounded by the number of shallow nodes.

Being infinite, the coding tree has no “size” to speak of. It
has a growth rate, however, which is captured by the word-
entropy hðT fÞ: it is defined as the logarithm (to the base 2) of
the number of shallow nodes. Since any node of the coding

tree has at most OðjDjnÞ ¼ nOðnÞ children,9 the word-entropy
is at most Oðnn log nÞ: crucially, it can be much smaller.
Intuitively, attraction to a limit cycle hinges on keeping the
word-entropy low relative to the dissipation rate of the sys-
tem (the evolution rate of its contracting parts). In physical
terms, this means that the loss of energy must outpace the
increase in entropy. Although the system is deterministic,
its behavior in the critical region (between periodic and cha-
otic) is essentially “random” and lends itself naturally to the
language of statistical physics [7]: this is the concept of
deterministic chaos familiar to dynamicists.

4.1 Parsing a Dynamical System

Every path of the coding tree corresponds to an infinite
string G ¼ G0G1G2 � � � of n-node directed graphs, where Gi

is the graph associated with the continuity piece ci. The set
of paths is in bijection with the refinement of the iterated
pullback, i.e., the language fc0c1c2 � � � j

T
t	0 f

�tðctÞ 6¼ ;g,
which we explained how to parse in Section 3. In this way,
every infinite path of the coding tree can be parsed accord-
ing to T ðGÞ. Parsing “renormalizes” the orbits of the system
with respect to time, but this is not what we want. The
objective is to renormalize the system itself, not individual
orbits; for this, we need to “parse” the coding tree itself. We
do this by combining together the individual parse trees of
the infinite paths to form a single parse tree for T fðXÞ.

In the language of compiler theory, the parsing algorithm
is of type LR, meaning that it can be executed by reading the
string from left to right without backtracking. For this rea-
son, the parse trees of paths with long common prefixes
must share large subtrees. The productions in (9) specify
exactly one rewriting rule for each left-hand side term, so
all the parse trees are identical up to the number of terms
inside the parentheses and the coupling times. This allows
us to express the coding tree recursively via three tensor-
like operations (Fig. 3):

(a) Direct sum. When the context is clear, we use A either
to refer to a set of m agents or to denote the corresponding
phase space ½0; 1�m; same with the set B of n�m agents.
The direct sum T fðAÞ � T gðBÞ models the evolution in
A�B of two decoupled systems ðf;AÞ and ðg;BÞ. A path in
the direct sum is of the form ðu0; v0Þ; ðu1; v1Þ; . . . ; where
ui and vi (i 	 0) form paths in T fðAÞ and T gðBÞ, respec-
tively. A node w is formed by a pair ðu; vÞ of nodes from
each tree and Uw ¼ Uu � Uv, Vw ¼ Vu � Vv.

(b) Direct product. Let ðf;XÞ and ðg;XÞ be two systems
over the same phase space X ¼ ½0; 1�n. We choose an arbi-
trary set of nodes in T fðXÞ and prune the subtrees rooted at
them. This creates new leaves in the coding tree, which we
call absorbing.10 Next, we attach T gðVvÞ to the absorbing
leaves v. The reason we use Vv (defined here with respect to
f) and not X as argument for T g is to make the glueing
seamless. The resulting tree is called the direct product
T fðXÞ  T gðXÞ. The operation is not commutative. In fact
the two operands play very different roles: on the left, the
tree T fðXÞ gets pruned; on the right, a copy of the tree
T gðXÞ gets glued to every absorbing node, each copy
cropped in a different way. Technically, we should denote
the operation T fðXÞ  fT gðXÞg because we may attach dif-
ferent coding trees at the absorbing leaves. We omit the
parentheses to simplify the notation.

(c) Lift. A system is called block-directional of type A!B if
no edges in any of the communication graphs point from
B to A. Its coding tree is not a direct sum because, although
B evolves independently, the agents of A are coupled with
those of B. This one-way coupling is expressed by the lift
T fðA%BÞ. The arrow highlights both the dependency of A
on B and the fact that the coding tree of the whole system is

a lift of T fðBÞ from RjBj �N into Rn �N.
(d) Nesting time and word-entropy. The nesting time of a

direct sum is at most the bigger of the two nesting times.
The word-entropy of a direct sum/product is subadditive,
even when it is infinite:

hðT ff�;gT gÞ � hðT fÞ þ hðT gÞ: (11)

4.2 The Renormalized Coding Tree

Translating (3, 5, 6, 7) in the tensor language of coding trees
gives us the following rewriting rules. We omit the sub-
script f to avoid cluttering the notation

1: T ðXÞ ¼)k T ðXÞwave
2: T ðXÞwave ¼)

k<n

�
T ðAk%BkÞbseq  T ðGtkþ1Þ

sg �
3: T ðA%BÞbseq ¼) k T ðAk%BkÞbwave
4: T ðA%BÞbwave ¼)

ðT ðAÞ � T ðBÞ
�dec  T ðGt1Þ

sg 
k<n

�
T ðAk%BkÞbseq  T ðGtkþ1Þ

sg �:

8>>>>>>>>><
>>>>>>>>>:

(12)

The notation borrows from the theory of programming lan-
guages, which makes it concise but nonstandard, so a few

Fig. 3. The direct sum � and the direct product  in action.

