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Abstract

Large-scale protein-protein interaction networks provide new opportunities for understanding cellular organization and
functioning. We introduce network schemas to elucidate shared mechanisms within interactomes. Network schemas specify
descriptions of proteins and the topology of interactions among them. We develop algorithms for systematically
uncovering recurring, over-represented schemas in physical interaction networks. We apply our methods to the S. cerevisiae
interactome, focusing on schemas consisting of proteins described via sequence motifs and molecular function annotations
and interacting with one another in one of four basic network topologies. We identify hundreds of recurring and over-
represented network schemas of various complexity, and demonstrate via graph-theoretic representations how more
complex schemas are organized in terms of their lower-order constituents. The uncovered schemas span a wide range of
cellular activities, with many signaling and transport related higher-order schemas. We establish the functional importance
of the schemas by showing that they correspond to functionally cohesive sets of proteins, are enriched in the frequency
with which they have instances in the H. sapiens interactome, and are useful for predicting protein function. Our findings
suggest that network schemas are a powerful paradigm for organizing, interrogating, and annotating cellular networks.
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Introduction

Recent high-throughput experimental methods have generated

proteome-scale protein-protein physical interaction maps for many

organisms (review, [1]). Computational analyses of these networks

have identified global topological and dynamic features [2,3] and

have revealed a modular organization [4] with highly connected

groups of proteins taking part in the same biological process or

protein complex [5,6]. Further analysis has shown that the wiring

diagrams of biological networks are comprised of network motifs,

or particular circuits, that occur more frequently than expected by

chance [7–13].

We advocate an orthogonal view of network make-up whereby

organizational units consist of specific, and potentially different,

types of proteins that preferentially work together in various

network topologies. Thus, we aim to explicitly incorporate known

attributes of individual proteins into the analysis of biological

networks. We conceptualize this with network schemas, which are a

general means for representing organizational patterns within

interactomes where groups of proteins are described by arbitrary

known characteristics along with the desired network topology of

interactions among them (Figure 1A). A schema’s matches (or

instances) in an interactome are subgraphs of the interaction

network that are made up of proteins having the specified

characteristics which interact with one another as dictated by the

schema’s topology (Figure 1B). For example, a schema associated

with signaling might be a linear path of kinases interacting in

succession; its instances in S. cerevisiae include portions of the

pheromone response and filamentous growth pathways. Although

any property can be used to annotate proteins in schemas, and

different types of interactions may be specified, we focus on direct

physical protein-protein interactions with proteins described via

Pfam sequence motifs [14] and a set of GO molecular function

terms [15]; such schemas with multiple instances in an interactome

are likely to correspond to shared mechanisms that underlie a range

of biological activities. Because we expect the largest number of

schemas with multiple instances to be associated with small

topologies, we begin to address these questions by considering four

basic network topologies (Figure 1C) varying from two interacting

proteins (pair schemas) to higher-order schemas containing up to

three interactions (triplet, triangle, and Y-star schemas); we choose

these particular linear, cyclical, and branched topologies because

they are the simplest patterns in physical interactomes that may

intuitively be associated with signaling pathways, complexes, and

switch-like patterns, respectively.

This paper has three major contributions. First, we develop a

computational procedure for automatically identifying emergent

network schemas, or schemas that are both recurrent and over-

represented in the interactome even when the frequencies of their

lower-order subschemas are considered. Conditioning over-

representation on the distribution of a schema’s lower-order

constituents ensures that every emergent schema conveys novel
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information about interactome organization. We score a schema

based upon its frequency in the interaction network and its

expected frequency given the distribution of its constituent

subschemas. The expected frequency is computed using a carefully

designed graph randomization algorithm that preserves the

distributions of the specific labeled subschemas. The false

discovery rate of the resulting scores is then evaluated using a

variant of the permutation test. We note that in order to uncover

emergent schemas, existing approaches for related problems could

not be directly utilized; the specifics and scale of this problem

required the development of novel computational techniques (see

Methods for more details).

Second, in the first large-scale analysis of this type, we apply our

procedure to the S. cerevisiae protein-protein interactome. In total,

more than 140,000 Pfam network schemas that occur at least once

in the S. cerevisiae interactome are considered. Of these, we identify

264 emergent Pfam network schemas with various annotations

and topologies. We also uncover 138 emergent GO molecular

function pair schemas. Analysis of emergent network schemas

reveals a network organization where pair schemas are most

diverse and where higher-order schemas reveal complex networks

of primarily signaling and transport related activities. This suggests

that the recurring units within interactomes are mostly pairwise,

but that for some functions, higher-order recurring units are still

prevalent. The hierarchical nature of emergent schemas can be

visualized in a graph-theoretic manner which highlights that

certain lower-order schemas occur frequently in higher-order

emergent schemas (i.e., they are ‘‘hubs’’ in these networks), even

though the frequencies of the lower-order schemas are controlled

for in the computational procedure.

Third, we demonstrate that emergent network schemas

correspond to biologically meaningful units. In particular, in a

systematic analysis, we show that schema instances lead to protein

subnetworks that share more specific biological process annota-

tions than subnetworks having identical topologies but no

constraints on the proteins making them up; this illustrates the

additional benefit of incorporating protein annotations into

traditional topology-based network analysis. Moreover, at the

other extreme of the eukaryotic spectrum, we find that if we

interrogate the H. sapiens interactome using the emergent schemas

uncovered in S. cerevisiae, more than one-half of the schemas of

each topology have instances there as well; this fraction is

considerably lower when considering non-emergent S. cerevisiae

schemas. Finally, we give a proof of concept through two

uncharacterized protein families that network schemas can be

used to functionally characterize protein families and individual

proteins.

Relationship to previous work
Network schemas build upon earlier pioneering work in

network analysis by enabling new types of analyses that were not

possible with previous methods for identifying recurrent patterns

in biological networks. By considering the specific roles of

Figure 1. Network schemas: an example and the topologies considered. (A) An example of a triplet schema. Ras signaling involves a small G
protein from the Ras family, which is regulated by a GTPase Activating Protein (GAP) and in turn regulates its effector kinase. The corresponding GAP-
Ras-Kinase schema has a Ras protein interacting with a GAP protein as well as a kinase. (B) Instances of the GAP-Ras-Kinase schema in the S. cerevisiae
physical interactome. Only a portion of the yeast physical protein-protein interaction network is shown. Ras family proteins are displayed as red
octagons, GAP proteins as blue diamonds, and kinases as orange squares. Interactions that comprise an instance of a GAP-Ras-Kinase triplet schema
are illustrated with thick solid lines, while other GAP-Ras and Ras-kinase interactions are marked by thick dashed lines. See Methods for construction
of physical interaction network and determination of protein annotations. This and subsequent figures are created using Cytoscape [74]. (C) Schema
topologies that are considered in this study.
doi:10.1371/journal.pcbi.1000203.g001

Author Summary

Large-scale networks of protein-protein interactions pro-
vide a view into the workings of the cell. However, these
interaction maps do not come with a key for interpreting
them, so it is necessary to develop methods that shed light
on their functioning and organization. We propose the
language of network schemas for describing recurring
patterns of specific types of proteins and their interactions.
That is, network schemas describe proteins and specify the
topology of interactions among them. A single network
schema can describe, for example, a common template
that underlies several distinct cellular pathways, such as
signaling pathways. We develop a computational meth-
odology for identifying network schemas that are recur-
rent and over-represented in the network, even given the
distributions of their constituent components. We apply
this methodology to the physical interaction network in S.
cerevisiae and begin to build a hierarchy of schemas
starting with the four simplest topologies. We validate the
biological relevance of the schemas that we find, discuss
the insights our findings lend into the organization of
interactomes, touch upon cross-genomic aspects of
schema analysis, and show how to use schemas to
annotate uncharacterized protein families.

