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Abstract The classic Hegselmann-Krause (HK ) model for opinion dynamics consists of a
set of agents on the real line, each one instructed to move, at every time step, to the mass
center of the agents within a fixed distance R. In this work, we investigate the effects of noise
in the continuous-time version of the model as described by its mean-field Fokker-Planck
equation. In the presence of a finite number of agents, the system exhibits a phase transition
from order to disorder as the noise increases. We introduce an order parameter to track the
phase transition and resolve the corresponding phase diagram. The system undergoes a phase
transition for small R but none for larger R. Based on the stability analysis of the mean-field
equation, we derive the existence of a forbidden zone for the disordered phase to emerge.
We also provide a theoretical explanation for the well-known 2R conjecture, which states
that, for a random initial distribution in a fixed interval, the final configuration consists of
clusters separated by a distance of roughly 2R. Our theoretical analysis confirms previous
simulations and predicts properties of the noisy HK model in higher dimension.
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1 Introduction

Network-based dynamical systems have received a surge of attention lately. In these systems,
typically, a set of agents will interact by communicating through a dynamic graph that evolves
endogenously. The popularity of the model derives from its widespread use in the life and
social sciences [1,4,5,7,8,12,18]. Much of the difficulty in analyzing these systems stems
from the coupling between agent dynamics and evolving graph topology [8]. If the system is
diffusive and the information transfer between agents is symmetric, it usually converges to
an attractor under mild assumptions [6,26]. In the absence of symmetry, however, the system
can exhibit the whole range of dynamical regimes, from periodicity to chaos [8].

The Hegselmann-Krause (HK ) model is the classic representative of the diffusive type. It
consists of a fixed number N of agents, each one located at xk(t) on the real line. At each time
step, every agent moves to the mass center of all the others within a fixed distance R. The
position of an agent represents its “opinion”. The underlying assumption is that people are
immune to the influence of others whose opinions greatly differ from their own. In particular,
two groups of agents initially separated by a distance of R or more will form decoupled
dynamical systems with no interaction between them. HK systems are known to converge in
finite time, but the relationship between the initial and final profiles remains mysterious. The
celebrated 2R conjecture states, for a random initial distribution in a fixed interval, the final
configuration consists of clusters separated by a distance of roughly 2R [3].

It is useful to enlarge the model by introducing noise into the dynamics [29]. Stochasticity
can be invoked to capture nonobservable factors operating at smaller scales. Analytically,
it has the benefits of nudging the system away from pathological configurations. By tun-
ing the noise level as we would the temperature of a thermodynamical system, we can
vary the dynamics from chaos to fixed-point attraction and uncover phase transitions in
the process. To simplify the analysis, we model the system with a stochastic differential
equation (SDE) for the continuous-time version of the HK model and focus on its mean-
field approximation in the form of a Fokker-Planck type partial differential equation (PDE)
governing the agent density evolution. This formulation of noisy HK systems in the thermo-
dynamic limit can be derived from first principles and seems well-supported by computer
simulation.

We review related works in Section 2 and formally introduce the model in Section 3.
In Section 4, we propose an order parameter to describe and analyze the system dynamics,
along with the investigation of the system bistability and the phase diagram. We find that the
system undergoes a phase transition for small R but none for larger R. Based on the stability
analysis of the mean-field equation (Section 6), we derive the existence of a forbidden zone
for the disordered phase to emerge. This puts us in a position, building on previous work,
to provide a theoretical explanation for the 2R conjecture in the thermodynamic limit. Our
theoretical analysis confirms previous simulations and predicts properties of the noisy HK
model in higher dimension. In Section 7, we discuss the origin of different phase behaviors
in the SDE model and the PDE model.

2 Prior Work

The convergence of the classicalHK systemwas established in a number of articles [16,21,26]
and subsequent work provided increasingly tighter bounds on the convergence rate, with a
current bound of O(N 3) [2,25]. While there exists a worst-case lower bound of�(N 2) [31],
computer simulations suggest that, in general, the convergence rate is much faster. Themodel
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Noisy Hegselmann-Krause Systems 1211

extends naturally to higher dimension by interpreting R as theEuclidean distance. Polynomial
upper bounds are known for that case as well [6], with the current best being O(N 4) [24]. We
note that the convergence time can be significantly lowered if certain “strategic” agents are
allowed to move anywhere at each step [20]. For general consensus and stability properties
of the infinite-horizon profile, we refer the interested reader to [14,22,23,30].

Attempts to analyze natural extensions of the HK model to the nonsymmetric case have
proven surprisingly frustrating. While it is known that diffusive influence systems (the gen-
eralization of HK model) can have limit cycles and even chaotic behaviors, the simple fact
of allowing each agent to pick its own interval produces dynamics that remains unresolved
to this day. Numerical simulations suggest that such systems converge but a proof has been
elusive. All we know is that if each agent can pick its interval freely in {0, R}, the system
still converges [10]; in other words, taking the original HK system and fixing some of the
agents once does not change the fact that all the orbits have fixed-point attractors.