9. Recall that the set D of discontinuities is assumed to be of polyno-
mial size for simplicity.

10. The terminology “absorbing” is by analogy with the absorbing
states of a Markov chain.

CHAZELLE: ALGORITHMIC RENORMALIZATION FOR NETWORK DYNAMICS 9



words of explanation are in order. Recall that water starts
flowing from agent 1 to the nodes of G0 that point to it, and
then proceeds in this manner in G1; G2; etc. The propagation
of the water determines how to break up the graph
sequence into waves as shown in (3). In other words, any
path of T ðXÞ from the root forms a sequence of waves. Let
us call “absorbing” the node corresponding to the end of
the first wave along each such path. Pruning the subtrees
rooted at the absorbing nodes leaves us with a coding tree

which we denote by T ðXÞwave�1 as a reminder that it enco-

des all first waves. In this way, T ðXÞ ¼ T ðXÞwave�1  T ðXÞ.
Repeating this process for each attached tree yields:

T ðXÞ ¼‘

k¼1 T ðXÞ
wave�k:

Note that ‘ is a variable and not a fixed parameter: it counts
the number of waves along each path, meaning that ‘ can be
finite as well as infinite. Dropping all the subscripts that can
be inferred from the context leads us to 12.1, which we
express as a rewriting rule. In rule 12.2, both Ak and Bk

involve fewer than n agents, so k ranges from 0 to n� 2 or
less. The argumentsX, Ak, Bk, etc, are used as a reminder of
the sets of agents involved. In rule 12.4, the index k extends
from 1 to less than jAj. The induction is sound because
jAkj < jAj < n. We write k < n not to specify the precise
range but to indicate whether there is an a priori bound on
k or not.

The paths of a coding tree can be infinite but they can all
be parsed by trees of linear depth. The rewriting rules (12)
give us a quick-and-dirty way to bound the nesting time in
terms of the number N of (pre-nesting) waves and block-
waves. Let nðnÞ and nðm;nÞ be upper bounds on the nesting
time for, respectively, a general n-agent system and an
n-agent block-directional system of type A!B with
jAj � m. We derive from (12) the recurrence

nðnÞ � Nðnðnðn� 1; nÞ þ 1ÞÞ
nðn� 1; nÞ � Nðnðn� 1Þ þ nnðn� 2; nÞÞ:

�

It follows that nðnÞ � ðNnÞOðnÞ. To bound N and the word-
entropy requires a closer look at the branching structure of
the coding trees.

5 PSEUDORANDOMNESS AND DISSIPATION

The discussion so far applies to any piecewise-linear net-
work-based system. For that reason, our emphasis has been
purely on syntactic considerations such as the flow of infor-
mation across the networks. We now turn our attention to
diffusive systems and exploit the averaging nature of the
updates. In other words, we expand our investigation from
the communication of information to its actual processing.
The dynamics of a diffusive influence system features a
clash between two “forces.” One of them is entropic and a
source of pseudorandomness: when a cell Vv bumps into a
discontinuity, it is broken apart and its pieces are mapped
to random-like locations. This is not always the case, how-
ever, and since chaos hinges on this entropic explosion, the
process bears close examination. To counter this entropic
effect, we have the dissipation of energy provided by the
stochastic matrices. These linear maps are contractive along

all the eigendirections except the principal ones (with eigen-
value 1). To appreciate how this complicates matters, an
illustration might help.

Picture a balloon bouncing on a lined, corrugated sur-
face. Imagine that the balloon has a tiny hole and deflates
slowly at each bounce. The probability of bouncing right
across a line will decrease over time. This illustrates the case
of a cell Vv decreasing in volume as v goes down a path of
the coding tree. Hitting a discontinuity (the balloon falling
across a line) results in the splitting of Vv, which can often
be described as a (pseudorandom) branching process. A
high enough deflation rate might be able to overcome the
splitting rate, with the production of new pieces slowing
down over time and the branching process dying out: this is
how limit cycles are produced. The difficulty is that the bal-
loon does not contract along the principal direction(s); fur-
thermore these directions can change and span spaces of
varying dimension. Because of the non-commutativity of
the matrices, the system does not have coherent eigenmo-
des. The true picture, therefore, is not that a round balloon
deflating over time but, rather, of a balloon turning into a
football, then into a sausage, etc. While our earlier intuition
had no trouble with a shrinking balloon hitting a line with
decreasing frequency, this new picture of footballs and sau-
sages is more difficult to grasp. If you throw a sausage on
the ground, its thickness has little effect on its probability of
crossing a fixed line (think of Buffon’s needle): only the
length matters. But if this length does not decrease, then
how can the branching process die out? To answer this
question, which is at the heart of the renormalization pro-
cess, we provide a dynamic classification of the agents into
dominant and subdominant groups.

5.1 Dominance Structure

We begin with the simple case of a fixed communication
graph G. The standard decomposition of the corresponding
Markov chain partitions the nodes into essential and ines-
sential classes. For completeness, we briefly review this pro-
cess. The strongly connected components of G partition the
node set into subsets, which, if contracted into single nodes,
are seen to be joined together by edges so as to form an acy-
clic graph.11 The sinks of this graph form the classes of domi-
nant agents: no path in G can exit from a dominant class.
The other agents are called subdominant.

