Property-Preserving Data Reconstruction*

Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu

Dept. Comp. Sci., Princeton University, Princeton NJ 08544, USA
{nailon, chazelle, csesha, dingliu}@cs.princeton.edu

Abstract. We initiate a new line of investigation into online property-
preserving data reconstruction. Consider a dataset which is assumed to
satisfy various (known) structural properties; eg, it may consist of sorted
numbers, or points on a manifold, or vectors in a polyhedral cone, or
codewords from an error-correcting code. Because of noise and errors,
however, an (unknown) fraction of the data is deemed unsound, ie, in
violation with the expected structural properties. Can one still query
into the dataset in an online fashion and be provided data that is always
sound? In other words, can one design a filter which, when given a query
to any item I in the dataset, returns a sound item J that, although not
necessarily in the dataset, differs from I as infrequently as possible. No
preprocessing should be allowed and queries should be answered online.

We consider the case of a monotone function. Specifically, the dataset
encodes a function f : {1,...,n} — R that is at (unknown) distance
¢ from monotone, meaning that f can—and must—be modified at en
places to become monotone.

Our main result is a randomized filter that can answer any query in
O(log® nloglogn) time while modifying the function f at only O(en)
places. The amortized time over n function evaluations is O(logn). The
filter works as stated with probability arbitrarily close to 1. We also
provide an alternative filter with O(logn) worst case query time and
O(enlogn) function modifications.

1 Introduction

It is a fact of (computing) life that massive datasets often come laden with vary-
ing degrees of reliability. Errors might be inherent to the data acquisition itself
(faulty sensors, white/bursty noise, aliasing), or to data processing (roundoff er-
rors, numerical instability, coding bugs), or even to intrinsic uncertainty (think
of surveys and poll data). Classical error correction postulates the existence of
exact data and uses redundancy to provide recovery mechanisms in the presence
of errors. Mesh generation in computer graphics, on the other hand, will often
deal with reconstruction mostly on the basis of esthetic criteria, while signal
processing might filter out noise by relying on frequency domain models.

* This work was supported in part by NSF grants CCR-998817, 0306283, ARO Grant
DAAHO04-96-1-0181.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 15-26, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

16 N. Ailon et al.

In the case of geometric datasets, reconstruction must sometimes seek to en-
force structural properties. Early work on geometric robustness [5,9] pointed out
the importance of topological consistency. For example, one might want to ensure
that the output of an imprecise, error-prone computation of a Voronoi diagram
is still a Voronoi diagram (albeit that of a slightly perturbed set of points). Ge-
ometric algorithm design is notoriously sensitive to structure: Dimensionality,
convexity, and monotonicity are features that often impact the design and com-
plexity of geometric algorithms. Consider a computation that requires that the
input be a set of points in convex position. If the input is noisy, convexity might
be violated and the algorithm might crash. Is there a filter that can be inserted
between the algorithm (the client) and the dataset so that: (i) the client is always
provided with a point set in convex position; and (ii) the “filtered” data differs
as little as possible from the original (noisy) data? In an offline setting, the filter
can always go over the entire dataset, compute the “nearest” convex-position
point set, and store it as its filtered dataset. This is unrealistic in the presence of
massive input size, however, and only online solutions requiring no preprocess-
ing at all can be considered viable. We call this online property-preserving data
reconstruction. Besides convexity, other properties we might wish to preserve
include low dimensionality and angular constraints:

— Consider a dataset consisting of points on a low-dim manifold embedded in
very high dimensional space. Obviously, the slighest noise is enough to make
the point set full-dimensional. How to “pull back” points to the (unknown)
manifold online can be highly nonobvious.

— Angle constraints are of paramount importance in industrial/architectural
design. Opposite walls of a building have a habit of being parallel, and no
amount of noise and error should violate that property. Again, the design of
a suitable filter to enforce such angular constraints online is an interesting
open problem.