When it comes to the limiting configuration of HK systems, the 2R-conjecture stands out
as the most intriguing hypothesis. The concept of equilibrium stability was introduced in [3]
to put this conjecture on formal grounds. Extensive experiments were conducted, suggesting
a value closer to 2.2R.

All the work cited so far considers only the deterministic version of the system. For the
noisy version of the model, Pineda et al. consider a discrete-time formulation where, at each
step, every agent randomly chooses to perform the usual HK step or to move randomly [29].
Two types of random jumps are considered: bounded jumps confine agents to a bounded
distance from their current position while free jumps allow them to move anywhere. An
approximate density-based master equation was developed for the analysis of the order-
disorder phase transition and the noisyHK systemwas comparedwith another famous opinion
dynamics system, the so-called DW model [11].

Consensus analysis of opinion systems can be found in [15]. In their work, Garnier et al.
conduct linear stability analysis for the mean-field limiting equation for a group of opinion
systems from [27]. Following this approach, the authors were able to determine whether the
system achieves consensus (ie, a single-cluster state) for a given interaction kernel and noise
level. Different types of kernels from [17,27] were considered and the results were further
confirmed by extensive simulations.

A fairly technical L1 analysis of the mean-field limiting equation for the noisy HKmodel
was conducted in [9].Well-posedness (ie, the existence, uniqueness, and non-negativity of the
solution) was established along with an extensive discussion of regularity issues. Following
this track, the authors conducted a global stability analysis of the system and exhibited an
unstable zone for clustered profiles. In the present paper, a forbidden zone for disordered
phase is obtained by linear stability analysis. Combining the two results above yields a
possible co-existence region for clustered and disordered phases.

We now highlight the contributions of this paper. For the stochastic differential equation
model of the noisy HK system, we propose an order parameter for analyzing the system
behavior. The phase diagram of the system with respect to interacting range and noise level
is outlined and phase transitions are observed when the interacting range is comparably
small relative to the system size. For the clusters emerged from the dynamics, we are able
to analyze the dependency of cluster width on the population and noise level. For the par-
tial differential equation model induced from the mean-field limit of the SDE model, we
prove that the cluster has a Gaussian profile under first-order approximation with respect
to noise level. We describe a pseudo-spectral method for simulating the system efficiently
with sufficient accuracy. By conducting a linear stability analysis, not only can we derive a
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satisfactory theoretical explanation for the 2R conjecture, but we can also delineate the noise
level corresponding to stable disordered phases in higher dimensions.

3 The Model

The stochastic differential equation (SDE) model we use in this paper can be expressed as

dxi = − 1

N

∑

j : |xi−x j |≤R

(xi − x j ) dt + σ dW (i)
t , (1)

where i = 1, 2, . . . , N denotes the agents, σ specifies the magnitude of the noise and
W (i)

t represent independent Wiener processes. For technical convenience, we impose peri-
odic boundary conditions on (1) by taking each xi modulo L = 1 and interpreting |z| as
min{|z|, L −|z|}. Intuitively, the model mediates the tension between two competing forces:
the summation in (1) represents an attracting force that pulls the agents together while the
diffusion term keeps them active in Brownian motion. This can be compared to the use of two
parameters in the noisy model of Pineda et al.: a noise intensitym determines the probability
that an agent should move to the mass center of its neighbors (vs. moving randomly), and γ

bounds the length of the jump [29]. In the continuous-time model, the pair (m, γ ) reduces to
a single parameter, namely the noise magnitude σ .

In the mean-field limit N → ∞, Eq. (1) induces a nonlinear Fokker-Planck equation for
the agent density profile ρ(x, t) [15]:

ρt (x, t) =
(

ρ(x, t)
∫

(x − y)ρ(y, t)1|y−x |≤R) dy

)

x

+σ 2

2
ρxx (x, t). (2)

The function ρ(x, t) is the limiting density of ρN (x, t) := 1
N

∑
δx j (t)(dx), as N goes

to infinity, where δx (dx) denotes the Dirac measure with point mass at x . In this partial
differential equation form, the second derivative term represents the diffusion process that
flattens the density ρ. On the other hand, the first term represents the advection of the density
caused by attraction. In higher dimensions, one just needs to replace the first derivative by
a divergence operator and replace the second derivative by a Laplace operator. We will use
bold letter to denote a vector or a point in higher dimensional space.