Network Analysis via Schemas
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individual proteins, network schemas look beyond the purely

topological features that are described by network motifs [7–

13,16] to the tendency of certain types of proteins to work

together, thereby shifting focus from the ‘‘syntax’’ of biological

networks to their ‘‘semantics.’’ While from a graph-theoretic point

of view one may think of network schemas as a generalization of

network motifs, considering protein attributes fundamentally

changes what types of biological questions can (or cannot) be

answered, and the much larger number of schemas changes the

underlying computational issues as well. As compared to network

alignments that uncover conserved interactions among homolo-

gous proteins in interactomes (e.g., [17–20]), network schemas

utilize more abstract descriptions of proteins and are identified via

a statistical model designed to find a hierarchy of interactome

organizational units of increasing complexity. In contrast to

approaches to uncover correlated sequence-signatures or putative

domain-domain or domain-peptide interactions via analysis of

interactomes (e.g., [21–31]), network schemas incorporate higher-

order topologies. Moreover, unlike the approaches that particu-

larly focus on identifying domain-domain or domain-peptide

interactions, schemas do not focus on the physical bases for protein

interactions. Therefore, they represent more abstract organiza-

tional units, indicating what types of proteins work together and

not which portions of the protein are responsible for the observed

interactions. Further, it is important to note that combinations of

pair schemas present in the interactome result in higher-order

schemas that do not necessarily occur, and thus it is necessary to

explicitly enumerate over these in order to uncover which exist in

the interactome. Compared to a very recent approach for

uncovering over-represented functional attributes in linear paths

in regulatory networks [32], network schemas additionally

consider cyclical and branched schema topologies, and their

relationships to lower-order schemas. Finally, as opposed to a

number of approaches for finding the instances of particular (user-

supplied) labeled subgraphs, which we term schemas, within a

wide range of biological networks [32–38], our goal is to determine

automatically which schemas are frequent and over-represented,

and thus interesting enough to merit further analysis.

Results

Emergent network schemas in the S. cerevisiae
interactome

Each pair schema is scored by considering its number of

occurrences in the S. cerevisiae interactome against its average

number of occurrences in degree-preserving random networks

[7,8,39]. Each triplet, triangle, and Y-star schema is scored

similarly, except that its average number of occurrences is computed

in networks randomized so as to maintain the distribution of its

constituent pairs (for triplet and triangle schemas) or its constituent

triplets (for Y-star schemas). Using a false discovery rate (FDR) of

#0.05, we identify 151 pair, 55 triplet, 26 triangle, and 32 Y-star

Pfam emergent schemas in the S. cerevisiae network comprised of

direct physical interactions. The emergent schemas are a small

fraction of the total number of schemas occuring in the interactome.

In total, 2838 pair, 24662 triplet, 999 triangle and 114650 Y-star

Pfam schemas occur at least once in the S. cerevisiae interactome. Of

these, 419 pair, 842 triplet, 31 triangle, and 999 Y-star schemas are

recurring in that they have at least two non-overlapping instances

(i.e., that do not contain a protein in common). All emergent

schemas and supporting information are listed in Tables S1, S2, S3,

S4, S5, S6, S7, S8, S9, S10, S11 and S12, including their FDRs,

their average number of instances in the randomized networks, and

their instances in S. cerevisiae.

The emergent pair schemas are depicted in a network in

Figure 2A. Pair schemas represent two proteins working together

(as a dimer or as part of a complex), or one protein (de)activating

another. The uncovered emergent schemas represent a wide

variety of functions including signaling (e.g., schemas involving

Pkinase or Ras motifs), transport (e.g., schemas involving the amino

acid permease motif AA_permease), intracellular trafficking (e.g.,

synaptobrevin schemas), RNA processes (e.g., RRM_1 schemas) and

ubiquitination (e.g., ubiquitin-conjugating enzyme motif UQ_con

schemas). While some of the pair schemas may correspond to

actual domain-domain interactions, the schema formulation by

itself does not make any claims about the interaction interface. In

particular, some of the underlying physical interactions may

instead consist of domains interacting with peptides or disordered

regions [40]. This is clear, for example, when looking at the

diverse set of pair schemas involving the SH3 domain which is

known to typically bind proline-rich peptides [41]. Nevertheless,

similar to earlier findings for domain-domain interactions [31], we

find that emergent Pfam pair schemas are enriched in homotypic

annotations as compared to all Pfam pair schemas in the

interactome (18.5% vs. 5.8%).

We also uncover S. cerevisiae emergent pair schemas using a

hand-chosen set of GO molecular function annotations (Figure 2B

and Tables S1 and S6). As with the Pfam schemas, the GO pair

schemas represent many types of functions including transport,

signaling, DNA and RNA processing, ubiquitination, protein

folding, and cytoskeleton organization. The GO molecular

function schemas can sometimes allow generalizations of the

Pfam schemas that move beyond sequence similarity, as proteins

annotated with the same GO molecular function term need not be

homologous to each other. For example, the Pfam pair schema

consisting of a protein with the Pkinase motif interacting with a

protein with the cyclin N-terminal motif Cyclin_N is subsumed by

the GO schema consisting of a protein with kinase activity

interacting with a protein with kinase regulator activity. Instances

of this GO schema in the S. cerevisiae interactome include cyclins

which lack the Cyclin_N Pfam motif, other cyclin-like proteins, and

different kinase regulators altogether, such as activating subunits of

kinase complexes, adaptors, and scaffold proteins. As another

example, the Pfam pair schema consisting of the Pkinase motif

interacting with the zinc finger motif zf-C2H2 has a correspon-

dence in a GO schema consisting of a protein with kinase activity

interacting with a protein with transcription factor activity;

instances of the latter schema in the S. cerevisiae interactome

include transcription factors of the zinc finger, MADS, and basic

helix-loop-helix families.

Higher-order emergent S. cerevisiae network schemas are given in

Figures 3 and 4. For the purpose of visualization, they are

represented as networks where vertices correspond to lower-order

schemas. That is, for each higher-order schema, there is a vertex

for each of its corresponding lower-order schemas, along with

edges between these vertices; triplets and triangles are depicted

with respect to lower-order pair schemas whereas Y-stars are

depicted with respect to lower-order triplet schemas (see

Figures 3A, 3C, and 4A for explanation). Edges in these networks

thereby indicate that the two corresponding lower-order schemas

are found together as parts of a emergent higher-order schema.

The uncovered emergent triplet schemas (Figure 3B) include

several relating to signaling (e.g., Pkinase and Ras schemas) and

transport (the connected components with the MFS_1 motif). The

signaling schemas include kinase cascades (e.g., Pkinase-Pkinase-

Pkinase), regulation of Ras signaling (e.g., RhoGAP-Ras-RhoGEF),

those connecting Ras and kinase signaling (e.g., RhoGAP-Ras-

Pkinase), and those relating to specific structural domains involved

Network Analysis via Schemas
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in signaling [42] (e.g., SH3-Pkinase-WD40 and SH3- Pkinase- PH).

Note that there are many possible schemas associated with

signaling (e.g., consider the set of schemas annotated with all

domains known to be associated with signaling [42]), and our

schema analysis identifies only a small subset of these as emergent.

There are numerous emergent triplet schemas involving the major

facilitator superfamily (MFS_1), one of the two largest families of

membrane transporters [43]. Triplet MFS_1 schemas include

those involving other transport proteins, such as membrane

proteins involved in transport of amino acids (i.e., containing the

AA_permease motif) and proteins involved in ER to Golgi transport

(e.g., containing the EMP24 motif). Whereas the pervasiveness of

kinases within conserved portions of the interactome has been

observed earlier [17], the prevalence of such transport related

subnetworks has been previously underappreciated.