In this paper we consider one of the simplest possible instances of online
property-preserving reconstruction: monotone functions. Sorted lists of numbers
are a requirement for all sorts of operations. A binary search, for example, will
easily err if the list is not perfectly sorted. In this case of property-preserving
data reconstruction, the filter must be able to return a value that is consistent
with a sorted list and differs from the original as little as possible. (An immediate
application of such a filter is to provide robustness for binary searching in near-
sorted lists.)

We formalize the problem. Let f : {1,...,n} — R be a function at an un-
known distance ¢ from monotonicity, which means that f can (and must) be
modified at en places to become monotone. Figure 1 illustrates the filter in ac-
tion. To avoid confusion, we use the term “query” to denote interaction between
the client and the filter, and “lookup” to denote interaction between the filter and
the dataset. Given a query x, the filter generates lookups a, b, ¢, . . . to the dataset,
from which it receives the values f(a), f(b), f(c), ..., and then computes a value
g(z) such that the function g is monotone and differs from f in at most cen
places, for some ¢ (typically constant, but not necessarily so). We note two things.

Property-Preserving Data Reconstruction 17

1. Once the filter returns g(z) for some query z, it commits to this value and
must return the same value upon future queries.

2. The filter may choose to follow a multi-round protocol and adaptively gen-
erate lookups to the dataset depending on previous results. The function
g(x) is defined on the fly, and it can depend on both the queries and on
random bits. Therefore, after the first few queries, g might only be defined
on a small fraction of the domain. At any point in time, if k£ distinct z;’s
have been queried so far, then querying the remaining z;’s (whether the
client does it or not) while honoring past commitments leads to a monotone
function close enough to f.

It is natural to measure the performance of the filter with respect to two
functions. A (p(n,e), ¢(n))-filter performs O(p(n,e)) lookups per query, and re-
turns a function g that is at a distance of at most ¢(n)e from monotonicity, with
high probability. The lookup-per-query guarantee can be either amortized or in
worst case (the running times are deterministic). Ideally, we would like p(n, €) to
depend only on n, and ¢(n) to be constant. There is a natural tradeoff between
p and ¢: we expect g to decrease as p increases. We will see an example of this
in this work.

Theorem 1. There exists a randomized (log2 nloglogn, 2+0)-filter for any fized
6 > 0. with a worst case lookups-per-query quarantee. The amortized lookups-per-
query over n function evaluations is O(logn). The filter behaves as stated with
probability arbitrarily close to 1.

a,b,c... X
T N .
Dataset Client
_ﬁ
f(a),f(b),f(c)... g(x)

Fig. 1. The property-preserving reconstruction filter: g is sound and differs from f in
few places

We also provide an alternative filter with a better lookups-per-query guaran-
tee and a worse distance guarantee.

Theorem 2. There exists a (logn, O(logn))-filter with a worst case lookups-
per-query guarantee.

It is important to note that, in this work, we think of the client as adversarial.
That is, the filter’s guarantees must hold for all sequences of client queries.
However, in some cases it might be useful to assume the client’s queries are
drawn from some known probability distribution. We will see that the filter can
take advantage of this.

18 N. Ailon et al.

Theorem 3. Assuming the client draws the queries independently, uniformly at
random, a (1,0(logn))-filter can be devised.

We are not aware of any previous work on this specific problem. Of course,
property testing is by now a well studied area [4,8], with many nontrivial results
regarding combinatorial, algebraic, and geometric problems [2,3,7]. More recent
work [1,6] has provided sublinear algorithms for estimating the distance of a
function to monotone. We use ideas from [1] in this work.

2 The (log? nloglogn,2 + 6)-Filter

We use the following notation in what follows. The distance between two func-
tions fi and fo over the domain {1,..,n} is defined as the fractional size of
domain points on which they disagree. The function f and the domain size n
which are the input to the problem (the dataset in Figure 1) are fixed. We use
¢ to denote the distance of f from monotonicity, and f to denote the monotone
function closest to f. So the distance between f and f is €, and f minimizes the
distance between f and any monotone function. We use g to denote the function
outputted by the filter.