To derive (2) from Eq. (1), we consider the agent flux of a small piece of space �.
The Brownian motion of infinitely many agents is equivalent to a diffusion process, which
implies that the flux caused by the noise is −σ∇ρ. On the other hand, the attraction between
agents causes a flow with velocity

∫
|y−x |≤R(y − x)ρ(y, t) dy at x ; hence a net outflow equal

to the derivative of ρ(x, t)
∫
|y−x |≤R(y − x)ρ(y, t) dy. Eq. (2) follows immediately from

mass conservation and the divergence theorem. Regarding the boundary condition, none is
necessary if we consider the system on the real line. For the case of an interval, we use
Neumann boundary conditions, in this case a reflecting boundary condition since the flux at
the boundary should be zero. In the case of different rules other than theHK rule or the case of
external force, the corresponding mean-field equations will be of the same type of advection-
diffusion equation with different kernels in the convolution. To simplify our analysis and
simulation, we use a periodic boundary condition over the unit interval for the rest of this
paper. Equivalently, the system can be regarded on a circle with unit perimeter.
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4 System Dynamics and Phase Transitions

As we mentioned earlier, the original HK system always converges within a number of steps
and the final configuration consists of a union of clusters with pairwise distance larger than
R. A case of particular interest is that of a single cluster, forming what is commonly called
consensus. Of course, when noise is added to the system, there is no “final” state to speak
of; nevertheless, for the SDE model, one could focus on the averaged long-time behavior of
the system as measured by the number of clusters. Intuitively, a higher noise level σ should
correspond to more diffused clusters while, for σ above a certain threshold, clusters should
break apart and release the agents to move randomly in the unit interval. This intuition is
confirmed by simulating (1) for different values of R and σ .

To describe the system quantitatively, we introduce the order parameter

Q(x) := 1

N 2

N∑

i, j=1

1|xi−x j |≤R (3)

tomeasure the edge density of the communication graph.Obviously, Q = 1when a consensus
state is reached and it can be easily checked that Q = 2R/L when the agents are uniformly
spread (disordered phase).

We highlight two interesting scenarios in the SDE model. For small values of σ , a ran-
dom initial distribution of the agents evolves in the following manner: at the beginning, the
attracting forces dominate and break symmetry by forming several clusters. As the clusters
are formed, the noise term gradually overtakes the dynamics and produces a jiggling motion
of the clusters. The mass center of the clusters follows a Brownian motion of variance σ 2/n,
where n is the number of agents in the cluster. Brownianmotion in one (and two) dimension(s)
is recurrent so, as one would expect, the clusters formed in the early stage will eventually
merge almost surely. Such merging process and the corresponding order parameter can be
observed in Fig. 1 (with the time axis suitably transformed to make the evolution more
apparent).

Fig. 1 (Upper) Simulation of the SDE model for noisy HK system with n = 100, σ = 0.05 and R = 0.1.
At the beginning, several clusters are formed from the random distributed initial profile and later merge with
each other. (Lower) The curve of the order parameter Q as a function of the time. Q starts at 2R/L = 0.2 and
then gradually increases during the process of cluster formation. Then Q jumps up for several times during
cluster merging, and finally reaches 1, which represents the single cluster phase. The time axes in both figures
are suitably transformed to make the evolution more apparent

123



1214 C. Wang et al.

Fig. 2 (Upper) Simulation of a noisy HK system with n = 100, σ = 0.07 and R = 0.1. All the agents start
at x = 0.5 and then diffuse to fill up the space. (Lower) The plot of the order parameter Q as a function of
the time. Q stats at 1 and then gradually decreases during the diffusion and finally reaches the disordered state,
in which case Q = 2R/L = 0.2

If σ is comparably large and we initialize the system by placing all the agents at the same
position at x = 0.5, then the initial cluster breaks apart to fill up the entire space, as shown in
Fig. 2. Notice that the order parameter Q decreases gradually from 1 to 0.2, which correspond
to the single cluster state and the disordered state.

To better understand the collective behavior of the system, we carefully calculated the
time-averaged order-parameter for different parameter pairs (R, σ ) in the region [0, 0.35] ×
[0, 0.17] in the thermodynamic limit. We note here that in the discussion of phase transition
phenomena of the HK model, the thermodynamic limit we consider is the limit N → ∞
with the box size L fixed. This is different from the usual thermodynamic limit in statistical
mechanics where one has N → ∞, L → ∞ with the density N/L fixed and finite. The
resulting phase diagram is demonstrated in Fig. 3. For each parameter point in Fig. 3, a
system with N = 300 agents is simulated for sufficiently long time (T = 105). The initial
profile is randomly sampled fromuniformdistribution, and the time-averaged order parameter
is calculated within the time period when the system has reached a steady state. Figure 3
suggests that Q(x) is discontinuous near the origin, signifying the presence of a first order
phase transition. The first order transition line does not persist indefinitely and vanishes
for large R. This is because when the interval length R is large, the noise level σ need to
be comparably large to overcome the attracting forces among the agents. The distinction
between the clustered phase and the disordered one hence becomes blurry for large (R, σ )
and the phase transition ceases to be observable. This is the region where the boundary effect
comes up.

