
Estimating the Distance
to a Monotone Function�

Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu

Department of Computer Science, Princeton University, Princeton NJ 08544, USA
{nailon,chazelle,csesha,dingliu}@cs.princeton.edu

Abstract. In standard property testing, the task is to distinguish be-
tween objects that have a property P and those that are ε-far from P ,
for some ε > 0. In this setting, it is perfectly acceptable for the tester
to provide a negative answer for every input object that does not satisfy
P . This implies that property testing in and of itself cannot be expected
to yield any information whatsoever about the distance from the object
to the property. We address this problem in this paper, restricting our
attention to monotonicity testing. A function f : {1, . . . , n} �→ R is at
distance εf from being monotone if it can (and must) be modified at
εfn places to become monotone. For any fixed δ > 0, we compute, with
probability at least 2/3, an interval [(1/2 − δ)ε, ε] that encloses εf . The
running time of our algorithm is O(ε−1

f log log ε−1
f log n), which is optimal

within a factor of log log ε−1
f and represents a substantial improvement

over previous work. We give a second algorithm with an expected running
time of O(ε−1

f log n log log log n).

1 Introduction

Since the emergence of property testing in the nineties [12, 8], great progress
has been made on a long list of combinatorial, algebraic, and geometric testing
problems; see [11, 6, 4] for surveys. Property testing is a relaxation of the standard
decision problem: Given a property P , instead of determining exactly whether
a given input object satisfies P or not, we require an exact answer only if the
object satisfies the property or if it is far from doing so. This subsumes a notion
of distance: Typically the object is said to be ε-far from P if at least a fraction ε
of its description must be modified in order to enforce the property. The largest
such ε is called the distance of the object to P . In this setting, the tester can say
“no” for every input object that does not satisfy P , which precludes the leaking
of any information regarding the distance of the object to the property.

This weakness has led Parnas, Ron, and Rubinfeld [10] to introduce the con-
cept of tolerant property testing. Given 0 ≤ ε1 < ε2 ≤ 1, a tolerant tester must
accept all inputs that are not ε1-far from P and reject all of those that are ε2-far
(and output anything it pleases otherwise). A related problem studied in [10]

� This work was supported in part by NSF grants CCR-998817, CCR-0306283, ARO
Grant DAAH04-96-1-0181.

K. Jansen et al. (Eds.): APPROX and RANDOM 2004, LNCS 3122, pp. 229–236, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

230 Nir Ailon et al.

is that of estimating the actual distance of the object to the property within
prescribed error bounds. In the model considered, all algorithms are random-
ized and err with probability at most 1/3. (or equivalently any arbitrarily small
constant).

Testing the monotonicity of functions has been extensively studied [1–3, 5,
7, 9]. In the one-dimensional case, given a function f : {1, . . . , n} �→ R, after
querying O(log n)/ε function values, we can, with probability at least 2/3, ac-
cept f if it is monotone and reject it if it is ε-far from being monotone [3].
These methods do not provide for tolerant property testing, however. Very re-
cently, Parnas, Ron and Rubinfeld [10] designed sublinear algorithms for tolerant
property testing and distance approximation for two problems: function mono-
tonicity and clustering. If εf denotes the distance of f to monotonicity, their
algorithm computes an estimate ε̂ for εf that satisfies (1/2)εf − δ ≤ ε̂ ≤ εf + δ
with high probability. The query complexity and running time of their algorithm
are both Õ((log n)7/δ4) (the Õ notation hides a factor of (log log n)O(1)). The
algorithm maintains and queries a data structure called an “index-value tree.”
Since the running time is sublinear, the tree is stored implicitly and only relevant
portions are constructed whenever necessary, using random sampling to make
approximate queries on the tree. Their construction is sophisticated and highly
ingenious, but all in all quite involved.