For example, Fig. 4a features a nine-node graph G with
three dominant classes: f1; 2; 4g; f5; 7; 9g; f6g. With a single

graph, the system evolves as Ptx, where P is the stochastic
matrix associated with G. Because of the positive diagonal,
each dominant class, being strongly connected, converges
to an attracting fixed point (more on which below) and the
number of such classes represent the long-term rank of the
system (i.e., its long-term “dimensionality”). The subdomi-
nant agents 3 and 8 are attracted to some convex combina-
tion of the dominant agents (Fig. 4b). The system is block-
directional of type subdominant!dominant, which in this
running example is f3; 8g!f1; 2; 4; 5; 6; 7; 9g. In our discus-
sion, the agents lie on the real line. In the figure, however,

11. The property that two nodes are joined by paths in both direc-
tions forms an equivalence relation. The strongly connected compo-
nents of the graph are the equivalence classes.
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we have placed them in the plane for visual convenience
(the same ideas work in higher dimension, anyway).

Suppose now that the communication graph changes
with time but that the dominance structure does not. Fur-
thermore, suppose that none of the three dominant classes
can communicate with one another. The dominant agents
end up frozen in place and only the two subdominant
agents can move. Asymptotic periodicity means that each
of the agents 3 and 8 approaches a cyclic trajectory, not
necessarily with the same period. Crucially, the subdomi-
nant agents can never leave the convex hull of the domi-
nant ones once they are inside it (which will eventually
happen). We wish to derive sufficient conditions under
which, over an infinite time horizon, the dominance struc-
ture eventually settles, the dominant agents converge to
fixed-point attractors, and the subdominant ones reach
limit cycles.

5.2 Attraction Rate

We go back to the case of a fixed graph and show how to
bound the convergence rate. In anticipation of our treatment
of dynamic networks, however, we do it by using our water
propagation mechanism, instead. Let B1; . . . ; Br be the dom-
inant classes, and let ni ¼ jBij and m ¼ n� ðn1 þ � � � þ nrÞ.
The system is block-directional of type A!B, where
B ¼ B1 [ � � � [Br and A ¼ ½n� nB. By abuse of terminology,
the stochastic matrix P is of the form

P ¼ A C
0 B

� 	
:

(a) Limit of At. Our next observation provides the key link
between water propagation and dissipation: it is simple and
crucial. Every time water propagates to new agents, some-
thing shrinks: in the case of B, it is the length of the smallest
interval enclosing the wet agents; in the case of A, it is mem-
ory about itself. We explain. Initialize the agents of A at 1
and those of B at 0. Since G models a block-directional sys-
tem of type A!B, the agents ofBwill never be able to leave
0. We assume that m > 0. Because G is fixed, there is no
flooding delay, so the dec and bseq sequences in (7) are
empty, and formulas (6, 7) give us

�
A � � �A|fflfflfflfflffl{zfflfflfflfflffl}
�m

�bwave �
A � � �A|fflfflfflfflffl{zfflfflfflfflffl}
�m

�bwave � � �
Consider a single block-wave and let �t be the length of the
smallest interval enclosing the wet agents (which includes
those in B) at time t, with �0 ¼ 0. We denote by R the

complement of this interval in ½0; 1�. Note that a dry agent
becomes wet as soon as it leaves 1. For �t to increase, a wet
agent must move into R: it could be one currently wet that
slides to the right into R or a dry agent at 1 moving left into
R and becoming wet. In both cases, the agent moves to the
mass center of its neighbors (including itself), so R can
shrink by at most a factor of n; in other words

1� �tþ1 	 1
n

�
1� �t

�
:

Since water propagates at each step, it follows that
�t � 1� n�n at the end of the first block-wave. In other
words, the smallest interval enclosing wet agents can grow
but only up to length 1� n�n. When the block-wave termi-
nates, the agents are then wet, which means that all n agents
fit strictly within ½0; 1�. In other words, each block-wave
shrinks the smallest interval enclosing the whole system by
at least a factor of 1� n�n; hence �t � 2�gt, for some fixed
g 	 Vðn�nÞ. Since the placement of the agents of A after t

steps is given by the coordinates of At1, it follows that

kAt1k1 � 2�gt: (13)

The previous argument relies on the absence of any flooding
delay. Indeed, a delay of u steps might allow R to shrink by
a factor exponential in u (if wet agents point to dry ones but
not the other way around), which can lead to the sort
of crawling behavior in evidence in the Very Slow Clock of
Section 2.5.