We choose two groups of parameters (R, σ ) to demonstrate the behavior of the sys-
tem (Fig. 4). The first group contains (R, σ ) = (A)(0.05, 0.01), (B)(0.05, 0.02), and
(C)(0.05, 0.03), which are close to the origin. It can be observed that at (A), a single, nar-
row cluster is formed doing Brownian motion. When the noise level increases to (B), some
agents are able to escape the cluster to travel around the entire domain. The cluster itself is
still visible. For even larger level of noise at (C), the cluster disappears, and agents move
disorderly. For parameters away from the origin at (R, σ ) = (D)(0.2, 0.07), (E)(0.2, 0.09),
and (F)(0.2, 0.11), the transition from clustered state to disordered state still exists but is
more difficult to observable. In general, clusters widen as σ grows. This observation will be
explained in Section 5.
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Fig. 3 Phase diagram for the SDE model. The color scale represents the value of order parameter Q(x) as
defined in Eq. (3). The domain size L = 1, number of agents N = 300, and time t = 105, the latter being
large enough to ensure that the system has reached steady state. The value of the order parameter is calculated
as the time average of Q(x) after the system becomes steady. We note the existence of a phase transition for
small σ consisting of a line separating clustered and disordered states. The transition line vanishes at higher
noise level. We highlight two groups of parameter points (A, B,C) and (D, E, F) shown in the figure. The
corresponding dynamics are shown in Fig. 4 (Color figure online)

Fig. 4 Simulations of six independent systems: R = 0.05, σ = 0.01(A), 0.02(B), 0.03(C) in the time window
[200, 500]; and R = 0.2, σ = 0.07(D), 0.09(E), 0.11(F) in the time window [200, 400]. For visualizing
purposes, only 100 randomly chosen agents are plotted to avoid saturation, and the diagram is shifted to keep
the cluster around the center. The positions of the parameter pairs in the phase diagram are shown in Fig. 3

The periodic boundary condition we adopted helps the agents escaped from the cluster to
be absorbed back. This is because the escaped agents can come back from either side of the
cluster. For the noisy HK system on the real line, on the other hand, it is much more difficult
for escaped agents to join the cluster again since the random walk will be null-recurrent [28].
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5 Analysis of the Clustered Phase

We analyze the long-time profile of the clustered phase with respect to the interval length R
and the noise level σ . An important difference with the original noiseless HK system is that
clusters do not form single points but evolving intervals of moving points.We seek conditions
on (R, σ ) to make the clusters stable.

5.1 The Clustered Phase in the SDE Model

If we assume that the widths of the clusters are smaller than 2R, then the drift term becomes
simpler. Indeed, suppose there are n agents in the cluster and let g(t) = 1

n

∑n
i=1 xi (t) denote

the center ofmass. The equations for xi (t) and g(t) become dxi = n
N (g(t)−xi ) dt+σ dW (i)

t

and dg = σ
n

∑n
i=1 dW (i)

t . Then it is straightforward to see that

dxi = − n

N
xi dt + σ dW (i)

t + σ

N

n∑

k=1

dW (k)
t . (4)

Pick one cluster and assume that all of its agents are initially placed at the origin. They
will oscillate in Brownian motion while being pulled back to the origin because of the
first term of (4). It follows that the invariant measure of the stochastic differential equation
above provides a faithful description of the local profile. Since the SDE (4) is linear in x =
(x1, . . . , xn) and the diffusion term is constant, it describes a Gaussian process; therefore, it
suffices to study the first twomoments of the vector x to provide its complete characterization
in distribution. Using Itô calculus, we obtain the following moment equations:

dExi = − n

N
Exi dt ,

dExi x j =
(

−2n

N
Exi x j + σ 2(��T )i j

)
dt,

where �i j = 1
N + δi j . This implies that

Exi x j = Nσ 2

2n
(��T )i j (1 − e−2nt/N ).

Hence, at steady state,

Exi = 0 and Exi x j = Nσ 2

2n
(��T )i j .