Many of the triangle schemas (Figure 3D) correspond to known

complexes. There are several triangle schemas, making up a

connected component, corresponding to the SNARE vesicle-

fusion machinery. The triangle schema made up of LSM motifs

corresponds to Sm and LSM complexes, and is associated with the

spliceosome as well as other RNA processing [44]. The triangle

schema made up of AAA motifs corresponds to replication factor C

complex and the 19S particle of the 26S proteosome. There are

numerous triangle schemas associated with signaling as well; these

may correspond, for example, to complexes or phosphorylation by

kinase complexes. For example, the Cyclin_N-Pkinase-Pkinase

Figure 2. Emergent pair schemas uncovered in the S. cerevisiae interactome. A pair of vertices connected by an edge corresponds to a pair
schema. (A) Pfam emergent pair schemas, where each vertex is labeled with a Pfam motif. (B) Gene Ontology molecular function emergent pair
schemas, where each vertex is labeled with a GO molecular function term, with the word ‘‘activity’’ dropped from term names. See also Tables S1, S2
and S6.
doi:10.1371/journal.pcbi.1000203.g002
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triangle schema contains instances where a cyclin associates with a

cyclin-dependent kinase, and this complex either phosphorylates

or is phosphorylated by another kinase.

The emergent Y-star schemas (Figure 4B) refine the functional

landscape of the triplet schemas, with one relating to transport and

several relating to Ras and kinase signaling pathways. The Y-star

schemas showcase the complex, nonlinear regulatory patterns

evident in biological pathways. For example, some of the Y-star

Pkinase schemas relate to the role of phosphorylation in

combinatorial regulation of transcription factors (e.g., those

including multiple transcription factor motifs, such as zf-C2H2

and GATA interacting with the same kinase), whereas others

correspond to kinase cascades that additionally incorporate

regulation via cyclins (e.g., schemas including Cyclin_N). Addition-

ally, several Y-star schemas represent a dynamic ‘‘switch-like’’

pattern in which the peripheral proteins are active in different

contexts. This is evident in some schemas where the peripheral

proteins belong to the same family, and utilize the same structural

interface on the central protein. For example, several of the Y-star

Ras schemas consist of a central Ras protein interacting with

Figure 3. Emergent triplet and triangle schemas uncovered in the S. cerevisiae interactome, represented in a graph where vertices
correspond to pair schemas. Pair schemas that are themselves emergent (Figure 2) are displayed as darker vertices. See also Tables S3 and S4. (A)
An illustration of the subgraph representation for triplet schemas. The triplet MFS_1-DUP-AA_permease (on the left) is mapped to two pair vertices,
corresponding to the lower-order pair schemas making it up, connected by an edge. The edge is labeled in pink with the central motif of the triplet
(DUP). (B) Pfam emergent triplet schemas. (C) An illustration of the triangle schema DUP-AA_permease-Pfam-B_521. The triangle DUP-AA_permease-
Pfam-B_521 is mapped to three pair vertices, corresponding to the lower-order pair schemas making it up, connected by edges; that is, it is
represented as a triangle in the graph whose vertices represent pair schemas. The DUP-Pfam-B_521 pair, colored pale in the pair-vertex graph, is not
an emergent pair schema, whereas the other two pairs in the triangle, colored dark in the pair-vertex graph, are. (D) Pfam emergent triangle schemas.
doi:10.1371/journal.pcbi.1000203.g003
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Figure 4. Emergent Y-star schemas uncovered in the S. cerevisiae interactome, represented as triangles in a graph where each
vertex corresponds to a triplet schema. Triplet schemas that are themselves emergent (Figure 3) are displayed as darker vertices. (A) An
illustration of the triplet subgraph representation of a Y-star schema. The Y-star (on the left) is mapped to three vertices corresponding to its lower-
order triplet schemas, along with edges among them; that is, it is represented as a triangle in the graph whose vertices represent triplet schemas. The
triplet subschemas of the Y-star are highlighted. The subschemas that are emergent triplets are highlighted in purple and represented as darker
vertices. For ease of visualization, the central node of the Y-star is labeled in pink inside the triangle and connected to the vertices by dashed lines. (B)
Pfam emergent Y-star schemas. See also Table S5.
doi:10.1371/journal.pcbi.1000203.g004
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several regulatory GTPase activating proteins (corresponding to

RhoGAP, TBC or some LIM containing proteins). Such schemas

show that certain types of ‘‘mutually exclusive’’ interactions [45]

recur together in the interactome.

Schemas give insight into organizational principles of
interactomes

While each emergent network schema represents a specific way in

which proteins can work together, their relationships to one another,

and in particular of higher-order schemas to lower-order ones, lead

to some general observations about network organization.

The first observation is the striking drop in the number and

diversity of emergent schemas with increased complexity,

especially between pair and higher-order schemas (there are

139, 39, 29 and 30 distinct Pfam motifs involved in pair, triplet,

triangle and Y-star emergent schemas respectively). Whereas 36%

of the recurring pair schemas in S. cerevisiae are found to be

emergent, only 6% of recurring triplet and 3% of recurring Y-star

schemas are. (Note that triangle schemas are something of a

special case because the cyclical structure is very constrained and

recurring units are unlikely to be found at random.) This suggests

that the semantic units within interactomes are primarily at the

pair level, and that most repeated patterns of higher order can be

viewed as rearrangements of the pairs that can be explained simply

by randomness. At the same time, there are a considerable

number of higher-order schemas (i.e., those identified as emergent)

that cannot be explained by lower-order ones.

These higher-order emergent schemas are not just combinations

of the lower-order emergent pair schemas. For example, the

emergent pair schema network (Figure 2) contains 712 triplets, of

which 571 occur even once in the S. cerevisiae interactome. Of

these, only 37 are emergent. Thus, the majority of possible triplets

resulting from emergent pair schemas are not emergent, and

triplet schemas thereby allow us to uncover which sets of proteins

comprising pair schemas work together in the network. On the

other hand, 18 emergent triplet schemas are not present in the

emergent pair schema network. For example, the RhoGAP-Ras-

Pkinase emergent triplet schema consists of the Ras- Pkinase pair

which is not found to be emergent. Though this pair occurs

numerous times in the network, given the frequency of Ras and

Pkinase Pfam motifs, it does not appear at the FDR#0.05 level; this

also demonstates that, as intended, our procedure for uncovering

schemas corrects for the frequency of the motifs.

Large fractions of the distinct lower-order schemas making up

the higher-order emergent schemas are themselves emergent (73%

and 80% of the pair schemas comprising triplet and triangle

schemas, respectively, and 51% of the triplet schemas making up

Y-star schemas). The use of subgraph-preserving randomizations

in our procedure confirms that this observation is not due solely to

the abundance of the lower-order structures, but is a more general

feature of schema organization. This result has a topological

counterpart, as it has been found that four-protein network motifs

tend to be combinations of three-protein ones [10].

Several emergent schemas from each topology share particular

lower-order schemas. These lower-order schemas that are found in

numerous higher-order schemas correspond to hubs in Figures 2, 3,

and 4. We observe that the nodes with largest degree in the S.

cerevisiae Pfam pair graph (Figure 2A) are Pkinase, SH3_1, and Ras.

These domains comprise hubs at different levels of schema

complexity. For example, the pairs that are hubs in the triplet

graph (Figure 3B) are Pkinase- SH3_1, Ras-RhoGAP, and Pkinase-

Pkinase. It is instructive to compare these families to the list of the 10

most frequent Pfam motifs and the 10 Pfam motifs involved in the

highest number of interactions in the studied network (given in

Table S8). As expected, because of our scoring procedure which

considers the frequency of annotations in the network, while some of

the ‘‘hub’’ motifs are frequent in the interactome or common in

interactions (e.g., Pkinase and SH3), many are not (e.g., RhoGAP);

additionally, there are many Pfam motifs that occur frequently in

the network but are not prevalent in these schemas (e.g., Helicase_C).