(b) Limit of Bt. To bound the convergence rate of Bt pro-
ceeds along similar lines. The matrix B is the block diagonal
matrix ðB1; . . . ; BrÞ. Each Bi can be treated separately, so we
might as well assume that r ¼ 1. Since B is strongly con-
nected, formulas (3, 5) simplify into12

�
B � � �B|fflfflfflfflffl{zfflfflfflfflffl}
<n�m

�wave �
B � � �B|fflfflfflfflffl{zfflfflfflfflffl}
<n�m

�wave � � �
Initialize all the agentsB at 0, except for the kth one, which is
placed at 1. As before, we define �t as the length of the small-
est interval enclosing the wet agents. Removing this interval
from ½0; 1� leaves us with two intervals L;R. The previous
argument shows that neither L nor R can shrink by more
than a factor of n in a single step. Since B is strongly con-
nected, water propagates at each time step, so �t � 1� n�n

at the end of the first wave (t < n). The placement of the
B-agents is given by the kth column of Bt. It follows that, for
some fixed probability distribution vector z 2 Rn,��Bt � 1zT

��
max
� 2�gt: (14)

(c) Limit of Pt. With the estimates on the powers of A and
B given by (13, 14), it is now routine to bound

Pt ¼ At Ct

0 Bt

� 	
;

where C1 ¼ C and Ctþ1 ¼ ACt þ CBt. By (13), the matrix
I �A is nonsingular, hence the elementary identity

Fig. 4. A one-graph system evolving to a fixed-point attractor, with its
three dominant classes highlighted.

12. By abuse of notation, we write B for its induced subgraph.
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Ct ¼ ðI �AtÞðI �AÞ�1C 1zT þ
Xt�1
k¼0

At�k�1CðBk � 1zT Þ:

By (13, 14), any matrix entry in the kth summand is

bounded by 2�gðt�k�1Þ�gk in absolute value. The max-norm

of the matrix sum itself is therefore at most t2�gðt�1Þ entry-

wise. The entries of ðI �AÞ�1 are at most
P

t 2
�gt ¼ OðnnÞ.

By rescaling g, we reach the following conclusion: there

exists g 	 Vðn�nÞ such that, for any t > 1=g, kPt�
P kmax � 2�gt, where

P ¼ 0 ðI �AÞ�1C 1zT

0 1zT

� 	
: (15)

If the number r of dominant classes is larger than 1, then 1zT

needs to be replaced by a rank-r stochastic matrix of the

form diagð1zT1 ; . . . ; 1zTr Þ, where zi is a probability distribu-

tion vector in RjBij. The limit cycles of directional systems of
type A!B are described by (time-invariant) matrices such
as P , with one difference: all the agents in A are subdomi-
nant but not all of B needs to be dominant. As long as the
powers of B converge at the rate given above, however, Pt

will also converge accordingly.

6 THE ANALYSIS

Recall that our diffusive influence systems are assumed to
be locally coupled (see Section 2.3). As in [6], we assume a
snap rule: the status (in or out) of ði; jÞ as an edge of GðxÞ is
constant over the slab jxi � xjj < "0; in other words, the
edge cannot vanish and reappear incessantly as the agents
i and j get infinitesimally close to each other.13 The idea of
renormalization is to prove that a certain dynamical behav-
ior is recursively preserved as we move up the hierarchy of
subsystems. In this case we prove inductively that each one
of the systems on the right-hand side of the rules in (12) sat-
isfies the following properties:

� There exists a region E, called the exclusion zone, such
that the coding tree T ðXnEÞ has a nesting time and a
word-entropy bounded by n and h respectively,
where X ¼ ½0; 1�n. The exclusion zone is the union of
a set of d-slabs, which are regions of Rn of the form

fx : juTx� 1j � dg, for kuk2 ¼ nOð1Þ and d at most a
small positive constant. (These bounds can be
adjusted liberally.) Only shallow nodes contribute
d-slabs and at most jDj each. Given a node v of the
coding tree, let P�v denote the stochastic matrix
encoding the linear restriction of ftv to Uv. The node
is said to contribute to the exclusion zone if the latter
includes one (or several) d-slabs of the form

fx : juTP�v x� 1j � dg, where uTx ¼ 1 is a disconti-

nuity of D. Because kPT
�v uk2 ¼ nOð1Þ, the

polynomiality condition on the coefficients of d-slabs
is preserved under any of the tensor operations,
since these only require updating P�v. The total
number of d-slabs in the exclusion zone is bounded

by jDj2hðT Þ. For a d-slab to intersect the unit cube X,

the vector PT
�v u cannot be too short: indeed, the

width is 2d=kPT
�v uk2 ¼ Oðd ffiffiffi

n
p Þ, so the slab spans a

volume of OðdnnÞwithinX; hence

Vol ðXnEÞ 	 1� nOðnÞd2hðT Þ: (16)

� Every orbit starting in XnE (and not hitting an
absorbing node) is a limit cycle (possibly of period
1). There is a single infinite path descending from
any nonshallow node v. If p (resp. q) is its corre-

sponding period (preperiod), then pþ q � 2h and

P�v ¼ P�wP
ðtv�twÞ=p, where w is an ancestor of v of

depth between q and pþ q (assuming v deep
enough); there are p matrices P associated with the
given path, each one the product of p of the original
stochastic matrices associated with the linear restric-
tions of f . We assume a uniform lower bound g for
the values of g ¼ gðP Þ in (15) over all subsystems of
any type with a given number of agents.

We analyze the effect of the four rules (12) on the coding
tree. By convention, n; h (resp. n0; h0) denote the parameters
for the right-hand (resp. left-hand) side of the rule under
consideration.