This implies a Gaussian profile at steady state of the form xi ∼ N (0, Nσ 2

2n ��T ). If we use
M to denote the all-one matrix, then � = I + 1

N M . Hence the covariance matrix

Var(x) = Nσ 2

2n
��T = Nσ 2

2n

(
I +

(
2

N
+ n

N 2

)
M

)
. (5)

Notice that the covariance matrix Nσ 2

2n ��T has one-fold eigenvalue (1 + n
2N + N

2n )σ 2 and

(n − 1)-fold eigenvalue Nσ 2

2n . Therefore the cluster size depends linearly on σ . Furthermore,
since these two eigenvalues both decrease when n increases from 1 to N , the cluster size
actually increases as the number of agents declines. This result may seem counterintuitive at
a first glance because more agents are naturally associated with larger clusters. In the SDE
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model, however, more agents lead to stronger attraction to the mass center, which results in
smaller-size clusters.

5.2 The Clustered Phase in the PDE Model

In this part,wewill establish an asymptotic solutionof clustered phase for smallσ . Concretely,
our solution ρ0(x) is defined as

ρ0 (x) = Ce−min{x2,R2}/σ 2
, (6)

where the normalization constant C ensures summation to 1. Notice that any translation of
ρ0 in x-direction is also an asymptotic solution.

The clustered phase corresponds to a steady solution of (2). We assume that the clustered
phase is stable for the given parameters R and σ . In addition, we focus on the case where R is
much smaller than L = 1, otherwise the clustered phase is not stable. By (2), the steady-state
equation can be expressed as

(
ρ(x)

∫ x+R

x−R
(y − x)ρ(y) dy

)′
= σ 2

2
ρ′′(x). (7)

After integrating the above equation once, we have

ρ(x)
∫ x+R

x−R
(y − x)ρ(y) dy = σ 2

2
ρ′(x) + C1. (8)

Note that ρ(x) ≡ 1 is a solution for C1 = 0. For a single-cluster profile, we may assume
without loss of generality that the cluster is centered around 0 and the solution is symmetric:
ρ(x) = ρ(−x). By periodicity, we can confine our analysis to the interval [−1/2, 1/2],
which implies C1 = 0. Rearranging and integrating (8) once more yields

ρ(x) = ρ(0) exp

{
2

σ 2

∫ 1/2

−1/2
K (x, y)ρ (y) dy

}
, (9)

where

K (x, y) =
∫ x

0
(y − ξ) 1|y−ξ |≤R dξ. (10)

It is easy to evaluate the kernel K . For |x | > 2R, we have

K (x, y) =

⎧
⎪⎨

⎪⎩

1
2 (R + x − y)(R − x + y) x − R ≤ y ≤ x + R,
1
2 (y

2 − R2) −R ≤ y ≤ R,

0 otherwise.

(11)

For 0 ≤ x ≤ 2R, we get

K (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 (R + x − y)(R − x + y) R ≤ y ≤ x + R,

− 1
2 x(x − 2y) x − R ≤ y ≤ R,

1
2 (y

2 − R2) −R ≤ y ≤ x − R,

0 otherwise.

(12)
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and for −2R ≤ x < 0, we get

K (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 (R + x − y)(R − x + y) x − R ≤ y ≤ −R,

− 1
2 x(x − 2y) −R ≤ y ≤ x + R,

1
2 (y

2 − R2) x + R ≤ y ≤ R,

0 otherwise.

(13)

It is not easy to solve the integral functional equation (9) for ρ directly. We will show that
ρ0 defined in (6) solves (9) up to the leading term in the expansion in σ . Observe that, for
σ much smaller than R, the profile ρ0 is concentrated around x = 0, so we only need to
evaluate the integral in (9) near y = 0 and thus ignore error terms exponentially small in σ .
For |x | ≤ R, by (12, 13), we see that near y = 0,

K (x, y) = −1

2
x(x − 2y). (14)

The exponent on the right hand side of (9) becomes

2

σ 2

∫ 1/2

−1/2
K (x, y) ρ0 (y) dy = − 1

σ 2

∫ 1/2

−1/2
x(x − 2y)ρ0 (y) dy

= − x2

σ 2

∫ 1/2

−1/2
ρ0(y) dy = − x2

σ 2 ,

which satisfies (9). On the other hand, for |x | > R, near y = 0, we have

K (x, y) = 1

2
(y2 − R2). (15)

Thus,

2

σ 2

∫ 1/2

−1/2
K (x, y) ρ0 (y) dy = 1

σ 2

∫ 1/2

−1/2
(y2 − R2)ρ0 (y) dy = − R2

σ 2 + O (σ ) .

Once again, (9) is satisfied, this time up to the leading term in the expansion in σ . We have
thus established that, in the presence of a low level of noise, the single-cluster steady state
has a Gaussian profile with variance σ 2/2 near the cluster with exponential error decay
as function of σ . Notice that convex combinations of cluster profiles of the form (6) but
centered at different locations in (7) generate error terms in O(σ ) as long as the distances
between clusters are large enough to eliminate inter-cluster interaction. As a result, multiple
Gaussians are also steady-state solutions in the σ -error sense as long as the Gaussians are
well-separated. The asymptotic solution (6) matches remarkably well the simulation results
for the PDE model given in the next subsection.