2.1 Preliminaries
Proving Theorem 1 requires a few preliminaries, beginning with these definitions:

— 6-bad and 6-good : Given 0 < § < 1/2, the integer i is called 6-bad if there
exists j > ¢ such that

{i<k<ili® <s@)|z 02-86-i+1)

or, similarly, 7 < ¢ such that

{i<k<ilf®) > 1@} = a/2-8)6-i+1) .

Otherwise the integer i is called 6-good.

— a-light and a-heavy : Let D be the joint distribution of m independent 0/1
random variables x1, . .., Z,,, which can be sampled independently. If E[z;] <
a for all 7, then D is called a-light; else it is a-heavy.

Lemma 1. (Ailon et al. [1]) Given any fized a < b, if D is either a-light or
b-heavy, then with probability 2/3 we can tell which is the case in O(m) time. If
D is neither, the algorithm returns an arbitrary answer.

In the following we use the algorithm of Lemma 1 to test, with high probabil-
ity of success, whether a given integer i is 6-bad or 26-good, for any fixed 6 > 0.
Given an interval [u,v], we define two 0/1 random variables a[u,v] and S[u,v]:
given a random integer j € [u,v], afu,v] = 1 (resp. Blu,v] = 1) iff f(u) > f(j)
(resp. f(j) > f(v)). The algorithm bad-good-test (Fig. 2) tests if a given inte-
ger 7 is 6-bad or 26-good.

Property-Preserving Data Reconstruction 19

Lemma 2. Given any fized 6 > 0 and a parameter k, if i is either 6-bad or
26-good, then bad-good-test will tell which is the case in time O(lognlogk)
and with probability at least 1 — 1/k.

Proof. If integer i is 26-good then the expectation of every xglj)_l or xézj) defined
in bad-good-test is at most 1/2 — 26, and so the distribution D is (1/2 — 26)-
light. On the other hand, if 7 is 6-bad, then there exists some xgj)q or xgj) with
expectation at least (1/2 —6)/(1+6) > 1/2 —36/2, and so D is (1/2 — 36/2)-
heavy. The algorithm from Lemma 1 distinguishes between (1/2 — 26)-light and
(1/2 — 38/2)-heavy with probability 2/3 in O(logn) time. Since we repeat it
clogk times and take a majority vote, a standard Chernoff bound argument
shows that bad-good-test fails with probability at most 1/k. |

bad-good-test (f, 1,6, k)

repeat the following clogk times for a big enough constant c
for each 1 <j < (2/6)lnn
define zy) | = afi,i+ (1 +6)7] and @3} = B[i — (1+6)7, 4]
let D be the distribution (x1,x2,---)
if majority of above tests output (1/2 — 26)-light
then output 2§-good
else output §-bad

Fig. 2. Testing if an integer ¢ is 6-bad or 26-good

Lemma 3. There are at most (2 + O(8))en 6-bad integers (Ailon et al. [1]).
Moreover, the monotone function f which is closest to f can be assumed to
agree with f on 6-good integers.

Finally, we let 6 > 0 denote an arbitrarily small positive real. Choosing a
small enough ¢ will satisfy the distance guarantee of Theorem 1.

2.2 The Algorithm

We now describe the algorithm monotonize. Our goal, as described above, is:
given a fixed § > 0, compute a function g online such that: (1) g is monotone;
(2) g is ((2 + O(6))e)-close to f. Specifically, on query ¢, monotonize computes
(i) in time O(log® nloglogn). Whenever monotonize outputs a value g(i), this
value must be recorded to ensure consistency. The procedure will therefore hold
an internal data structure that will record past commitments. The data structure
can be designed to allow efficient retrievals, but we omit the details because we
are mainly interested in the number of f-lookups it performs, and not the cost
of other operations.

20 N. Ailon et al.

Given a query ¢, monotonize first checks whether ¢ was committed to in the
past, and returns that commitment in that case. If not, more work should be
done. In virtue of Lemma 3, monotonize tries to keep the f values at d-good
integers and change the values for other queries. We will use bad-good-test to
decide whether ¢ is bad or good.

