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Abstract: We introduce an analytical tool to study the convergence of bidirectional multiagent agree-
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consensus, and synchronization systems. We also improve classic bounds about colored random walks
and discuss the usefulness of algorithmic proofs.
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1 Introduction

We introduce an analytical tool to study the con-
vergence of certain multiagent agreement systems
and use it to sharpen the analysis of various nat-
ural algorithms, including flocking, opinion con-
sensus, and synchronization systems. We also im-
prove classic bounds about colored random walks.
Before we go into any of the details, we wish to
explain the motivation behind this work.

Nonlinear dynamics counts as one of the great
scientific advances of the last century: chaos,
fractals, strange attractors, emergence, and “small
worlds” have all been the focus of public attention
and the ferment of first-rate science. As these sub-
jects mature, however, the limitations of classical
mathematics are being felt. No one today seriously
believes that to understand ecologies, immune sys-
tems, markets, or social networks is just a matter of
finding the right differential equations and shaping
them into predictive tools. Mathematics thrives on
symmetry and physics on invariance. This perfect
match largely accounts for the amazing success
of 20th-century science. But, after what Wigner
called the “unreasonable effectiveness of mathe-
matics in the natural sciences,” we are beginning
to witness its reasonable ineffectiveness in coping
with complex systems short on symmetry and reg-
ularity.

This is where computer science comes in. Nu-
merical simulations, data mining, machine learn-

ing, and other data-centric applications of com-
puting have moved center stage. Yet the question
remains: Can natural algorithms be analyzed di-
rectly, without relying primarily on the data they
generate? To appreciate this point, try a thought
experiment. Suppose no one knew that a square
matrix M could be diagonalized or put in Jordan
normal form. To analyze the dynamical system

ut+1 = Mut,

we would then probably gather statistics on its iter-
ates and search for numerical patterns. We would
observe that the system seems to stretch the initial
states in some directions, compress them in others,
and sometimes produce oscillations. We would
further learn to classify these oscillations into two
types: periodic and quasirandom. Meanwhile, we
would be making all these inferences with no the-
ory to explain them. Unfortunately, this situation is
all too common in the study of multiagent systems.
Does it need to be so?

We wish to suggest that algorithms themselves
should be harnessed as analytical tools to study
other algorithms. A good example of such an
inward-looking approach is mathematics itself.
Although the motivation might often come from
the outside (especially the physical sciences), most
mathematical tools are in fact invented for internal
purposes: determinants for matrices, resultants for
polynomials, groups for algebraic equations, etc.
Can the same be true of algorithms?
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1.1 Results
We focus on the use of algorithmic proofs for

the analysis of complex systems. The idea could
not be simpler. Theorems often have proofs that
look like algorithms. But theorems are hard to
generalize whereas algorithms are easy to modify.
Therefore, if a complex system is too ill-structured
to satisfy the requirements of a specific theorem,
why not algorithmicize its proof and retool it as a
suitable analytical device? We illustrate this idea
with three examples related to agreement systems.
• We give a short algorithmic proof that a lazy

random walk on a connected graph mixes in poly-
nomial time. The result and the ideas behind our
proof are well known, but the perspective is dif-
ferent. Our proof algorithmicizes the concept of
reversibility in a Markov chain. Think of it as a
warm-up exercise.
• Lorenz [27] and, independently, Hendrickx

and Blondel [14], proved a counterintuitive bound
on the nonzero probabilities occurring in colored
random walks. We improve the bound to its opti-
mal asymptotic value and prove a general ergodic-
ity result for colored random walks. The proof is
a flow algorithm tailored to mimic an eigenvalue
computation. Specifically, it algorithmicizes the
proof of Schur’s Lemma. One might sense a bit of
a paradox here, as eigenvalues are notoriously in-
adequate for tackling products of noncommuting
matrices—the kind that occurs in colored walks.
This illustrates an intriguing aspect of algorithmi-
cized proofs, which is that the mathematical object
upon which the original proof bears might become
entirely irrelevant in the new proof.
• We introduce the total s-energy of a multi-

agent agreement systems. This is a generating
function (specifically, a Dirichlet series) that partly
captures the dynamics of the system. We show
how to derive good convergence bounds from the
order of its pole. We apply this to (i) Vicsek-
Cucker-Smale flocking; (ii) Hegselmann-Krause
opinion dynamics; and (iii) Kuramoto synchro-
nization.