We propose a simpler, faster, algorithm that is nearly optimal. Given any
fixed δ > 0, it outputs an interval [(1/2−δ)ε, ε] that encloses εf with probability
at least 2/3. The running time is O(ε−1

f log log ε−1
f log n), which is optimal within

a factor of log log ε−1
f . (The optimality proof is quite simple and omitted from

this version.) One thing to note is the different use of δ: in our algorithm it is
part of the multiplicative factor, whereas in [10] it is an additive term. To achieve
the same multiplicative factor as in our algorithm, the additive term needs to be
Θ(δεf). This makes the running time of Parnas et al.’s algorithm Õ((log n)7/ε4

f),
for any fixed δ.

The starting point of our algorithm is the property tester of Ergun et al. [3],
which relies on a key fact: There exist at least εfn “critical” integers i ∈
{1, . . . , n}; for i to be critical means that it is the (left or right) endpoint of
an interval at least half of whose elements are in violation with i. Here i is
said to violate j if either i < j and f(i) > f(j) or i > j and f(i) < f(j).
By proving an upper bound on the number of critical integers, we are able to
define a “signature” distribution for f which reflects its distance εf fairly accu-
rately. Specifically, two functions with distances to monotonicity off by a factor
of 2 (roughly) will have signatures that are distinguishable in time O(ε−1

f log n).
This provides us with a tolerant property tester for monotonicity. We can turn
it into a distance approximator by using a one-way searching strategy, which we
discuss below. Just as in [10], our algorithm extends to higher dimension.

We also present an improvement of our one-dimensional algorithm for small
enough values of ε. We show how to estimate εf in time O(ε−1

f log n log log log n).
Unlike in our previous algorithm, the number of steps in this one is itself a
random variable; therefore, the running time is to be understood in the expected
sense over the random bits used by the algorithm.

Estimating the Distance to a Monotone Function 231

2 Estimating Distance to Monotonicity

Given two functions f, g : {1, . . . , n} �→ R, let d(f, g) = Prob[f(x) �= g(x)]
denote the distance between f and g, where x ∈ {1, . . . , n} is chosen uniformly
at random. We define εf = ming∈M d(f, g), where M is the set of monotone
functions from {1, . . . , n} to R.

Theorem 1. For any fixed δ > 0, we can compute an interval [(1/2 − δ)ε, ε]
that encloses εf with probability at least 2/3. The running time is
O(ε−1

f log log ε−1
f log n).

It is not entirely clear from the theorem that amplifying the probability of
success can be achieved by simply repeating the algorithm enough times and
taking a majority vote. What if we get different candidate intervals every time?
We do not. As will soon become obvious, majority voting does, indeed, boost
the probability of success arbitrarily close to 1.

It is easy to reduce the search for such an interval to a “distance separation”
decision problem. Suppose that, given any ε > 0, one can tell in O(ε−1 log n)
time and with probability at least 2/3 whether εf > ε or εf < (1/2 − δ)ε. If
(1/2 − δ)ε ≤ εf ≤ ε, the algorithm can report anything. For each k = 1, 2, . . .,
we run the algorithm c log(k + 1) times with ε set to εk = (1/2 − δ)k, where
c is a large enough constant, and we take a majority vote. We continue until
we hear the report that εf > ε�. By Chernoff’s bound, the probability that
ε�+1 ≤ εf ≤ ε�−1 is at least 1 − ∑

k≥0 O(1/ck2) > 2/3. The running time of
∑

1≤k≤� O(log(k+1))ε−1
k log n, which is O(ε−1

f log log ε−1
f log n) time, as claimed.