6.1 Sequence to Block-Sequence

Rule 12.1 rewrites T ðXÞseq as the iterated direct product
kT ðXÞwave. We show that, upon completion of the sth
wave (should it exist), all the agents are covered by an inter-

val of length 2�s=n
Oð1Þ

. The argument is a variant of the one
we used in Section 5.1 to prove (14). The number of direct
products in rule 12.2 is less than n and every single-graph
Gtkþ1 signifies the propagation of water to dry agents. Let �k

be the length of the smallest interval enclosing Ak at time tk,
i.e., at the formation of the block-directional sytem of type
Ak!Bk. One difference with Section 5.1 is that, by the time
Ak gives way to Akþ1 at time tkþ1, its enclosing interval
might have grown to cover almost all of ½0; 1�. This might
happen if Bk has agents at 0 and 1, for example, and Ak has
edges pointing to them.14 Obviously, the worst case features
all the agents Bk located at 0 or 1. Neither L nor R can
shrink by more than a factor of n in a single step, so the
length of neither one can fall below "0=n prior to tkþ1 (note
that it can be smaller than "0=n to begin with: it just cannot
become so). It follows that

1� �kþ1 	 1
n min

�
1� �k; "0

�
	 "0n

�n 	 n�OðnÞ;

which proves that all the agents are covered by an interval
of length 2�s=n

OðnÞ
after s waves. Once all the agents lie

within an interval of length "0, the snap rule freezes the
communication graph and, by (15), the system is attracted

to a fixed point at a rate of 2�t=n
OðnÞ

. The system is then

13. We can choose "0 to be arbitrarily small but, for convenience, we
set "0 ¼ 2�OðnÞ. The snap rule is needed for our main result: indeed,
without it, the systems can be chaotic even under perturbation [6]. In
fact, without it, any piecewise-linear system can be simulated by a dif-
fusive influence system: in other words, the matrices need not even be
stochastic and averaging becomes essentially irrelevant. We note that
the snap rule is automatically implied bymetrical systems, where discon-
tinuities are of the form xi � xj ¼ u. 14. The Very Slow Clock builds on this idea.
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essentially of rank 1 but, of course, the high likelihood of
incomplete waves can increase the rank (and the period) by
creating several dominant classes. By repeated applications

of subadditivity (11), h0 � ð#wavesÞh; hence, by "0 	 2�OðnÞ,

h0 � nOðnÞh. Rule 12.2 expresses T ðXÞwave via fewer than n
direct products whose factors are themselves products with
a single-graph coding tree, so using primes to denote the
trees formed by application of the two rules 12.1 and 12.2,
we get

n0 � nOðnÞn and h0 � nOðnÞh : (17)

(a) Bidirectional systems. Before we move on to the analy-
sis of the last two rules, it is helpful to build some intuition
by resolving the bidirectional case. This is the version of the
model where the communication graph GðxÞ is undirected:
every edge ði; jÞ comes with ðj; iÞ. Such systems are known
to converge [10], [12], [14]. We show how the renormaliza-
tion framework leads to a bound on the relaxation time.
(We are not aware of any other method for achieving this
result.) The parsing rules in (12) reduce to these two:

T ðXÞ ¼)k T ðXÞwave

T ðXÞwave¼)k<n

n �
T ðAkÞ � T ðBkÞ

�
 T ðGtkþ1Þ

sg
o
:

(

Let n; h denote upper bounds on the nesting time and
word-entropy of Ak and Bk. We can show inductively that
the period is 1 (fixed-point attraction) so that, along any
given path of the coding tree of the direct sum, a node v of

depth tv > n is such that P�v ¼ P�w P tv�n for some node w of
depth n. The matrix P is of the form

P ¼ Aw 0
0 Bw

� 	
;

with both of Aw and Bw playing the role of B in (15).15 This
implies the existence of an idempotent matrix P such that

kPl � Pkmax � 2�gl, for g 	 1=nOðnÞ and any l 	 0. (Better
bounds can be found but they are not needed here.) How
much higher than n the nesting time of the direct sum can
be depends on how deep a node v can be such that Vv inter-

sects a discontinuity uTx ¼ 1 involving agents from both Ak

and Bk. This occurrence implies that uTP�v x ¼ 1 for some
x 2 Uv; hence,

juTP�w Px� 1j � kuk12�gðtv�nÞ � 2�gðtv�nÞþOðlog nÞ:

To make this into a d-slab, we set tv 	 nþ j log d jnbn for
constant b large enough. The slab does not depend on v but
on its path, so adding it to the exclusion zone guarantees
the absence of absorptions deeper than tv. Accounting for

all the direct sums sets an upper bound of nnþ nOðnÞj log d j
on the nesting time of T ðXÞwave. Using subscripts to indicate
the number of agents, by (17),

nðT nÞ � nOðnÞðnðT n�1Þ þ j log d jÞ � nOðn2Þj log dj: (18)

By subadditivity (11), a conservative upper bound on the
word-entropy of T ðXÞwave is nð2hðT n�1Þ þ log nðT nÞÞ; hence

hðT nÞ � nOðnÞ�hðT n�1Þ þ logj log d j
�
� nOðn2Þlogj log d j:

By (16),

Vol ðXnEÞ 	 1� nOðnÞd2hðT nÞ 	 1� dj log d jn
Oðn2Þ

> 1�
ffiffiffi
d
p

;

for d > 0 small enough. This proves that the tiniest random
perturbation of the starting configuration—obtained by,
say, shifting each agent randomly left or right by a constant,
but arbitrarily small amount—will take the system to a
fixed-point attractor with probability close to 1. By (18) and
the convergence rate of single-graph systems, the system is
at a distance " away from its attractor after a number of

steps equal to nOðn2Þj log d" j. The dependency on d (and, of
course, ") cannot be avoided. Indeed, there is no uniform
bound on the convergence rate over the entire phase space
½0; 1�n. The following result requires the snap rule stated at
the beginning of this section but holds even in the absence
of local coupling.