Schemas recapitulate known biology: the Ras
superfamily

As an illustrative example showing that automatically uncovered

emergent schemas can show excellent correspondence to well-

understood organizational and functional units, we detail our findings

on S. cerevisiae emergent Pfam schemas involving the Ras superfamily.

There are ten Ras pair schemas (Figure 2A). The Ras-RhoGAP, Ras-

RasGEF, and Ras-TBC schemas correspond to the basic regulatory

interactions of Ras proteins. The Ras- GDI pair reflects the additional

regulatory mechanism of the Rab subfamiliy of Ras proteins by the

guanyl dissociation inhibitors (GDIs). The Yip1 family of proteins in

turn may act as GDI displacement factors [46] for a group of Ras-like

proteins associated with Golgi membranes and/or act as membrane

recruiters of these proteins [47]. Two Ras pair schemas involve Ras-

binding motifs—the diaphanous GTPase-binding motif DRF_GBD

found in Rho effectors and the P21-Rho-binding motif ( PBD). Other

Ras pair schemas contain motifs that reflect the biological role of Ras

families, such as the IQ calmodulin-binding motif and the PB1

domain associated with signaling. Finally, LIM is a general structural

domain, but is found in several GAP proteins. The higher-order Ras

emergent schemas (Figures 3 and 4) include several that reflect their

diverse regulatory mechanisms. For example, there is a Pkinase-Ras-

RhoGAP triplet, where the RhoGAP regulates the Ras which in turn

regulates the kinase, and a RhoGEF-Ras- RhoGAP triplet, where both

the RhoGEF and RhoGAP regulate Ras.

Schemas uncover functionally coherent portions of the
interactome

To validate in a systematic manner that emergent schemas

correspond to functional units and may be helpful towards

uncovering network modularity, we determine whether individual

instances of emergent schemas have enriched functional coherence

beyond that suggested by guilt-by-association and subgraph

topology. As described in Methods, for each topology we

determine the specificity, estimated using the hypergeometric

distribution, of the most descriptive biological process annotation

shared by the proteins in an instance of an emergent schema. For

the background set, we enumerate all subgraphs of a given

topology in the interaction network, with the restriction that only

proteins having at least one Pfam annotation are considered (to

avoid bias arising from Pfam annotated proteins). We find that

77% of the instances of the emergent pair schemas share a

biological process at the p#0.01 level, as opposed to 53% for the

background set. These numbers are 60% vs. 35% for triplet

schemas, 87% vs. 69% for triangle schemas, and 58% vs. 21% for

Y-star schemas. This enrichment is observed over the entire range

of p-values (see Figure S1). Functional enrichment is likely due in

part to the enrichment of true interactions in emergent schema

instances; indeed, interactions from small-scale experiments (,50

interactions uncovered total) are enriched in the emergent pair

Pfam schemas instances as compared to the entire interactome.

Enriched number of S. cerevisiae emergent network
schemas with instances in H. sapiens

In order to determine whether emergent S. cerevisiae schemas

tend to be found in other organisms, we have used each schema to

Network Analysis via Schemas
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interrogate the full (i.e., unfiltered) H. sapiens physical interaction

network in BioGRID [48] and obtain its instances. We limit this

analysis to schemas comprised of Pfam annotations that occur in

both S. cerevisiae and H. sapiens. We find that 76% of these S.

cerevisiae Pfam emergent pair schemas have at least one instance in

the H. sapiens network. For comparison, if we consider pair

schemas with instances in S. cerevisiae with FDR.0.05, only 38%

have instances in H. sapiens. The fraction with instances in H.

sapiens is 75% for emergent triplet schemas, 61% for emergent

triangle schemas, and 55% for emergent Y-star schemas; the

instance percentages for schemas not found to be over-represented

are 17%, 15%, and 8% respectively. Thus, emergent schemas

have instances in H. sapiens two to seven times more frequently

than schemas of the same topology that are not found to be over-

represented, giving further evidence that these schemas corre-

spond to recurring units within interactomes.

Network schemas in the H. sapiens interactome
To compare the types of schemas that are emergent across

distant genomes, we uncover pair schemas in the H. sapiens

interactome (Figures 5 and 6 and Table S7). We identify 29 pair

schemas that are emergent schemas in both the S. cerevisiae and H.

sapiens networks, as well as several that are emergent schemas only

in H. sapiens but have instances in S. cerevisiae (Figure 5). As

expected, these schemas represent some of the most basic

processes that occur within the cell: DNA packaging, cytoskeleton

organization, signaling, vesicle fusion, and so on.

The H. sapiens emergent pair schemas that are not found in S.

cerevisiae (Figure 6) contain many schemas related to processes

specific to higher organisms. These include, for example, schemas

involving the extracellular matrix (e.g., Collagen and Fibrinogen_C

schemas) and intercellular signaling (e.g., Hormone_recep schemas),

among others. Many of these types of schemas consist of Pfam

motifs that are not found in S. cerevisiae (e.g., the Death domain,

found in proteins associated with apoptosis). The H. sapiens-specific

emergent pair schemas also include some where both motifs are

also found in S. cerevisiae; some of these schemas correspond to

expansions of protein families and their interactions in H. sapiens.

These include, for example, several emergent schemas involving

motifs that are associated with phosphotyrosine signaling (e.g.

SH_2 and Y_phosphatase schemas); though these motifs are found in

S. cerevisiae, they are rare. Additionally, the H. sapiens emergent pair

schemas reveal how newer motifs, found only in H. sapiens, are

integrated into networks containing older motifs, found in both

organisms. For example, the tyrosine kinase Pkinase_tyr motif,

found in H. sapiens but not S. cerevisiae, is involved in emergent pair

schemas with signaling domains such as SH3_1 and PH that are

found in both organisms.

The H. sapiens and S. cerevisiae schemas taken together help fill in

some of the data missing from the current state of interactomes, as

combining the emergent schemas from the two interactomes gives

a more complete view for some processes. For example, several

schemas relating to ubiquitination consist of pairs that are found to

be emergent in only one organism but which have instances in the

other; this is most likely due to missing interactions in one of the

interactomes. The S. cerevisiae emergent schemas cover two parts of

the ubiquitination pathway: they include an interaction between

the ubiquitin family and the ThiF family of ubiquitin-activating

enzymes, which catalyze the first step of the pathway, and an

interaction between the UQ_con family of ubiquitin-conjugating

enzymes and the zf-C3HC4 (RING finger) family of ubiquitin

ligases, which catalyze the second and third steps of the pathway,

respectively. H. sapiens emergent schemas that have instances in S.

cerevisiae complete this portion of the pathway by connecting the

ubiquitin family with the UQ_con family of ubiquitin-conjugating

proteins. Additionally, H. sapiens schemas connect ubiquitin to the

HSP70 family of chaperones, reflecting the role of ubiquitination

in targeting misfolded proteins for degradation.

Schemas enable functional predictions
There are several motifs of unknown function implicated in

schemas (e.g., Pfam-B motifs in Figures 2–5). As proof of concept,

we focus on two examples, DUP and MAGE, and show that

schemas can help characterize motifs and proteins whose functions

have not yet been experimentally determined.

‘‘One of the most curious gene families in yeast’’ [49], the DUP

family consists of twenty-three yeast proteins [50], most of which are

not yet functionally annotated. Based on schema analysis, we predict

that the DUP family consists of proteins that are associated with

membrane transporters. The DUP proteins are found in multiple

schemas of various topologies (Figures 2, 3, and 4), and these schemas

are dominated by interactions with members of transporter families

such as MFS_1, Sugar_tr, and AA_permease. The finding that one

member of the family, Cos3, is an enhancer of the antiporter Nha1p

[51] supports this prediction. Additionally, a previous prediction

connects DUP proteins with membrane trafficking [50]; given our

analysis, they might be involved in trafficking of transporters.