Suppose now we decide that ¢ is §-bad and hence ¢(7) needs a value that might
be different from f(7). Ideally, we would like to find the closest §-good integers !
(to the left of 4) and r (to the right of 4) and assign ¢(i) to some value between
f() and f(r). Because of the sublinear time constraint, we slightly relax this
condition. Instead, the idea is to find an interval I, around i such that the fraction
of 26-good integers in I is at least £2(8), but their fraction in a slightly smaller
interval is O(6). This ensures that such an interval can be detected through
random sampling and that there are not many 26-good integers between ¢ and
any 26-good integer in this interval (a relaxation of the closest condition).

We will search for a good interval within the interval determined by the
closest committed values on the left and right of i. Denote this interval by [, r].
Once such a good interval Ij is found, we try to find a value x that is sandwiched
between values of f evaluated at two 6-good points in Iy. Finding z is done in
find-good-value (Figure 3). We commit to the value x on g restricted to .
If no good intervals are found, we spread the value of g(I) on g in the interval
l+1,r—1].

find-good-value (f, I, 6)

set L as an empty list
randomly select c67t logn integers from I for a big enough constant c.
for each j in random sample
if bad-good-test (f,7,6,6 %) returns °‘26-good’’
then append f(j) to L
return median value of L

Fig. 3. Finding a good value in an interval.

Lemma 4. The procedure find-good-value returns, with probability 1 —1/n3,
a value y that is sandwiched between f(i1) and f(iz), where iy,ia2 € I are §-good.
This requires the existence of at least a fraction of 6 20-good integers in I. The
running time of find-good-value is O(log?n), for fized 6.

Proof. The expected number X of §-bad samples for which bad-good-test re-
turns “26-good” is at most ¢6(1 — §)logn, by Lemma 2. The expected total
number Y of samples for which bad-good-test returns “26-good” is at least
c(1 — 6%)logn. The probability that X exceeds Y/2 is at most 1/n3 if ¢ is cho-
sen large enough, using Chernoff bounds. Therefore, with probability at least

Property-Preserving Data Reconstruction 21

1 — 1/n3, more than half the values that are appended to the list L are the
function f evaluated at 6-good points (“good values”). By taking the median of
values in L, in such a case, we are guaranteed to get a value sandwiched between
two good values. The time bound follows from Lemma 2. O

monotonize (f, §,1)

if ¢(i) was already committed to then return g(i)
if bad-good-test(f,i,8,n) returns ©¢26-good’’
then commit to g(i) = f(i) and return g(7)

let | be closest committed index on left of ¢ (0 if none)
let r be closest committed index on right of ¢ (n+ 1 if none)
(%)
set jmaw = UH(Z - l)/ln(l + §)J and jmin =0.
while jmaz — Jmin > 1
set j = L(jmarc +jmz'")/2j , I= [Z - (1 + 6)]7i]
choose random sample of size C(‘fllogn from I, for large c
for each point ¢ in sample
run bad-good-test(f,i’,6,¢c1), for large ci
if number of "26-good" outputs is > %clogn
then set jmaz = J
else set Jmin =J
if Jmaz # [In(i —1)/In(1+6)]|
then set I; = [i — (1 4+ 6)?™a*] and wval, = find-good-value(f,I;,6)
else set val; =g(l) and I; = [l + 1,1
(%)

repeat lines (*)...(**) for right side of ¢, obtaining wval, and I,

choose wval; < y < val, and commit to y on [; U{i} UI,
return y

Fig. 4. Computing a monotone function online

To find a good interval, we do a binary search among all the intervals of
length (1 + 6)7 (j = 0,1,...) starting or ending at 4, that is, [i,i + (1 + §)7]
and [i — (1 + 6)7,4]. There are O(logn) such intervals, and thus the running
time is O(loglog n) times the time spent for each interval. The overall algorithm
monotonize is shown in Figure 4. The following claim together with a suitable
rescaling of ¢ concludes the proof of the first part of Theorem 1.

Claim. Given any 0 < 6 < %, with probability 1 — 1/n, monotonize computes a
monotone function g that is within distance (2 4 6)e to f. Given a query 4, g(7)
is computed online in time O(log® nloglogn), when § is assumed to be fixed.