Theorem 6.1. With probability arbitrarily close to one, a per-
turbed bidirectional diffusive influence system is attracted to a
fixed point. Specifically, with probability at least 1� d, the sys-
tem is at distance " of the fixed point after cnj log d" j steps,
where cn depends on the number n of agents.16

(b) Entropy versus energy. We return to the case of general
diffusive influence systems with no assumption of bidirec-
tionality. The nesting time n tells us how deep we have to
go down the coding tree for the dynamics to stabilize. The
average degree m of a shallow node can be defined by

2h ¼ mn, so that, as d goes to 0, one would expect of a peri-

odic system ðf;XnEÞ that m ¼ 2h=n should tend to 1. The
average degree measures the tension between the entropic
forces captured by h and the energy dissipation expressed
by n via the water propagation. The coding tree can branch
at a maximum rate of roughly jDjn per node. For the system
to be attracting, the rate must be asymptotically equal to 1.
It was fairly easy to achieve this without heuristic assump-
tions in the bidirectional case. We have shown that it is pos-
sible in the general case [6] provided that we assume a
certain timing mechanism to prevent the re-entry of long-
vanished edges. In the absence of such conditions, the criti-
cal region in parameter space between chaos attraction
remains mysterious. In the next section, we sketch minimal
heuristic assumptions to ensure asymptotic periodicity.

6.2 Block-Sequence to Block-Sequence

Rule 12.3 rewrites T ðA%BÞbseq ask T ðAk%BkÞbwave. This
is our main focus in this section, with a brief mention of rule
12.4 at the end. Fix a path in the coding tree and let v ¼ vðsÞ
the first node (if at all) after the first s block-waves. By defi-
nition,

15. Both Aw and Bw can have several dominant classes.
16. We showed in [6] how to improve the time bound via the

s-energy [5].

CHAZELLE: ALGORITHMIC RENORMALIZATION FOR NETWORK DYNAMICS 13



P�v ¼
As Cs

0 Bs

� 	
:

Repeating the argument from Section 5.1 used for the limit
of At, we find that

kAs1k1 � 2�g
0s; (19)

for some g 0 > 0. Note that we need not assume that B con-
sists only of dominant agents. We used a fairly technical
argument to bound g 0 in [6] under some mechanism to con-
trol the reappearance of long-absent edges. We pursue a
simpler, more general approach here.

(a) The intuition. Recall that the word-entropy measures
how likely a typical shallow node v sees its cell Vv intersect
a discontinuity and split accordingly. The best way to
bound the growth of the word-entropy, therefore, is to
show that the cells Vv shrink and hence split with diminish-
ing frequency as tv grows. The system is not globally
contractive, however, and the diameter of Vv, far from
shrinking, might actually grow. Indeed, consider the two-
agent system with the single graph a!b: the iterates of the
cell ½0; 0:1� � ½0; 1� converge to the segment ½ð0; 0Þ; ð1; 1Þ�, so
that the area vanishes while the diameter grows by roughly

a factor of
ffiffiffi
2
p

. In this example, the cell thins out in the hori-
zontal direction but stays unchanged along the vertical (i.e.,
the dominant) one. The solution is first to factor out the
dominant agents and then restore their dynamics in a neigh-
borhood of the periodic points via coarse-graining. This can
also be interpreted as a foliation of the system.

For a mechanical analogy, think of the B-agents as form-
ing the frame of a box-spring. First, we consider a fixed
frame and study the vibrations of the springs subject to an
impulse:17 the network of springs (the A-agents) may see its
topology change over time but the frame itself remains
rigid. In a second stage, we allow the frame to be deformed
under its own internal forces. The dynamics of the frame
itself is decoupled from the springs (just as B is decoupled
from A in a block-directional sytem of type A!B). This
sort of quotient operation is precisely what algorithmic
renormalization aims for. We flesh out this intuition below.

(b) Freezing the B-agents. We begin with the case of a fixed
“box-spring frame.” The phase space becomes ½0; 1�m �
fxBg, where xB is now viewed as a parameter in ½0; 1�n�m.
Let T �s denote the coding tree of the first s block-waves in
rule 12.3 and let v be a node deep enough that at least s
block-waves occur before time tv. Because of the approxima-
tion on As in (19), the projection of Vv onto ½0; 1�m is con-
tained in an m-dimensional cube of side-length at most