There are fifty-five MAGE sequences in H. sapiens [52], thirty-

two of which are listed as such in Pfam and nine of which have

physical interactions listed in BioGRID [48]. MAGE proteins,

which are mostly uncharacterized, were initially found to be

expressed in tumors, although some are now known to be

expressed in normal tissues. We found the MAGE family to

participate in pair schemas with two protein families: the Death

domain and the zf-C3HC4 RING motif (see Figures 6 and 7). The

Death domain is associated with apoptosis, and the RING motif is

associated with E3 ubiquitin ligases, which perform the final step

in protein ubiquitination. These schemas suggest a connection

between MAGE proteins and apoptosis, which, if correct, could

shed light on the association between some of the original

members of the MAGE family and cancer. It is possible that

ubiquitination plays a role in this connection, although the link

between ubiquitination and apoptosis is still a subject of

investigation; MAGE proteins may provide a connection between

these two processes. We further note that the zf-C3HC4 RING

domain forms a schema with the Death domain as well (Figure 6).

Discussion

We have introduced network schemas as a general means to

describe organizational units consisting of particular types of

proteins that work together in biological networks and have

developed a fully-automated procedure for discovering them. In

the first analysis of this type, we have uncovered hundreds of

emergent network schemas and have demonstrated that they

recapitulate known biology, suggest new organizational units, have

enriched biological process coherence, and have instances in

organisms across large evolutionary distances.

Using two poorly understood gene families, one from human

and one from yeast, we have shown how schema analysis can be

used to annotate protein families and their individual members.

Guilt-by-association and other network-based functional annota-

tion methods (review, [53]) are, by intent and design, better suited

for the general function prediction problem. However, schema

analysis provides a new way to amplify a weak signal, and can

suggest mechanistic details in some cases. For example, if we

consider proteins that interact physically with a given protein, and

then take the most over-represented biological process annotation
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among them using the GO Generic Term Finder [54], we find

‘‘apoptosis’’ as a prediction for only two of the MAGE proteins

having physical interactions (at corrected p-value #0.05 level) and

no ubiquitination related predictions. On the other hand, schema

analysis of the MAGE proteins acts as a lens that focuses the

investigator’s attention on patterns of interaction that together are

statistically significant.

The prominence of emergent schemas related to signaling suggests

that we may be able to utilize them to uncover pathways. Previous

approaches to predicting signaling pathways from protein physical

interaction networks have attempted to find paths from receptors to

transcription factors [55,56], and then evaluating them (e.g., based on

gene expression coherence [55,57]). Alternate approaches have

attempted to query interactomes in order to find pathways

homologous with known pathways [17]. Schemas may instead be

used in pathway discovery by restricting or favoring paths in a

network based on schema annotations, or using schemas to evaluate

or score the enumerated paths. Indeed, simply by taking overlapping

emergent network schemas and obtaining their instances in the full

unfiltered S. cerevisiae interactome, we can recover portions of known

Figure 5. Pfam pair schemas that are found in both H. sapiens and S. cerevisiae. Schemas that are emergent in both organisms are displayed
with red edges. Schemas that are emergent only in H. sapiens but that have instances in S. cerevisiae are shown with light blue edges. Schemas that
are emergent only in S. cerevisiae but that have instances in H. sapiens are indicated with grey edges.
doi:10.1371/journal.pcbi.1000203.g005
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pathways. For example, by considering just the triplet schemas

RhoGAP-Ras-RhoGEF, RhoGAP-Pkinase-Ras, and Ras-Pkinase-SH3_1,

we obtain significant portions of the cell wall organization and

biogenesis and cell polarity pathways, and the related pathways of

filamentous growth and pheromone response, as well as the cell cycle

and vesicle transport pathways (see Figure S2).

Our results can be considered in terms of several alternate

hypotheses concerning the evolutionary processes by which

schemas arise. Did the different instances of a schema arise from

a common ancestral group of interacting proteins which then

proliferated, or did convergence play a role? It is likely that both

processes took place, with one or the other being more important

in different schemas. In the case of Pfam schemas, this question is

on the one hand analogous to, and on the other hand intimately

related to, the question of how intra-protein domain architectures

arose (e.g., see [58,59]). As a result, the possible role of domain

duplications, insertions and shuffling is an important consideration

in understanding the evolutionary histories of individual Pfam

Figure 6. Pfam pair schemas that are emergent in H. sapiens and do not have instances in the S. cerevisiae interactome. Red vertices
indicate Pfam motifs that are found in both organisms, and brown vertices indicate Pfam motifs found in H. sapiens but not S. cerevisiae.
doi:10.1371/journal.pcbi.1000203.g006
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schemas. For example, in the case of intra-protein domain

architectures, graph-theoretic analysis has suggested that combi-

nations involving certain promiscuous domains (SH3 and C2,

among others) may have arisen more than once, though other

combinations may be the result of the formation of a single

ancestral sequence that proliferated through duplication [60]. For

schemas that are based on protein annotations that do not

necessarily arise from sequence similarity (e.g., GO molecular

function schemas), convergence is likely to play a larger role, as the

proteins comprising distinct instances may not share any

discernable sequence similarity.

Another question that arises is how novel schemas are

incorporated over the course of evolution. A comparison of

emergent pair schemas in S. cerevisiae and H. sapiens provides some

hints, but further analyses of the interactomes of many organisms

is necessary to obtain a better understanding. Similarly, what is the

relationship between emergent and non-emergent lower-order

schemas that together make up a higher-order emergent schema?

Was the non-emergent component added to the earlier emergent

one? The techniques introduced in this paper provide a

computational foundation for the extensive cross-genomic studies

that are necessary to attempt to address these and related

questions.

Depending on the intended application it may be desirable to

modify the computational procedure for uncovering emergent

schemas. The described approach is designed to be conservative in

several respects. First, since we search for proteins that work

together in a specific topological pattern, we use only networks

comprised of direct physical interactions, erring on the side of

caution in the case of pull-down data. Alternate approaches may

instead be taken to enrich the number of direct interactions but

not exclude other types of interactions [61]. Second, we require

each emergent schema to have at least two independent instances.

Interesting schemas certainly get excluded as a result (e.g., several

SCF ubiquitin-ligases in S. cerevisiae that differ only in their F-box

protein component [62]). Nevertheless, independence helps ensure

that an emergent schema is truly recurring and that it does not

depend on the occurence of any single interaction; this is an

important consideration due to the underlying noise in the

network [63]. Finally, we search for emergent schemas bottom-up,

eliminating schemas that may owe their significance solely to the

significance of their lower-order constituents; this favors including

lower-order schemas over higher-order ones. It is possible,

however, that in some cases, the higher-order schema is the

recurring working unit that makes its lower-order components

look significant. Our schema-finding procedure can be modified to

relax any of these requirements, and indeed we believe that there

are many more functionally important and recurring schemas than

we have identified here.

In this work we have examined four of the most basic topologies

for schemas. However, additional or flexible topologies (e.g.,

allowing optional proteins) may also be considered. The primary

challenges in extending our current approach lie in computation-

ally enumerating all possible schemas and in developing effective

algorithms for maintaining the distribution of the appropriate

lower-order constituents. Additionally, whereas here we have

considered annotations consisting of Pfam motifs and a subset of

GO molecular function terms (each separately), schemas based on

several complementary systems of protein labels that annotate at

differing levels of resolution may provide a more multidimensional

view of protein function; in this case, the hierarchical relationships

between annotations would need to be better handled.