22 N. Ailon et al.

Proof. First we analyze the running time. The bad-good-test in line 3 takes
O(log®n) time. If the algorithm determines that i is §-bad, then the while-
loops run O(loglogn) times. In one iteration of the while-loop, the algorithm
calls bad-good-test O(logn) times. Each call takes O(log n) time by Lemma 2.
Therefore, the time complexity of the while-loop is O(log2 nloglogn). By Lemma 4,
the running time of the call to find-good-integer is O(log2 n). The time com-
plexity of the algorithm is therefore O(log® nloglogn).

Let us first look at the while-loop. If I has more than 26-fraction of 26-good
integers, then the number of ”246-good” outputs is < %clogn with inverse poly-
nomial probability. This can be shown through Chernoff bounds. On the other
hand, if I has less than é-fraction of 26-good integers, then the number of ”26-
good” outputs is > %clogn with inverse polynomial probability. Therefore, we
can assume that -

— When find-good-value is called on interval I;, I; has at least a é-fraction
of 26-good integers.

— The interval I, = [i — (1 + §)7min i] has at most 26-fraction of 26-good
integers.

Both these events hold with probability 1 — 1/n¢, for some large constant c.
These events occur totally at most a polynomial number of times. We can also as-
sume that, during the execution of the algorithm, the first call of bad-good-test
(in line 3) correctly distinguishes between é-bad and 26-good.

As shown in Lemma 2, this holds with probability 1 — 1/n3. This is totally
called at most n times. By a union-bound, all of the above events occur with
probability 1 — 1/n¢, for some positive constant d.

To show that the function g is monotone, we first note that if bad-good-test
outputs ”28-good” for i (leading to g(i) being set to f(i)), then ¢ is not é-bad.
If 7 is bad, then wval; lies between the value at two 6-good points in I;. If val;
is assigned to all the values of g in I;, then g would be monotone with respect
to all the values at the 6-good points already committed to. Similarly, val, can
be assigned to the values of g in I,. without disturbing monotonicity. Therefore,
since the algorithm assigns some value between val; and val, to ; U{i} U I, g
is remains monotone.

Finally we show that g is within distance (2+6)e to f. We earlier showed that
for Lyin = [i — (1 + 8)7min 4], the fraction of 26-good integers in I,,;,, is at most
26. Since by the end of the algorithm j.,a02 < jmin + 1, the fraction of 26-good
integers in I, = [i,i + (1 4 8)me=] (or [; = [i — (1 + §)Ime=_4]) is at most 46. In
other words, each time we make a total of |I; U{i} UI,| corrections to f at least
a (1 — 46)-fraction of these changes are made on 26-bad integers. By Lemma 2.4
in [1], the total number of 26-bad integers is at most (2 + 106)en. So the total
number of changes we made on f is at most (2 + 106)en/(1 — 46) < (2 + cd)en
for some constant c¢. This concludes the proof. O

Property-Preserving Data Reconstruction 23

2.3 Achieving Logarithmic Amortized Query Time

In this section we show how to modify the algorithm to achieve better amortized
query time. The worst case query time for a single query remains the same. We
need a technical lemma first.

Lemma 5. For any 1/2 > 6 > 0, let i be a 6-bad integer. Let l,r be two 6-good
integers such thatl < i < r. Then there is a witness to i’s badness in the interval
[1,7].

Proof. If f(i) < f(l), then we claim that [is a witness to ¢’s badness. In fact, since
f(1) and f(4) is a violating pair, it is immediate that at least one of them is 0-bad
with respect to the interval [I,i]. Since [is §-good, ¢ must be 0-bad (and hence 8-
bad) with respect to [I,]. In this case, [is a witness to i’s badness. Similarly, r will
be a witness if f(i) > f(r). In the following we assume that f(I) < f(i) < f(r).