5.3 Simulation for the PDE Model

To simulate the Fokker-Planck Eq. (2), we adopt the well-known pseudo-spectral method.
Pseudo-spectral method has been extensively used for simulating PDEs with with periodic
boundaries, especially in the fields of fluid dynamics and material science [13,19]. In our
case, the advection term of (2) is easy to calculate in the real space, while it ismore convenient
to calculate the diffusion term in Fourier space. Therefore by using Fast Fourier Transform,
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(2) can be efficiently solved numerically. We expand ρ(x, t) in Fourier space and cut off the
expansion at m (L is assumed to be 1 without loss of generality):

ρ(x, t) ≈
m∑

k=−m

ρ̂k(t)e
i2πkx . (16)

Then the integral in (2) can be carried out explicitly as
∫ x+R

x−R
(y − x)ρ(y, t) dy

=
∫ R

−R
yρ(x + y, t) dy ≈

m∑

k=−m

ρ̂k(t)e
i2πkx

∫ R

−R
yei2πky dy

≈
∑

−m≤k≤m,k 
=0

{
R

i2πk

(
ei2πkR + e−i2πkR

)

+ 1

4π2k2

(
ei2πkR − e−i2πkR

)}
ρ̂k(t)e

i2πkx .

The above formula can also be interpreted as the Fourier transform of the convolution of the
density ρ(x, y) and the kernel x1|x |≤R , which equals the product of the Fourier transform of
the density and the Fourier transform of the kernel. However, it is more convenient to conduct
the multiplication of the integral and ρ(x, t) in the real space, thus we use inverse Fourier
transform to get the convolution back to the real space. Finally, the first and second derivative
will be calculated in the Fourier space by using Fourier transform one more time. As for
the time direction, we discretize the density as ρ̂k,r = ρ̂k(rh). Since the second derivative
term (or the Laplacian term in higher dimensions) is linear in ρ but the first term is not, we
could use a semi-implicit scheme to improve the accuracy of the algorithm. The numerical
scheme is summarize in Algorithm 1. Notice that the conservation of mass

∫
ρ(y, t) dy = 1

Algorithm 1 A semi-implicit pseudo-spectral method for PDE (2)
For r = 0 to T − 1

Conduct FFT: ρk,r
FFT−−→ ρ̂k,r

Calculate ϕ̂k,r :=
[

R
i2πk (ei2πkR + e−i2πkR) + 1

4π2k2
(ei2πkR − e−i2πkR)

]
ρ̂k,r

Conduct inverse FFT: ϕ̂k,r
iFFT−−−→ ϕk,r

Calculate the product ψk,r := ϕk,rρk,r

Conduct FFT: ψk,r
FFT−−→ ψ̂k,r

Semi-implicit update: ρ̂k,r+1 =
(

− i2πkψ̂k,r − 2π2σ 2k2ρ̂k,r+1

)
h + ρ̂k,r

Set ρ̂0,r+1 = ρ̂0,r and conduct inverse FFT: ρ̂k,r+1
iFFT−−−→ ρk,r+1

is automatically satisfied in Eq. (2); therefore we only need to set ρ̂0,r+1 = ρ̂0,r during the
iteration to prevent the cumulation of numerical error while no further treatment is required.

During the simulations, the initial profile is chosen to be GaussianC×e−20(x−0.5)2 , where
the constantC rescales the density to ensure that the total mass is equal to 1. As demonstrated
in Fig. 5, the interaction range R = 0.2, and σ has four different values 0.1, 0.15, 0.2, 0.25.
It can be observed that for smaller σ , the system will evolve to reach a clustered profile. In
addition, in the case when σ is larger, the cluster is shorter and wider. When σ goes beyond
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Fig. 5 Simulations of Eq. (2) for R = 0.2 and σ = 0.1, σ = 0.15, σ = 0.2 and σ = 0.25. The initial value is

set as ρ(x, 0) ∝ e−20(x−0.5)2 . The density profile of the system at different time is indicated by curves with
different colors (Color figure online)

a certain value, the system no longer evolves into a clustered profile; instead, the density
flattens to a straight line, which corresponds to the disordered phase.

It is worth mentioning that directly simulating the SDE model will suffer a second order
complexity O(N 2) with respect to the number of agents. This is because the interaction
between any pair of agents contributes to the dynamics of the system. On the other hand,
for noisy HK systems with a large number of agents, directly simulating the Fokker-Planck
Equation (2) achieves better computational efficiency since Eq. (2) is density-based and thus
is independent with the number of agents.