This does not quite do the job. Indeed, we are now left with the knowledge
that εf falls in the interval [ε�+1, ε�−1], which unfortunately is too big for our
purposes. It is enclosed in the interval [ε0/5, ε0], for some 0 < ε0 < 1, which we
must now shrink to the right size. To do this we simply use the previous “distance
separation” algorithm for the values (1 − kδ)ε0, for 0 ≤ k ≤ 1/δ. This allows us
to pinpoint εf within an interval of the form [(1/2−O(δ))ε, ε]. Rescaling δ gives
us the desired result. It thus suffices to prove the following lemma:

Lemma 1. For any fixed ε, δ > 0, we can decide, in time O(ε−1 log n) and with
probability at least 2/3, whether εf > ε or εf < (1/2−δ)ε. If (1/2−δ)ε ≤ εf ≤ ε,
the algorithm can report anything.

2.1 A Separation Oracle

As mentioned in the introduction, the key to estimating the distance to mono-
tonicity is to approximate the number of “critical” integers (to be defined in the
next section). To identify a critical integer i, we need to find an interval starting
or ending at i such that there are many violations with i in the interval. This
is done through random sampling, to ensure a sublinear running time. The mo-
tivation for the following definitions on joint distributions of random variables
will be made clear later in this section.

232 Nir Ailon et al.

Let D be the joint distribution of m independent 0/1 random variables
x1, . . . , xm, which can be sampled independently. If Exi ≤ a for all i, then
D is called a-light; else it is a-heavy. We describe an algorithm light-test which,
given any a < b, determines whether a distribution is a-light or b-heavy.

Lemma 2. If D is either a-light or b-heavy, for some fixed a < b, then with
probability 2/3 we can tell which is the case in O(bm/(b − a)2) time.

Proof. Call light-test({x1, . . . , xm}, c0), where c0 is chosen so that c1
def= c0(b −

a)2/b is a large enough constant. The algorithm runs in time proportional to∑
k≥0 c0k(m/2k) = O(c0m). To see why it works, we begin with a simple obser-

vation. Suppose that Exi > b, then at the k-th recursive call we sample xi (if
at all) exactly c0k times; therefore, by Chernoff’s bounds,

Prob[x̂i ≤ (a + b)/2] = 2−Ω(c1k)

The same upper bound holds for the probability that x̂i > (a + b)/2, assuming
that Exi ≤ a. Suppose now that :

– D is b-heavy: Let xi be such that Exi > b. At the k-th recursion call, the
probability that S′ is empty is 2−Ω(c1k). Summing up over all k bounds the
likelihood of erring by 1/3.

– D is a-light: The probability that any given x̂i exceeds (a + b)/2 is at
most 1/3 (conservatively) and so erring any time before the size of S is
recursively reduced to below c1 is

∑
c1≤k<|S| 2

−Ω(k) = 2−Ω(c1) < 1/6. Af-
ter that stage, the probability of reaching a b-heavy verdict is at most
O(c1(log c1)2−Ω(c1)) < 1/6.

��

light-test (S, k)

For each x ∈ S, sample it k times and compute the average x̂;
Form S′ = {x ∈ S | x̂ > (a + b)/2 }.
If |S′| = 0, then output “a-light”.
If |S′| ≥ |S|/2, then output “b-heavy”.
light-test(S′ , k + c0)

2.2 Distance Separation: The Facts

Given 0 < δ < 1/2, the integer i is called δ-big if there exists j > i such that
∣
∣
∣
{

i ≤ k ≤ j | f(k) < f(i)
}∣
∣
∣ ≥ (1/2 − δ)(j − i + 1)

or, similarly, j < i such that
∣
∣
∣
{

j ≤ k ≤ i | f(k) > f(i)
}∣
∣
∣ ≥ (1/2 − δ)(i − j + 1).

Estimating the Distance to a Monotone Function 233

Intuitively, integer i is big if f(i) violates monotonicity with an abundance of
witnesses. In the following we show that when δ is small, the number of δ-big
integers approximates εfn to within a factor of roughly 2.

Lemma 3. (i) At least εfn integers are 0-big; (ii) no more than (2 + 4δ/(1 −
2δ))εfn integers are δ-big.