2�g
0s. If Vv intersects a discontinuity uT

AxA þ uT
BxB ¼ 1, it

then follows that�� �uT
ACs þ uT

BBs

�
xB � 1

�� � 2�g
0sþOðlog nÞ; (20)

for some x ¼ ðxA; xBÞ. Fix an arbitrarily large threshold

s0 and observe that s0 , 2�g
0s0 is an upper bound on the

side-length of the cube enclosing Vv for any v deeper than
the s0th block-wave. We model the children of v as the

outgrowth of a branching process whose reproduction rate

(the average node degree) is at most n2s0jDj.
Here is a quick heuristic justification. We begin with our

earlier observation (10) that the union Vt of the cells Vv for a
given depth tv ¼ t forms a nested sequence as t grows. In
the absence of any process biasing the orbits towards the
discontinuities, a random point from Vt should not be sig-
nificantly closer to a discontinuity than if it were random
within X itself. Thus, if a typical cell fðVvÞ ends up being
thrown randomly within Vt, one would expect it to intersect
a discontinuity with probability that depends on the size of
its enclosing cube. We show how to derive the reproduction
rate when Vt is roughly X. (The argument is scalable so it
can be extended to the case where Vt is much smaller than
X.) If a point is at distance

ffiffiffi
n
p

s0 from a hyperplane, it is
possible to move it to the other side by changing a suitable
coordinate by at most ns0 (easy proof omitted). The esti-

mate of n2s0jDj follows from a union bound on the n coordi-
nates and the discontinuities. This heuristic validation does
not hold in the chaotic construction given in [6], which is
precisely why we need the snap rule. As was shown there,
when the B-agents are frozen, however, the reproduction
rate can be provably bounded.

The coding tree T �s is renormalized by rule 12.3 as a tree
of block-wave trees: the latter’s absorbing nodes are at most
n away from the root. Past the s0th block-wave, the probabil-
ity that a given node v has its cell Vv is split by a discontinu-

ity is at most n2s0jDj. This creates a reproduction rate of

mv ¼ 1þ s0n
OðnÞ for a given node v and m � mn

v for an entire
whole block-wave tree. Assuming that s0 is sufficiently

smaller than 1=nnOðnÞ,

m � 1þ s0nn
OðnÞ: (21)

We enforce nesting after s block-waves by adding to the
exclusion zone a number of d-slabs no greater than

jDj2hðT �sÞ: for this, we need to ensure that s 	 s0 þ ðj log d j þ
b log nÞ=g 0, for constant b large enough, so that d dominates
the right-hand side in (20). Note that xB is considered a
parameter here, so the slabs do not split the cells Vv per se:
they simply exclude certain positions of xB, i.e., certain con-
figurations of the fixed box-spring frame. By subadditivity,

hðT �sÞ � ðs0 þ 1Þhþ ðs� s0Þlog m:

We artificially added 1 to s0 to account for the fact that
each of the coding trees for T ðA%BÞ between block-waves
s0 and s needs its own exclusion zone: this slight overesti-
mate of the word-entropy has the benefit of keeping

jDj2hðT �sÞ as a valid upper bound on the number of slabs
needed for the exclusion zone. Using primes to refer to the
left-hand side of rule 12.3, the word-entropy can be
bounded as follows:

h0 � ðs0 þ 1Þhþ 1

g 0
�
j log d j þOðlog nÞ

�
log m : (22)

(c) Coarse-graining. We turn to the case of the dynamic
“box-spring frame.” The previous analysis was premised
on the assumption that the B-agents were frozen once and
for all. Treating them as variables in Rn�m may violate the

17. For the analogy to be accurate, one must think of the springs as
being one-way—in flagrant violation of Newtonian mechanics...
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assumption that deep nodes rarely witness branching. By
Crofton’s Lemma (Buffon’s needle), a random positioning
of a cell Vv will hit a discontinuity with high probability if
the diameter of the cell is large. All we can argue is that the
volume decreases as the depth of v grows, but it is the diam-
eter that matters, not the volume! The solution is to coarse-
grain the phase space for B by subdividing it into tiny cubes
and then treating each cube as a single point.

We subdivide ½0; 1�n�m into cubes of side-length s0 and
restrict xB to one of them, denoted cB. Consider a path of
T ðBÞ and let p denote its period (taking multiples if neces-
sary to ensure that nþ p is at least the preperiod). We denote
by B�v the stochastic matrix encoding the linear restriction
of ftv to the space of B-agents. If tv > nþ p then, by our
induction hypothesis (since jBj < n),

B�v ¼ B�wB
ðtv�twÞ=p
w ;

where tw � nþ p and Bw is one of pmatrices associated with
the periodic orbit; furthermore, there exists an idempotent

matrix Bw such that kBl
w � Bwkmax � 2�gl. Of course, this

still holds if we switch our point of view and consider a
node v of T ðXjcBÞ of depth tv > nþ p, where the notation

XjcB indicates that the phase space is still X but

Uroot ¼ ½0; 1�m � cB. If v is the first node after s block-waves
then, by (19), for any x 2 Uv,���ftvðxÞ � Cs

B�wBw

� 	
xB

���
1
� 2�g

0s þ n2�ðtv�n�pÞg=p: (23)

By our assumption that xB can vary by at most s0 in each
coordinate and x ¼ ðxA; xBÞ, the cell Vv is enclosed within a
cube of side-length s1, where

s1 � s0 þ 21�g
0s þ n21�ðtv�n�pÞg=p: (24)

We update (21) to estimate the new reproduction rate on the
assumption that s > s0 and s1 is sufficiently smaller than