Let w be a witness to ¢’s badness. Without loss of generality, assume that
w < 4. If w > [then we are done, so let w < [. Since ¢ is 6-bad and [is 6-good, we
know that: number of violations in [w, I] with respect to [is < (1/2—6)(l—w-+1);
number of violations in [w,] with respect to i is > (1/2 —6)(i —w +1). We also
know that each violation in [w,] with respect to i is also a violation with respect
to [, so the number of violations with respect to ¢ in [[+1,4] is > (1/2—6)(i—1) =
(1/2—6)(i—(I4+1)+1). This shows that ¢ has a witness to its badness in [I+1,i]. O

The improvement on amortized query time comes from the following strat-
egy: each time the algorithm answers a client query, it also generates a new query
by itself and answers that query. This self query is completely independent of
all the client queries, and we call it an oblivious query.

The oblivious queries are generated based on the balanced binary tree on
[1,n]. The root of this tree is [n/2]. The left subtree of the root corresponds to
the interval [1, |n/2] —1], and similarly the right subtree corresponds to [|n/2|+
1,n]. The two subtrees are then defined recursively. This tree is denoted by T'.

The oblivious queries are generated according to the following order. We start
from the root of T and scan its elements one by one by going down level by level.
Within each level we scan from left to right. This defines an ordering of all inte-
gers in [1,n] which is the order to make oblivious queries. This ordering ensures
that, after the (2¥ — 1)-th oblivious query, [1,n] is divided by all the oblivious
queries into a set of disjoint intervals of length at most n/2*. Each oblivious query
is either a 6-good integer itself in which case monotonize returns at line 6, or it
causes two 6-good integers being outputted (val; and val, in monotonize). These
two 6-good integers lie on the left and right side of the oblivious query, respec-
tively. This shows that after the (2¥ — 1)-th oblivious query, [1, 7] is divided by
some 6-good integers into a set of smaller intervals each of length at most n /2.

Based on Lemma 5, whenever we call bad-good-test (in find-good-integer
or monotonize) to test the badness of an integer i, we only need to search for a
witness within a smaller interval [I, r] such that I (resp. r) is the closest 6-good
integer on the left (resp. right) of i. As explained above, these §-good integers
come as by-products of oblivious queries. This will reduce the running time of

24 N. Ailon et al.

bad-good-test to O(logn; log k) (to achieve success probability at least 1—1/k),
where n; = r — [+ 1. Accordingly, the time spent on binary searching intervals in
monotonize is reduced to O(loglogn;). By the distribution of oblivious queries,
for the j-th client query where 2¥~! < j < 2F, the running time of monotonize
is now O(lognlog 5 loglog 55). The same is true for the j-th oblivious query.
To bound the amortized running time, it suffices to focus on the smallest
m such that all n distinct queries appear in the first m queries (including both
client and oblivious queries). We can also ignore repetition queries (those that
have appeared before) since each one only takes O(logn) time using standard
data structure techniques. Therefore, without loss of generality, we assume that
the first n client queries are distinct. The total query time for these n queries is:

logn

_ n n
20(2’f 1lognlog2—kloglog2—k) .
k=1

It is simple to verify that this sum is O(nlogn). The following claim concludes
the proof of the second part of Theorem 1.

Claim. With probability 1 — 1/n, monotonize computes a monotone function g
that is within distance (2 4+ O(6))e to f. Each single evaluation of g(4) is com-
puted online in time O(log2 nloglogn), and the amortized query time over the
first m > n client queries is O(logn).

3 The (logn,O(logn))- Filter

We prove Theorem 2. To do this, we define a function g by a random process. The
function is determined after some coin flipping done by the algorithm (before
handling the client queries). Although the function g is defined after the coin
flips, the algorithm doesn’t explicitly know it. In order to explicitly calculate
g at a point, the algorithm will have to do some f-lookups. Our construction
and analysis will upper bound E[dist(f, g)] and the amount of work required for
explicitly calculating g at a point.

As before, let f be a monotone function such that dist(f, f) = e. Let B C [n]
be the set of points {z|f(z) # f(x)}. So |B| = en. For simplicity of notation,
assume the formal values of —oco (resp. +00) of any function on [n] evaluated at
0 (resp. n+1).