Proof. Note that, for any i < j such that f(i) > f(j), either i or j (or both)
is 0-big. Therefore, if we were to remove all the 0-big integers from the domain
{1, . . . , n}, the function f would become monotone; hence (i).

To prove (ii), let C be a set of εfn integers in the domain of f over which
the function can be modified to become monotone. An element i of C is called
high-critical (resp. low-critical) if there is j �∈ C such that j > i and f(j) < f(i)
(resp. j < i and f(j) > f(i)). Note that the two definitions are exclusive. For
each δ-big i, we choose a unique witness ji to its bigness (which one does not
matter). If ji > i, then i is called right-big; else it is left-big. (Obviously, the
classification depends on the choice of witnesses.)

To bound the number of right-bigs, we charge low-criticals with a credit
scheme. (Then we apply a similar procedure to charge left-bigs.) Initially, each
element of C is assigned 1 credit. For each right-big i �∈ C among n, . . . , 1 in
this order, spread one credit among all the low-criticals k such that i ≤ k ≤ ji

and f(k) < f(i). We use the word “spread” because we do not simply drop one
credit into one account. Rather, viewing the accounts as buckets and credits as
water, we pour one unit of water one infinitesimal drop at a time, always pouring
the next drop into the least filled bucket. (There are other ways to describe this
charging scheme, none of them quite as poetic.)

We now show that no low-critical ever receives an excess of 2 + 4δ/(1 − 2δ)
credits. Suppose by contradiction that this were the case. Let i be the right-
big that causes the low-critical k’s account to reach over 2 + 4δ/(1 − 2δ). By
construction i is not low-critical; therefore, the excess occurs while right-big i is
charging the l low-criticals k such that i < k ≤ ji and f(k) < f(i). Note that,
because i �∈ C, any k satisfying these two conditions is a low-critical and thus gets
charged. With the uniform charging scheme (remember the water?), this ensures
that all of these l low-criticals have the same amount of credits by the time they
reach the excess value, which gives a total greater than l(2 + 4δ/(1 − 2δ)). By
definition of right-bigness, l ≥ (1/2 − δ)(ji − i + 1). But none of these accounts
could be charged before step ji; therefore,

(1/2 − δ)(ji − i + 1)(2 + 4δ/(1 − 2δ)) < ji − i + 1,

which is a contradiction.
We handle left-bigs in a similar way by running now from left to right, ie,

i = 1, . . . , n. Since no integer can be both left-critical and right-critical, part (ii)
of the lemma follows. ��

2.3 Distance Separation: The Algorithm
We need one piece of terminology before describing the distance separation al-
gorithm. Given an interval in [u, v], we define two 0/1 random variables α[u, v]

234 Nir Ailon et al.

and β[u, v]: given random i ∈ [u, v] ∩ {1, . . . , n}, α[u, v] = 1 (resp. β[u, v] = 1)
iff f(u) > f(i) (resp. f(i) > f(v)). With probability at least 2/3, distance-
separation (f, ε, δ). reports that εf > ε (resp. εf < (1/2− δ)ε) if it is, indeed the
case, and anything it wants if (1/2 − δ)ε ≤ εf ≤ ε.

distance-separation (f, ε, δ)

Pick s = �(1 + δ/2)ε−1 ln 2� random i ∈ {1, . . . , n}.
For each 1 ≤ k ≤ (5/δ) ln n, define x

(i)
2k−1 = α[i, i + (1 + δ/4)k]

and x
(i)
2k = β[i − (1 + δ/4)k, i].

Let D be the distribution of (x
(1)
1 , x

(1)
2 , . . . , x

(2)
1 , x

(2)
2 , . . . , x

(s)
1 , x

(s)
2 , . . .).

If D is (1/2 − δ/4)-heavy, then output “εf > ε”.
If D is (1/2 − δ/3)-light, then output “εf < (1/2 − δ)ε”.