A noticeable feature of our analysis is that the underlying data

treats all interactions as being the same. In reality, the interactions

have both meaning and contextual information. For example,

some schemas consist of interactions representing the (de)activa-

tion of one of the interactors by the other, with corresponding

temporal information. A triplet schema, for example, may

correspond to a central protein acting upon its two spoke proteins,

or two spoke proteins acting upon the central protein, or one spoke

protein acting on the central protein which then acts on the other

spoke protein. Schemas may also include a combination of

multiple subschemas that are active at different times or in

different cellular contexts. Such information is not explicitly

present in the schemas we have uncovered and is an especially

important consideration when studying multicellular organisms, in

which different interactions may take place in different cell types

altogether. If contextual information for a large number of

interactions becomes known and systematized, it is possible to look

for schemas either within each context separately, or include

contextual information as part of the schema definition.

Alternatively, one could attempt to extract contextual information

from the current schemas, focusing on the individual undirected

schemas that our approach presently finds, and devising

computational means for predicting such information based, for

example, on expression information or literature search. Such

inclusion of information about the biological context of when

interactions occur should refine the network schemas observed.

Moving beyond physical interactions, an interesting avenue for

future work would be to extend network schemas to specify other

types of interaction as well, as has been done for network motifs

[12,13]; the ‘‘meaning’’ or semantics of these types of network

schemas would be very different from the type considered here.

Schemas uncovered in one type of network can also be used to

interrogate other networks. For example, schemas from a physical

interaction network may help identify direct interactions in

functional networks for organisms for which no large-scale

physical interactomes have been determined.

Figure 7. Emergent H. sapiens pairs involving the MAGE family (A), and their instances (B).
doi:10.1371/journal.pcbi.1000203.g007

Network Analysis via Schemas

PLoS Computational Biology | www.ploscompbiol.org 11 October 2008 | Volume 4 | Issue 10 | e1000203



Finally, while here we have searched for emergent schemas in

just two sample organisms, our techniques can be applied to a

greater number of interactomes across the evolutionary spectrum.

This would enable us to uncover what types of schemas are found

in different organisms, and to better address how networks expand

or change to incorporate new motifs or protein functions. Since

large-scale protein interaction networks are being determined at

an increasing pace, we anticipate that network schema analysis will

become an important means for determining how proteins work

together in the cell.

Methods

Preliminaries
Protein annotations. We use Pfam [14] version 18.0 for

motif annotations for all proteins. For S. cerevisiae proteins, we

additionally consider a set of 134 general molecular function

annotations from the Gene Ontology [15]. GO annotations for S.

cerevisiae proteins are obtained for each sequence from SGD

version 1.01 [64] utilizing all evidence codes. These GO terms

have been selected by hand to maximize annotation coverage and

minimize overlap with respect to GO; see Table S1 for the set of

terms.

Physical interaction network. We use S. cerevisiae and H.

sapiens protein interaction data from BioGRID [65], release 2.0.20.

Since we are interested in uncovering functional units consisting of

proteins that work together in specific network topologies, we focus

on direct physical interactions by utilizing interactions determined

from one of the following experimental systems: Biochemical

activity, Co-crystal structure, Far western, FRET, Protein-peptide,

Reconstituted complex, and Two-hybrid [64], excluding the IST 1

set of [66]. Additionally, interactions determined via Affinity

capture-Western and Affinity capture-MS are used in the case

where a bait protein identifies at most one prey. Proteins with

ambiguous common names are not used. The physical interaction

network is further filtered to remove: (1) interactions from a single

experimental source for a protein if that source found over thirty

interactions for this protein (2) any proteins with either less than

one or more than fifty remaining interactions and (3) any proteins

that do not have an annotation that appears at least twice in the

remaining interaction network. After all filtering steps, the

resulting Pfam-annotated S. cerevisiae network has 3,871

interactions among 2,073 proteins described by 472 Pfam terms,

and the resulting H. sapiens network has 7,284 interactions among

4,062 proteins described by 669 Pfam terms. The same filtering

process used with our set of GO molecular function terms on the S.

cerevisiae interactome leaves 1,834 proteins with 3,542 interactions.

Terminology. A protein interaction network is represented

as a labeled graph G = VN, EN), with a vertex nMVN for each protein

and an edge (u, n)MEN between vertices whose corresponding

proteins interact. Let L be the set of possible protein annotations

(e.g., Pfam motifs). Each protein vMVN is associated with a set of

annotations l(n), where l nð Þ5L. A network schema is a graph H = (VS,

ES) where each vertex nMVS is specified by a description dn[L. An

instance of a network schema H in an interaction network G is a

subgraph (VI, EI) where VI,VN and EI,EN such that there is a

one-to-one mapping f:VS R VI where for each nMVS, dnMl(f(n))and

there is an edge (f(u),f(n))MEI for each (u, n)MES (i.e., it is the match in

the network for the schema). Note that two distinct instances of a

schema may share proteins and/or interactions; however, any two

instances must differ in at least one protein. Two instances of the

same network schema are independent if they are made up of non-

overlapping proteins (i.e., the intersection of their vertex sets is

empty). In the case of triplet and Y-star schemas, we allow

instances that have additional interactions among the nodes in the

interactome (i.e., the endpoints of the triplet or any pair of

endpoints of the ‘‘spokes’’ of the Y-star may be connected with an

edge). Note that network schemas can be naturally generalized to

include other types of interactions and protein annotations [38].

Uncovering network schemas
The overall procedure for uncovering emergent network

schemas of a given topology is as follows; the steps are described

in more detail below. First, we count the number of instances of

every schema that occurs in the interactome; though this

corresponds to the NP-hard subgraph isomorphism problem, we

find that in practice we are able to solve it readily [38]. Second, for

each schema that has at least two non-overlapping instances, we

compute its average number of instances in randomized networks.

Third, the schema is scored to favor schemas that both occur

frequently and are over-represented compared to their average

count in the randomized networks. Fourth, the significance of

scores is determined using a false discovery rate that is calculated

by repeating the first three steps of the process on randomized

networks. Finally, the results are filtered in order to remove

redundant schemas.

We developed an extensive algorithmic infrastructure as related

techniques are not directly applicable. While there is substantial

previous work in the data mining community for frequent (labeled

or unlabeled) subgraph mining (e.g., see [67–73]), these approach-

es are focused on the algorithmic issues of enumerating (or

eliminating) subgraphs in single or multiple networks, and not on

assessing significance or relevance. Here, we are able to take a

brute-force approach in enumerating subgraphs, and our

methodology development instead is focused on identifying

frequent and over-represented subgraphs. We further note that

it is not possible simply to apply the approach used for network

motif finding [8] to uncover emergent network schemas as well.

Specifically, in that approach the count of each network schema in

the actual network would be compared to the count in randomized

networks, and a p-value would be computed by considering what

fraction of the randomized networks have a larger number of that

network schema; however, this will identify as emergent schemas

that occur rarely and are likely to be spurious but are made up of

annotations that themselves occur rarely in the network, as these

schemas are unlikely to be found in the randomized networks. A

similar problem arises with using Z-scores, also reported in [8].

Our scoring and FDR procedure (described below) are designed to

better handle the variation in annotation frequency and the large

number of schemas of each topology that are considered. Finally,

the task of building an ensemble of randomized networks that are

constrained to have specified counts of certain labeled subgraphs

has not, to the best of our knowledge, been addressed in the past.

Randomized networks for computing scores. For each

schema s that recurs in an interactome (i.e., has at least two

instances), we compute how often it occurs in randomized

networks, which tells us whether the schema occurs more often

than expected by chance. For each pair schema, we count how

often it occurs in randomized networks that have been generated

using the stub-rewiring approach of [8], which randomizes edges

while maintaining the degree and labels of each node in the graph.

Note that there is no known efficient method that generates graphs

uniformly at random with specified degree and label distribution,

so an approximation such as this is used. It is well known that the

stub-rewiring procedure may result in networks where some nodes

cannot achieve their desired degrees; however, we have found this

to be rare in the networks studied here. For example, randomizing

the S. cerevisiae network 100 times using stub-rewiring, we found
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that 98 of the random networks had all nodes reaching their

original degrees, and 2 of the random networks had two nodes that

are below their desired degree by 1. We note that while it is

possible to randomize the networks by shuffling annotations while

keeping the topology fixed (e.g., as in [28]), annotations have

different tendencies to be found in proteins of varying number of

interactions, and we wish to maintain this relationship.