6 The Disordered Phase and the 2R-Conjecture

In order to find the region where the disordered phase is stable, we conduct linear stability
analysis with ansatz ρ(x, t) = 1 + p(t)e2π ik·x (k = (k1, k2, . . . , kd)) to the mean-field
Fokker-Planck equation in dimension d with periodic boundary conditions in the unit cube
(that is, reducing each coordinate modulo L = 1):

∂

∂t
ρ(x, t) = ∇ ·

(
ρ(x, t)

∫

‖x− y‖≤R
(x − y)ρ( y, t) d y

)
+ σ 2

2

ρ(x, t),
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with the initial value ρ(x, 0) = ρ0(x) and under the constraint
∫ 1
0 ρ(x, t) dx = 1. The main

idea behind the linear stability analysis is that we give the uniform solution ρ(x, t) = 1 a
small perturbation, obtain a linear differential equation for p(t) by ignoring its higher order
terms, and see whether the magnitude of the perturbation, p(t), will amplify or vanish. The
fact that p(t) will amplify is sufficient for the disordered phase to be unstable, since being
stable means that the disordered state is resistant to any kinds of perturbation. Gram-Schmidt
orthogonalization guarantees that we could find an orthogonal matrix M such that the first
row of M is k/K , where K := ‖k‖2. By defining z = M y, we then have z1 = k · y/K .
Now let s = 2πK R and plug in the ansatz ρ(x, t) = 1 + p(t)e2π ik·x . For p small enough,
this gives us

pt e
2π ik·x

= −∇ ·
(

(1 + pe2π ik·x)
∫

‖ y‖≤R
ype2π ik·(x+ y) d y

)

−2π2σ 2K 2 pe2π ik·x

≈ −2π i pe2π ik·x
∫

‖ y‖≤R
k · ye2π ik· y d y − 2π2σ 2K 2 pe2π ik·x

≈ −2π i pe2π ik·x
∫

‖z‖≤R
K z1e

2π i K z1 d z − 2π2σ 2K 2 pe2π ik·x

≈ sRpe2π ik·x
∫

‖z‖≤1
z1e

isz1 d z − 2π2σ 2K 2 pe2π ik·x .

This results in the ODE

pt = R

(
s
∫

‖z‖≤1
z1 sin(sz1) d z − σ 2

2R3 s
2
)
p = 2Rp

(
sin s

s
− cos s − σ 2

4R3 s
2
)

.

In dimension d = 1, the ODE reduces to pt/p = 2R fγ (s), where γ := σ 2/4R3 and fγ (s)
is defined as

fγ (s) = sin s

s
− cos s − γ s2. (17)

When fγ (s) ≤ 0 for all s = 2kπR, small perturbation to ρ = 1 will decay and finally
vanish. On the other hand, if some k makes fγ (s) > 0, then ρ = 1 is no longer stable and
the system yields a clustered phase. Since its first two terms in (17) are bounded, fγ (s) < 0
for all s > s0 and γ > 0, which means that the high frequency modes are all stable. On the
other hand, when γ = 0 (the noiseless model), fγ (s) behaves like− cos s for s large enough,
which implies that fγ (s) can be positive for infinitely many frequencies. When γ > 0.012,
fγ (s) > 0 only over an interval of the form [0, s1], corresponding to the low frequency
modess. As γ increases, s1 shrinks to become nearly 0 at γ = 1

3 . The behavior of fγ (s) for
different values of γ is shown in Fig. 6.

6.1 The Unstable Zone for the Disordered Phase

When the noise level σ is very small, the clustering effect of the system dominates and the
system falls within the clustered phase. Taylor expansion of fγ (s) shows that it can take on
positive values as long as γ < 1

3 , which gives us the critical curve σ 2 = 4
3 R

3. The boundary
is accurate when R is small enough, since a suitable frequency k can always be found such
that fγ (s) > 0, hence making the disordered phase unstable. Conversely, for large R, fγ (s)
could be negative for all k, conferring stability, even though fγ (s) > 0 for some s < 2πR.
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Fig. 6 The profile of function fγ (s) for different values of γ

Below the critical curve σ 2 = 4
3 R

3 lies the unstable zone for the disordered phase in
which symmetry breaking fragments the constant solution ρ = 1 into separate clusters. This
curve is further validated by the simulation results in Section 5.3. It can be observed, by
combining Fig. 3 and the formula σ 2 = 4

3 R
3, that the disordered-clustered boundary from

the simulation lies a little above the critical curve obtained in this section.

6.2 Supporting the 2R Conjecture

The conjecture in questions refers to the original (noiseless) HK model: it states that, if the
agents starts out uniformly distributed in [0, 1], they will converge toward clusters separated
by distance of roughly 2R, thus setting their number close to the value 1/2R. This assumes
that N and 1/R are large enough. To address this conjecture in the PDE model, we must
confine γ to the range [0, 1

3 ] to make the clustered phase stable and then ask how many
clusters one should expect.