The algorithm assumes that both δ and ε/δ are suitably small. The require-
ment on δ is nonrestrictive. To make ε small, however, we use an artifice: set
f(i) = +∞ for i = n + 1, . . . , O(n/δ). We also need to assume that the algo-
rithm used for distinguishing between light and heavy succeeds with probability
at least 1 − δ2 (instead of 2/3); to do that iterate it log δ−1 times and take a
majority vote. To prove the correctness of the algorithm, it suffices to show that:

– If εf > ε, then D is (1/2 − δ/4)-heavy with probability 1/2 + Ω(δ):

By Lemma 3 (i), more than εn integers are 0-big, so the probability of
hitting at least one of them in the first step (and hence, of ensuring that D
is (1/2)/(1 + δ/4)-heavy) is at least 1 − (1 − ε)s > 1/2 + Ω(δ).

– If εf < (1/2 − δ)ε, then D is (1/2 − δ/3)-light with probability 1/2 + Ω(δ):

By Lemma 3 (ii), the number of δ/3-big integers is less than (1 − δ)εn;
therefore, the probability of missing all of them (and hence, of ensuring that
D is (1/2 − δ/3)-light) is at least (1 − (1 − δ)ε)s > 1/2 + Ω(δ).

By running the whole algorithm O(1/δ2) times and taking a majority vote,
we can boost the probability of success to 2/3. By Lemma 2, the running time
is O(ε−1 log n), as claimed (for fixed δ). This completes the proof of Lemma 1
and hence of Theorem 1.

2.4 A Faster Algorithm for Small Distances

We show in this section how to slightly improve the query complexity of the
algorithm to

Estimating the Distance to a Monotone Function 235

O(min{log log ε−1
f , log log log n} ε−1

f log n).

The running time is now expected (over the random bits used by the algorithm).
To do this, we need the following theorem:

Theorem 2. We can compute an interval [Ω(ε/ log n), ε] that encloses εf with
probability at least 2/3. The expected running time is O(ε−1

f log n).

Using this theorem, it is clear that the factor log log ε−1
f in the distance esti-

mation algorithm can be replaced by min{log log ε−1
f , log log log n}. Indeed, in-

stead of taking k = 1, 2, 3, . . . , and running the separation oracle for each value of
εk a number of times (ie, c log(k+1) times), we redefine εk to be (1/2−δ)kε, where
ε is the estimate returned by Theorem 2. Because the maximum value of k is now
O(log log n), the running time drops to O(min{log log ε−1

f , log log log n}ε−1
f log n).

To prove Theorem 2, we turn to a construction introduced by Goldreich et
al. [7]. Define a subset P of pairs of integers: (i, j) ∈ P if j > i, and j − i is at
most t, where t is the largest power of 2 that divides either i or j. This set has
the following two properties:

– |P | = Θ(n log n).
– For any i < j, there exists k (i < k < j) such that both (i, k) ∈ P and

(k, j) ∈ P . This means, in particular, that for any violation (i, j) of f , there
exists a “witness” (i, k) or (k, j) of the violation in the subset P .

Now, for a function f , let M be a maximum matching in the violation graph
(the undirected graph whose vertex set is {1, . . . , n} and where i is connected
to j if i < j and f(i) > f(j)). It is known [7] that |M | = Θ(εfn); to be
precise, 1

2εfn ≤ |M | ≤ εfn. Let Q ⊆ P be the set of violations of f in P .
Consider the bipartite graph G with M on the left and Q on the right. Connect
an edge between (i, j) ∈ M and (a, b) ∈ Q if {i, j} ∩ {a, b} �= ∅. By the second
property above, and from the definition of a maximum matching, every node
on the right has degree either 1 or 2, and every node on the left has degree at
least 1; therefore, the cardinality of the right side is Ω(|M |). We would like to
show that it is O(|M | log n). If we could do that, then by sampling from P and
checking for violations, we could then estimate the size of Q and get the desired
approximation. Unfortunately, it is not quite the case that the cardinality of the
right side is always O(|M | log n). To fix this problem, we need to introduce some
more randomness.