For each triplet and triangle schema, we count how often the

schema occurs in networks randomized so as to preserve the

distributions of the pairs making them up, and for each Y-star

schema, we use the same approach, but consider randomized

networks that preserve the distribution of triplets making up the Y-

star schema (see below). In this manner, we are able to eliminate

schemas that are over-represented only because they are

comprised of lower-order schemas that are themselves over-

represented; instead, we identify schemas that are over-represent-

ed even when considering the distribution of the lower-order

schemas making them up. As with the stub-rewiring approach, the

randomization methods for preserving pair and triplet distribu-

tions are approximate, as no efficient algorithms are known for

these problems; however, as we show, they work well in practice.

We now describe the subgraph-preserving randomization

methods in more detail. For each triplet schema where nodes

labeled a and c interact with a central node labeled b, we generate

randomized graphs that maintain the original number of

interactions between proteins labeled a and proteins labeled b,

and between proteins labeled b and proteins labeled c. Let these

target interaction counts be denoted by tab and tbc, and let sab and

sbc be the current count in the network we are generating. The

counts of all other pairs of labelings are ignored. To generate the

randomized graphs we repeatedly add edges between unconnected

proteins, where the probability of adding a particular edge is

proportional to how much closer it gets to the desired count of

labelings, as measured by the squared L2 distance. That is, if node

u is labeled with a and node v is labeled with b, an edge between

them is added to the graph with probability proportional to

max{0,( tab2sab2euvab)
2}, where euvab is the number of a2b labelings

that are introduced by adding an edge between u and v (in this case

euvab = 1). Due to the fact that proteins often have multiple

annotations, adding an edge may increase the count of more than

one of the desired labeling pairs. In this case, the edge is added

with probability proportional to the geometric mean of the

individual pair labeling scores. We continue adding edges until the

pairwise distributions are satisfied or no further edges can be

added that can change the number of a2b or b2c labellings. As

with the stub-rewiring approach, the degree of each protein is

maintained, so that an edge is added only if the original degrees of

both proteins have not yet been reached. Note that randomized

networks are generated separately for each schema, and only edges

changing the counts of constituent pair schemas are considered for

addition into the network; that is, we only generate a small number

of the edges (i.e., those that play a role in the corresponding lower-

order schemas). This same process is used to generate randomized

graphs for triangle schemas, except that a third pairwise count is

also maintained (i.e., the a2c count). The randomized graphs

generated in this manner do an excellent job in achieving the

desired distributions. For over 98% of all Pfam triplet schemas that

have at least two independent occurrences in the original network

(and 96% of triangles), the counts of all their constituent pairs are

within one of their counts in the original graph for at least 90% of

the randomized graphs.

The same overall scheme is adapted for randomizing networks

in order to maintain triplet distributions. In particular, for each Y-

star schema where a central node labeled with a interacts with

nodes labeled with b, c, and d, randomized graphs are generated so

as to maintain the number of paths where a protein annotated

with b interacts with a protein annotated with a which in turn

interacts with a protein annotated with c, the number of paths

where a protein annotated with b interacts with a protein

annotated with a which in turn interacts with a protein annotated

with d, and the number of paths where a protein annotated with c

interacts with a protein annotated with a which in turn interacts

with a protein annotated with d. We also consider the pairwise

interactions in the Y-star; that is, the number of interactions

between a protein labeled with a with a protein labeled with b, as

well as the number of interactions with proteins labeled with c or d.

An edge is added with probability proportional to the product of a

pair term and a triplet term. As above, degree distributions are

maintained and the pairwise (respectively triplet) term for each

edge is the geometric mean over each pairwise (respectively triplet)

labeling added depending on how much closer that edge gets one

to the target count for that labeling. For each possible edge, the

triplet term is initialized to be 1 until that edge can contribute to a

triplet labeling. Once the pairwise term is 0 for all edges, only the

triplet term is considered. This process is continued until the

relevant triplet counts for the Y-star are satisfied or until no further

edges can be added that can change these counts. At this point, if

the randomized network has a triplet that has not reached its

target count, we choose a protein that is annotated with the central

label with probability proportional to its degree, and choose two

proteins with the peripheral labels uniformly at random. New

edges are added from the central protein to the two others,

removing existing edges if necessary to satisfy the degree

distributions. This process is repeated until all triplet target counts

are met or exceeded. We find that for over 95% of Pfam Y-star

schemas evaluated, the counts of all their constituent triplets are

not less than one away from their counts in the original graph for

at least 90% of the randomized graphs.

As mentioned, the randomization methods for preserving

degree distribution, and pair and/or triplet subschema distribu-

tions are approximate and do not come with theoretical

guarantees. In order to show that the described randomization

procedure produces networks that are sufficiently different from

one another (i.e., sample a wide range of possible networks), we

take the five top-scoring schemas of triplet, triangle and Y-star

topologies (given as the top five entries in Tables S3, S4 and S5)

and generate 1000 subschema preserving randomized networks

for each of them. We then calculate the overlap between each pair

of randomized networks for each schema as the Jacquard

coefficient over the edges present in each of the networks. The

low average pairwise overlaps (Figure S3) indicate that the

randomization procedure is sampling broadly from the set of

possible networks. Moreover, we observe that for a given schema

the average overlap between subschema preserving networks

seems to depend on the number of the target edges desired, the

total number of possible edges of the appropriate labels possible,

and the degree distribution of the nodes annotated with the labels

of interest.

Scoring schemas. For each schema s, let counts be the

number of times it occurs and avgs be the average number of times

it occurs in randomized networks. The score for schema s is given

by

countsz1ð Þlog
countsz1

avgsz1

� �
:

The addition of the pseudocount of 1 downweighs the

contribution of very rare schemas that could otherwise obtain
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high scores simply due to very small (or zero) average counts in the

randomized graphs. The scoring function takes into account both

a schema’s frequency and its over-representation in the real graph

compared to the randomized one. While other scoring functions

may be utilized, we note that due to the variation in how frequent

various annotations are, counts by itself is not an ideal choice as it

favors schemas comprised of frequent annotations.

For each schema, 100 randomized networks are generated, and

the average number of times that each schema occurs in these

networks is computed. Overall results did not change appreciably

when considering more randomizations in this step and keeping

the rest of the framework the same (data not shown), suggesting

that 100 randomizations are adequate for our purposes. Due to

computational concerns, and since we are only interested in

independent recurring schemas, scores are computed only for the

419 pair, 842 triplet, 31 triangle, and 999 Y-star schemas that

occur independently at least twice in the interactome.

Significance model. For each putative recurring schema

found in the real network, we obtain a score reflecting its

frequency and over-representation compared to the randomized

graphs. In order to evaluate the significance of these scores, for

each schema topology, we repeat this procedure with multiple

iteration graphs created by the stub-rewiring algorithm of [8]. Since

all associations in these randomized networks occur by chance, we

can use them to calculate the FDR for each score, or the fraction

of schemas with score $s that arise from chance alone. For n

iteration graphs, it can be computed as

1
n

P
iteration graph i # putative schemas in graph i with score §s

#putative schemas in the real graph with score §s
:

Here, n = 50 iteration graphs are used. In order to correct for

differences in the clustering coefficient between real and

randomized graphs, the FDR of triangle schemas is further

corrected by multiplying by the ratio of the number of triangles in

the actual network to the average number found in randomized

graphs. Note that the false discovery rate corrects for multiple

hypothesis testing. We use an FDR of #0.05 as the significance

cutoff to identify emergent schemas. Note that other FDR values

can be used as a cutoff to identify emergent schemas; we choose

the 0.05 level as it is a commonly-used one that appears reasonable

in this application.