We first rule out the case s > 2π by considering the pairwise distance of the resulting
clusters. Notice that when s > 2π , k is then larger than 1/R. Even if the wave e2π ikx grows,
it cannot exist for too long since the pairwise distance of the clusters would be smaller than
R. Therefore for this class of waves, no matter whether they are initially stable or unstable
during the perturbation, they will not contribute to the final profile of the system. Then it is
safe to focus on the interval s ∈ [0, 2π ]. The expected number of clusters is given by the
value of s that maximizes fγ (s). Numerical calculation shows that the root of f ′

γ (s) = 0

(the peak’s location) shifts to the left as γ grows from 0 to 1
3 . This implies that the number

of clusters k = s/(2πR) decreases as the noise level rises. The 2R conjecture corresponds
to the case γ = 0. Numerical calculation indicates that the smallest nonzero root of f ′

0(s) is
s∗ = 2.7437. It follows that the expected number of final clusters is equal to

k∗ = s∗

2πR
= 1

2.29R
.

Note that the bound comes fairly close to the number observed experimentally forHK systems
with a finite number of agents [3].
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6.3 The Higher-Dimensional Case

In higher dimensions, we have to consider functions of the form

Fγ (s) := 1

2
s
∫

‖z‖≤1
z1 sin(sz1) d z − γ s2.

For the forbidden zone of the disordered phase, we can use a Taylor expansion for Fγ in s to
determine the critical noise level σ for a given R. Let Sd−1 denote the area of the unit sphere
in dimension d . It is well known that S1 = 2π and S2 = 4π . For general d , we have

Sd−1 = 2πd/2

�( d2 )
, where �(s) :=

∫ ∞

0
xs−1e−x dx .

It follows that

Fγ (s) ≈ 1

2
s
∫

‖z‖≤1
sz21 d z − γ s2 ≈ s2

2d

∫

‖z‖≤1
‖z‖2 d z − γ s2

≈ s2

2d

∫ 1

0
Sd−1r

d+1 dr − γ s2 ≈
(

πd/2

d(d + 2)�( d2 )
− γ

)
s2.

The above expansion gives us the boundary at which the disordered phase loses stability:

σ 2 = 4πd/2

d(d + 2)�( d2 )
R3.

Notice that the right-hand side equals π
2 R

3 > 4
3 R

3 when d = 2, which means that in
two dimensions we need even larger noise to make the disordered phase stable. As the
dimension grows, however, the Gamma function will bring the noise level down to zero and
the disordered phase will dominate unless the system becomes essentially noiseless.

7 Discussions

In the SDEmodel, simulations in Section 4 indicate that only a single-cluster profile survives
the merging process, provided that the noise level is suitably low. Multiple-cluster profile
will eventually disappear and is hence unstable. In contrast, the multiple-cluster profile can
be stable in the PDEmodel, as demonstrated in the simulation results in Section 5.3. We note
that the difference originates from the different scenarios that each model applies to. The
SDE model works on systems with finite agents. In this case, clusters merge into one under
the long-time limit (t → ∞). On the other hand, the PDE model is obtained by taking the
thermodynamic limit on any fixed time interval [0, t]. The multiple-cluster state then appears
in long-time simulation for the PDE. Essentially, we observe multiple clusters by taking the
mean-field limit (N → ∞) first and the long-time limit (t → ∞) afterwards. An alternative
understanding is that, for the emergence of the single-cluster profile, the SDE requires longer
time for increasing number of agents. The PDE is for infinite agents, and thus clusters may
never merge in finite time.

The PDE model is suitable for a system with truly large number of agents over non-
exponentially-large timescales. The SDE model, on the other hand, is a good approximation
for systems with a finite number of agents over any time scales. In statistical physics, it is not
uncommon that the order in which two limits are taken matters greatly; for example, in the

123



1224 C. Wang et al.

Ising model, taking the thermodynamic limit and bringing the magnetic field to zero must
be performed in that order so as to obtain the desired result. This work provides yet another
example of this phenomenon.

8 Conclusions

The contribution of this paper is an analysis of the clusteringmodes of the noisy Hegselmann-
Krause model. We have provided theoretical insights, validated by numerical simulations,
into the stochastic differential equation model for a finite number of agents and the Fokker-
Planck model for the mean-field approximation in the thermodynamic limit. In the SDE
model, we have shown that the system exhibits either disorder or single-cluster profile. We
have proposed an order parameter based on the edges density of the communication graph
to describe the phase transition. In the PDE model, we used linear stability analysis to find
a forbidden zone for disordered phase in which the constant solution cannot survive in the
long run. Most important, we provided a theoretical explanation for the 2R conjecture.
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