We slightly change the definition of P : for an integer r ∈ [1, n] let Pr denote
the subset of pairs defined as follows: (i, j) ∈ Pr if j − i is at most t, where t is
the largest power of 2 that divides either i + r or j + r. The set Pr still has the
two properties above. In addition, if r is chosen uniformly at random then, for
any i, the expected number of j such that (i, j) ∈ Pr and j′ such that (j′, i) ∈ Pr

is O(log n). The expected number of edges of the corresponding bipartite graph
Gr, therefore, is O(|M | log n). So the expected cardinality of the right side is
α|Pr |, where α ∈ [Ω(εf/ log n), O(εf)]. We sample Pr to form an estimation
α̂ for α and return ε = Cα̂ log n, for some large enough constant C, to prove

236 Nir Ailon et al.

Theorem 2. The estimation follows the predictable scheme: (1) pick a random
r ∈ {1, . . . , n}; (2) pick a pair (i, j) uniformly at random from Pr; (3) if (i, j) is
a violation of f , output success, otherwise failure. The success probability is
precisely α, so repeating the sampling enough times sharpens our estimation to
the desired accuracy, as indicated by the following fact.

Lemma 4. Given a 0/1 random variable with expectation α > 0, with probabil-
ity at least 2/3, the value of 1/α can be approximated with a relative constant
error by sampling it O(1/α) times on average. Therefore, α can be approximated
within the same error and the same expected running time.

Proof. Run Bernoulli trials on the random variable and define Y to be the num-
ber of trials until (and including) the first 1. It is a geometric random variable
with EY = 1/α, and var (Y) = (1−α)/α2 ≤ (EY)2. By taking several samples
of Y and averaging we get an estimate ˆ1/α of 1/α. Using Chebyshev’s inequality,
a constant number of samples suffices to get a constant factor approximation.

��

References

1. Batu, T., Rubinfeld, R., White, P. Fast approximate PCPs for multidimensional
bin-packing problems, Proc. RANDOM (1999), 245–256.

2. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky,
A. Improved testing algorithms for monotonicity, Proc. RANDOM (1999), 97–108.

3. Ergun, F., Kannan, S., Kumar, S. Ravi, Rubinfeld, R., Viswanathan, M. Spot-
checkers, Proc. STOC (1998), 259–268.

4. Fischer, E. The art of uninformed decisions: A primer to property testing, Bulletin
of EATCS, 75: 97-126, 2001.

5. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorod-
nitsky, A. Monotonicity testing over general poset domains, Proc. STOC (2002),
474–483.

6. Goldreich, O. Combinatorial property testing - A survey, in “Randomization Meth-
ods in Algorithm Design,” 45-60, 1998.

7. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samordinsky, A. Testing
monotonicity, Combinatorica, 20 (2000), 301–337.

8. Goldreich, O., Goldwasser, S., Ron, D. Property testing and its connection to learn-
ing and approximation, J. ACM 45 (1998), 653–750.

9. Halevy, S., Kushilevitz, E. Distribution-free property testing, Proc. RANDOM
(2003), 302–317.

10. Parnas, M., Ron, D., Rubinfeld, R. Tolerant property testing and distance approx-
imation, ECCC 2004.

11. Ron, D. Property testing, in “Handbook on Randomization,” Volume II, 597-649,
2001.

12. Rubinfeld, R., Sudan, M. Robust characterization of polynomials with applications
to program testing, SIAM J. Comput. 25 (1996), 647–668.

	1 Introduction
	2 Estimating Distance to Monotonicity
	2.1 A Separation Oracle
	2.2 Distance Separation: The Facts
	2.3 Distance Separation: The Algorithm
	2.4 A Faster Algorithm for Small Distances

	References