Filtering schemas. Once schemas over-represented at

FDR#0.05 are identified, we eliminate any schema for which at

least 15% of the randomizations have a labeled subgraph whose

count is more than one below its count in the original network.

Additionally, the instances for these schemas are obtained and we

eliminate those schemas whose instances are a subset of the

instances of another schema from the same topology. The

remaining schemas are our uncovered emergent schemas.

Network alterations. In order to check whether the schemas

identified as emergent are robust to changes in the network, we

recompute FDRs on the yeast network altered in the following

way. First, we remove a percent x of the interactions, where each

such interaction is chosen uniformly at random. We then add an

equal number of interactions, where the two proteins to be

connected are again chosen uniformly at random. We consider

altered networks with x = 2.5%,5.0%,7.5% (i.e., resulting in

networks differing from the original network by up to 5%, 10%,

15%, respectively), and generate five altered networks for each of

these values. For each perturbed network, the absolute value of the

difference in FDRs over all schemas identified as emergent in the

original network is computed. Figure S4 gives histograms of these

values over all perturbed networks, and shows that the FDRs for

most emergent schemas vary very little, with a few outliers. For the

networks altered by removing 2.5% and adding 2.5% of the

interactions, the median absolute change in FDR over emergent

schemas varies from 0.0017 to 0.0036 in the five perturbed

networks; these numbers are 0.0018 to 0.0033 when adding and

removing 5%, and 0.0019 to 0.0043 when adding and removing

7.5%.

Computing requirements. The described schema discovery

process is run on a Dell Linux Cluster with 3.2 GHz Xeon and

3.0 GHz Woodcrest processors; 51 total nodes are used (one for

the FDR computation of the original network and one for each of

the iteration graphs). The entire process for uncovering schemas of

the four topologies considered typically takes 12 total hours in a

shared user environment.

Evaluating functional coherence
For each topology, we compile the set of instances of all Pfam

emergent schemas. Duplicate instances are removed; for the

‘‘background’’ set, we enumerate all subgraphs of that topology in

the same filtered interaction network that is used to search for the

Pfam schemas. To avoid any bias that might arise from Pfam

annotations, only proteins having at least one Pfam annotation are

considered when building the background sets of subgraphs.

Furthermore, we require all proteins in each schema instance and

each background subgraph to have non-trivial GO biological

process annotations; in the case of the Y-star topology, this

requirement is relaxed to permit the central node to be

unannotated. For each such subgraph, we determine the least

common ancestor (LCA) of the annotations of the proteins in the

GO biological process graph; if there are multiple LCAs, we select

the one that annotates the smallest number of proteins in S.

cerevisiae. Note that if the proteins are not known to be functionally

related, the LCA of their annotations would be the trivial

annotation of biological_process. The ‘‘specificity’’ of this LCA is

calculated as the probability p of a schema-sized set of proteins

having that annotation, using the hypergeometric distribution.

Finally, for a given value of p, for both the emergent schema

instances and the background set of subgraphs, we can measure

the functional coherence of each as the fraction of subgraphs

whose constituent proteins have annotations whose LCA specific-

ity is at most p.

Supporting Information

Figure S1 Functional coherence of emergent schema instances

compared with arbitrary subgraphs of the same topology. Each

panel compares emergent schemas (shown in blue) with a

background set of schemas (shown in red) with respect to

biological process coherence. As a function of a particular p-value

p, we plot the fraction of schema instances that share a biological

process term that has p-value less than or equal to p, as judged by

the hypergeometric (see text). For all topologies (pairs, first panel;

triplets and triangles, second panel; Y-stars, third panel) and over

the entire range of p-values, the emergent schemas have a higher

fraction of instances with shared biological process than back-

ground schemas of the same topology.

Found at: doi:10.1371/journal.pcbi.1000203.s001 (1.48 MB EPS)

Figure S2 An example of using schemas to query pathways. (A)

Three overlapping triplet schemas involved in Ras and kinase

signaling were chosen. (B) Their instances make up portions of the

related pathways of the cell wall organization and biogenesis, cell

polarity, filamentous growth, pheromone response, cell cycle, and

vesicle transport pathways. Shapes represent Pfam motifs, and

colored circles correspond to GO biological process annotations.
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The figure is drawn using Cytoscape [74] with the GOlorize

plugin [75] for functional coloring.

Found at: doi:10.1371/journal.pcbi.1000203.s002 (0.29 MB EPS)

Figure S3 Variation in 1000 subschema preserving randomized

networks for each of the five top-scoring triplet, triangle, and Y-

star schemas. Each point in the graph plots the average Jacquard

coefficient between pairs of networks randomized for the same

schema, with error bars showing plus and minus one standard

deviation, as a function of the total target number of edges desired

between proteins of particular annotations divided by the total

number of possible edges having those annotations. The overlap

between randomized networks also appears to depend on the

degree distribution of the proteins with the relevant labels (not

depicted here).

Found at: doi:10.1371/journal.pcbi.1000203.s003 (0.24 MB EPS)

Figure S4 A histogram of the absolute differences between the

FDRs of emergent schemas in the original network and a network

altered by removing and then adding 2.5% (top), 5.0% (middle)

and 7.5% (bottom) of the edges. Results in each histogram are

aggregated over five altered networks, and the heights of the bars

give the number of schemas falling into the five bins corresponding

to changes in FDR,0.1, 0.03, 0.05, 0.1 and 1.0.

Found at: doi:10.1371/journal.pcbi.1000203.s004 (0.26 MB EPS)

Table S1 GO molecular function terms used

Found at: doi:10.1371/journal.pcbi.1000203.s005 (0.02 MB PDF)

Table S2 Emergent S. cerevisiae Pfam pair schemas

Found at: doi:10.1371/journal.pcbi.1000203.s006 (0.03 MB PDF)

Table S3 Emergent S. cerevisiae Pfam triplet schemas

Found at: doi:10.1371/journal.pcbi.1000203.s007 (0.02 MB PDF)

Table S4 Emergent S. cerevisiae Pfam triangle schemas

Found at: doi:10.1371/journal.pcbi.1000203.s008 (0.01 MB PDF)

Table S5 Emergent S. cerevisiae Pfam Y-star schemas

Found at: doi:10.1371/journal.pcbi.1000203.s009 (0.02 MB PDF)

Table S6 Emergent S. cerevisiae GO molecular function pair

schemas

Found at: doi:10.1371/journal.pcbi.1000203.s010 (0.02 MB PDF)

Table S7 Emergent H. sapiens Pfam pair schemas

Found at: doi:10.1371/journal.pcbi.1000203.s011 (0.05 MB PDF)

Table S8 Table S8a (top) gives the most frequent Pfam motifs in

the filtered yeast interactome, along with the number of proteins

they annotate. Table S8b (bottom) gives the Pfam motifs that take

part in the most number of interactions in the filtered yeast

interactome, computed as the sum of the degrees of all proteins

annotated with the terms.

Found at: doi:10.1371/journal.pcbi.1000203.s012 (0.01 MB PDF)

Table S9 Instances of emergent pfam pair schemas in S

cerevisiae

Found at: doi:10.1371/journal.pcbi.1000203.s013 (0.03 MB

TXT)

Table S10 Instances of emergent pfam triplet schemas in S

cerevisiae

Found at: doi:10.1371/journal.pcbi.1000203.s014 (0.05 MB

TXT)

Table S11 Instances of emergent Pfam triangle schemas in S

cerevisiae

Found at: doi:10.1371/journal.pcbi.1000203.s015 (0.01 MB

TXT)

Table S12 Instances of emergent pfam Y-star schemas in S

cerevisiae

Found at: doi:10.1371/journal.pcbi.1000203.s016 (0.04 MB

TXT)
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