1.2 Discussion
Aren’t most mathematical proofs algorithmic

anyway? Computer science proofs, in particular,
often track the flow of execution so closely as to
resemble a rewriting of the code at a different level

of abstraction. The literature in program verifi-
cation, distributed computing, and proof-carrying
code is full of such examples. So our basic point
may seem at best unoriginal and at worst meaning-
less. After all, most proofs consist of discrete steps
with variable names, conditionals, and the occa-
sional recursive (ie, inductive) calls. So what’s
new? Our purpose here is not to introduce a for-
mal concept but to appeal to an intuition that algo-
rithms themselves must join the analytical arsenal
of a theory of natural algorithms. The reason is
that, in a practical sense (if not a formal one), al-
gorithms are more expressive than formulas and
equations. And so, to analyze natural algorithms,
it is sometimes useful, or perhaps even indispens-
able, to think of the proof itself as an abstraction
of the original algorithm. In particular, the stan-
dard method of, first, exhibiting forbidden struc-
tures and, second, drawing the combinatorial con-
sequences might not always be suitable. (We dis-
cuss this point further in §2.3.) Our three examples
point to the rich potential of an algorithmic calcu-
lus for dynamical systems. This work is a small
contribution to this larger project.

Note that nonconstructivity is not necessarily
an issue. The standard proof of König’s Lemma,
which says that an infinite connected bounded-
degree graph has an infinite path, is nonconstruc-
tive. Yet, with the proper oracle in place, it is al-
gorithmic and fits our model. On the other hand,
consider the theorem stating the equality of the row
and colum ranks of a matrix M . A nonalgorithmic
proof will argue that both ranks must solve the fea-
sible system,

min
{
k |M =

∑
kukv

T
k

}
,

and hence be equal. One can prove the same re-
sult algorithmically via Gaussian elimination. The
proof is longer and less elegant, but it has two ma-
jor advantages: first, it actually gives us the rank;
second, it can be adapted to other purposes. For ex-
ample, a few changes will show us how to invert a
nonsingular matrix; a few more will prove that the
determinant is multiplicative; further alterations
will take us all the way to the simplex algorithm.
Both proofs express duality in its simplest form.
The difference is that Gaussian elimination does
it algorithmically, via pivoting, whereas the struc-
tural proof appeals to symmetry: specifically, the
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equivalence of (∃uk∃vk) and (∃vk∃uk). Google’s
PageRank follows the same idea but takes it one
step further: it converts the proof of the spectral
theorem into an algorithm.

As we said earlier, an algorithmic approach to
complex systems is nothing new. The works of
Kleinberg [21, 22] and others to model social pro-
cesses in an algorithmic language and integrate
temporal dynamics fit that mold. Henzinger et
al [15] have used model checking to automate the
subdivision of the phase space of hybrid systems
into coarse-grained classes and build approximate
variants of Markov partitions. What distinguishes
our approach from the latter is its emphasis on
asymptotic analysis: if the system is scale-free, for
example, we want to know its power-law.

The complexity of systems prediction has re-
ceived considerable attention (eg, [3, 4, 20, 31,
38]). A limitation of these results is that they tend
to zoom in on a corner of computational hardness
that, most likely, evolution has kept at bay. The in-
tractability of protein folding, for example, might
simply mean that hard instances did not make it
down the tree of life [2, 36]. How adaptation navi-
gates its way across the problem instance hardness
spectrum is one of the most exciting open ques-
tions in science today. For example, there is a
well-studied evolutionary arms race among species
engaged in pursuit-evasion contests [7]. This has
produced birds with astonishing powers to predict
the short-term behavior of their (Turing-complete)
predators. This is algorithmic magic and a re-
minder that natural selection is the ultimate soft-
ware optimizer. It would be a pity if algorithms
research had nothing to say on the matter.