We build a randomized binary tree T = build-tree(1,n) with nodes labeled
1..n, where build-tree(a, b) is defined as follows:

After constructing the randomized tree T, the function g at point 7 is defined
as follows. If ¢ is the root of the tree, then g(i) = f(7). Otherwise, Let p1,..,p;, %
denote the labels of the nodes on the path from the root to node i, where p; is
the root of the tree and p; is the parent of . Assume that g was already defined
on pi,..,p;j. Let I = max({0} U{px|pr < i}) and r = min({n+ 1} U {pr|pr > i}).
If g(I) < f(i) < g(r), then define g(i) = f(i), otherwise define g(i) as an arbi-
trary value in [g(l), g(r)]. The function g is clearly monotone. The number of

Property-Preserving Data Reconstruction 25

build-tree(a, b)

if a > b then
return empty tree
else
return tree with
root i chosen uniformly at random in [a, b
left subtree build-tree(a,i— 1)
right subtree build-tree(i+ 1,b)

f-lookups required for computing ¢(i) is the length of the path from the root to
1. We omit the proof of the following fact.

Lemma 6. The expected length of this path for any i is at most O(logn).

We show that E[dist(f,g)] = O(elogn). We first observe that for any 4, if
{p1,...pj,i} B =0, then it is guaranteed that g(i) = f(¢). Therefore, any ¢ for
which f(i) # g(i) can be charged to some b € B on the path from the root to
1. The amount of charge on any b € B is at most the size of the subtree b in T
We omit the proof of the following lemma.

Lemma 7. The expected size of the subtree rooted at node i in T is O(logn) for
any i € [n].

Therefore, the expected total amount of charge is at most O(|B|logn) =
O(nelogn). By Chebyshev’s inequality, the total amount of charge is at most
O(nelogn) with high probability. The total amount of charge is an upper bound
on the distance between f and g. This proves Theorem 2, except for the fact that
the lookups-per-query guarantee is only on expectation, and not worse case (due
to Lemma 6). We note without proof that the random tree T' can be constructed
as a balanced binary tree, so that Lemma 6 is unnecessary, and Lemma 7 is still
true. So we get a worst case (instead of expected) guarantee of O(logn) on the
length of the path from the root to ¢ (and hence on the number of f-lookups per
client query). This concludes the proof of Theorem 2.

To prove Theorem 3, where the client queries are assumed to be uniformly
and independently chosen in [n], we observe that the choices the client makes
can be used to build T'. More precisely, we can build T" on the fly, as follows: The
root 7 of T is the first client query. The left child of r is the first client query
in the interval [1,7 — 1], and the right child of r is the first client query in the
interval [r+ 1, n]. In general, the root of any subtree in T is the first client query
in the interval corresponding to that subtree. Clearly, this results in a tree T’
drawn from the same probability distribution as in build-tree(1,n). So we still
have Lemma 7, guaranteeing the upper bound on the expected distance between

26 N. Ailon et al.

g and f. But now we observe that for any new client query i, the path from
the root of T to i (excluding i) was already queried, so we need only one more
f-lookup, namely f(7). This concludes the proof of Theorem 3. O

References

1. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Estimating the distance to a
monotone Function. Proc. 88h RANDOM, 2004

2. Fischer, E.: The art of uninformed decisions: A primer to property testing. Bulletin
of EATCS, 75: 97-126, 2001

3. Goldreich, O.: Combinatorial property testing - A survey. “Randomization Methods
in Algorithm Design,” 45-60, 1998

4. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. J. ACM 45 (1998), 653-750

5. Hoffmann, C.M., Hopcroft, J.E., Karasick, M.S.: Towards implementing robust
geometric computations. Proc. 4th SOCG (1988), 106-117.

6. Parnas, M., Ron, D., Rubinfeld, R.: Tolerant property testing and distance
approximation. ECCC 2004

7. Ron, D.: Property testing. “Handbook on Randomization,” Volume II, 597-649, 2001

8. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications
to program testing. SIAM J. Comput. 25 (1996), 647668

9. Salesin, S., Stolfi, J., Guibas, L.J.: Epsilon geometry: building robust algorithms
from imprecise computations. Proc. 5th SOCG (1988), 208-217