1=nnOðnÞ:

m � 1þ s1nn
OðnÞ: (25)

If Vv intersects the discontinuity uT
AxA þ uTBxB ¼ 1, then, by

(23) and kuk2 ¼ nOð1Þ,�� �uT
ACs þ uTBB�wBw

�
xB � 1

��
� 2�g

0sþOðlog nÞ þ 2�ðtv�n�pÞg=pþOðlog nÞ � d;
(26)

with the last inequality ensuring that the constraints fit
within d-slabs. Observe that the characteristic timescale is
1=g 0 (measured in block-waves) for T ðA%BÞ and p=g for
T ðBÞ. After a suitably large number s of block-waves
(s > s0), we add to the exclusion zone the relevant d-slabs
for each node at the depth corresponding to the end of the
sth block-wave.

To see why this causes nesting, we examine the coding
tree for B first. The added slabs are cylinders, with their
bases in cB, which carve the cells Uv into subcells that are
“essentially” invariant for all times in the relevant residue
class modulo the corresponding period. The qualifier refers
to the fact that the orbit converges toward a fixed point at a
rate of 2�g per cycle. For t large enough so that the second

exponential term in (26) is sufficiently smaller than d, the
orbits of the B-agents might still hit the slabs but not cross
their mid-hyperplane. From that point on, we can thus fac-
tor out the B-agents by pretending that they are fixed and,
from there, infer nesting. Adding the contribution to the
word-entropy of the grid decomposition of the space of
B-agents, we update (22) as

h0 � ðn�mÞj log s0j þ ðs0 þ 1Þhþ ðs� s0Þlog m:

We set s ¼ s0 þ b
g0 log

n
d
and tv ¼ nþ bp

g
log n

d
, for a constant b

large enough (reused generically to alleviate the notation).
These assignments satisfy (26). We will always choose d

smaller than s0. By (24) and the definition of s0 as 2
�g0s0 , this

implies that s1 � 22�g
0s0 and, by (25), log m � 2�g

0s0nnOðnÞ.
This upper bound is much less than 1 if we set

s0 ¼
1

g 0
log

nbnn

g 0
j log d j

�
:

It follows that n0 � sn � ðs0 þ b
g0 log

n
d
Þn and

h0 � ðs0 þ 1Þðhþ ng 0Þ þ 1:

By subadditivity, rule 12.4 adds factors of at most n to
these bounds. Using primes to refer to the parameters of

T ðA%BÞbseq and unprimed notation to refer to any of the
trees in the right-hand side of rule 12.4, we use the inequal-

ities d < s0 and n � 2h to derive (conservatively):

n0 � Oðn=g 0Þ3j log d jn
h0 � Oðn=g 0Þ3ðlogj log d jÞh2:

�
(27)

6.3 Putting It All Together

We are now in a position to bound the volume of the exclu-
sion zone E. We denote by hn the maximum word-entropy
of T ðXnEÞ for any n-agent system. We reserve the notation
hm;n for the biggest of hm, hn�m, and the maximum word-
entropy of any n-agent bidirectional system of type A!B

with jAj � m. By (17, 27), hn � nOðnÞhn�1;n, and, for
0 < m < n,

hm;n � max
n
hm; hn�m;Oðn=g 0Þ3ðlogj log d jÞh2

m�1;n

o
:

It follows that hn �
�
g 0�1logj logdj

�2OðnÞ
. Because d appears as

a double (and not single) logarithm in the upper bound, by
(16),

Vol ðXnEÞ 	 1� nOðnÞd2hn < 1�
ffiffiffi
d
p

;

for d small enough. This allows us to claim asymptotic
periodicity under perturbation provided that we have local
coupling, the snap rule, and the branching process with
bounded reproduction rate discussed in Section 6.2.

Theorem 6.2 Under the heuristic assumptions just mentioned,
with probability arbitrarily close to one, perturbing the initial
state of a diffusive influence system produces an orbit that is
attracted to a limit cycle.
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This result makes no bidirectionality assumption. It
comes with strings attached to it, however: notably pseudo-
random discontinuity splitting and uniform bounds on the
convergence rates. Our intuition that such heuristic assump-
tions are valid is backed by abundant empirical evidence.
That said, one should not underestimate the challenge of
justifying them mathematically. We were able to do it in [6]
with a single enforceable (i.e., non-heuristic) assumption in
the model and this already required quite a bit of technical
work. To remove all assumptions seems a formidable
endeavor. Unlike the study of traditional algorithms, the
investigation of such natural algorithms (i.e., dynamical sys-
tems with algorithmic descriptions) can be extremely diffi-
cult even for very small input sizes: indeed, fewer than a
dozen agents are sufficient to create dynamics so complex it
eludes the current mathematical state of the art.

An avenue of research that seems more accessible is to
develop a notion of fractional wetness. In our framework, an
agent node is dry or wet but nothing inbetween: its status is
a binary predicate that indicates whether information has
been received but not how much. Since the dissipation
rate depends on the quantity of information transmitted, it
might be useful to delay the completion of the waves until
the wetness of each agent has reached a certain threshold.
How to develop a “belief propagation” method of message
passing for parsing the graph sequences using a variant of
the flow tracker is a promising line of attack that warrants
close scrutiny.
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