Natural algorithms shine especially as out-of-
equilibrium systems. Emergence in ant colonies
or fish schooling arises as heat is evacuated and
low-entropy energy is absorbed. This crucial point
explains why classical thermodynamics, despite its
recognized role in computer science [24], is prob-
ably ill-suited for natural algorithms. Jerrum and
Sinclair [19] pioneered an algorithmic approach
to studying the complexity of approximating the
partition function of random fields in statistical
physics. Although it bears relevance to phase tran-
sitions, this line of work is inherently about equi-
librium (as is the present paper, we should add).
This is not to say that statistical physics is irrel-

evant. In fact, it may well be that one of the
most promising source of inspiration at this point
is renormalization group theory [16], which allows
for multiscale analysis of (self-similar) physical
systems. The technique has been extremely use-
ful in the study of phase transitions. To adapt it to
natural algorithms is a challenging undertaking for
future work. (Our third example takes a baby step
in that direction.)

2 Three Algorithmic Proofs
When used as proofs, algorithms are to be

granted more expressive power than usual: they
may use oracles and infinite loops; they may be
nondeterministic; they may break open a closed-
loop dynamical system and feed it an adversarial
signal; etc. Our proofs do all of that liberally.

2.1 Markov Chain Mixing
Let P be the transition matrix of a random walk

on a connected graph G with n vertices. We add
a self-loop to each vertex and let di denote the de-
gree of vertex i (counting the self-loop): the walk
at i hops to any neighbor with probability 1/di.
We give an algorithmic proof that the walk mixes
rapidly, ie, that for any initially distribution π0, the
linear system

S : πTt+1 = πTt P

converges exponentially close to the distribution p
in polynomial time, where pi = di/

∑
dl. The

idea of the proof is to modify the algorithm S until
the result essentially tumbles out. The pseudocode
below does not describe one algorithm but a se-
quence of them defined by using operations from
a simple algorithmic calculus. For example, the
difference between two algorithms A,B is under-
stood as the algorithm defined by subtracting the
outputs of A and B. The same proof works un-
changed for your favorite definition of a lazy walk.
In fact, it applies to general aperiodic reversible
Markov chains. Not only that, but we can even
change the chain at each time step and, as long
as we keep the stationary distribution invariant,
it will still work. This invariance is required be-
cause time-dependent Markov chains may other-
wise take exponential time to mix.
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PROOF

[1] Let
←−
S (x) be the dual system: xt+1 = Pxt.

[2] Let
←−
S (x) �

←−
S (y) be the joint algorithm

formed by running
←−
S (x) and

←−
S (y) simulta-

neously and, at each step t, picking a random
vertex i with probability pi and returning the
product (xt)i(yt)i.

[3] Let R(x,y) denote the algorithm:
←−
S (Px)�

←−
S (y)−

←−
S (x)�

←−
S (Py).

[4] Run R(x, Px).

Pick a random i with probability pi and, for any
k ≥ 0, let χk denote the i-th coordinate of xt+k.
We easily check that pipij remains unchanged if
we permute i and j; therefore,∑

i,j

pipijxjyi −
∑
i,j

pipijxiyj

is identically zero. This implies that algorithm
R(x,y), and hence step [4], return only unbiased
random variables; therefore, Eχ2

1 = Eχ0χ2 and
the difference varχ0 − varχ1 is equal to

E (χ2
0 − χ2

1) = Eχ2
0 − Eχ0χ2

=
∑
i<j

pi(P 2)ij((xt)i − (xt)j)2

≥ m−3((xt)i − (xt)j)2 ,

(1)

for any (i, j) out of them edges ofG; both laziness
and reversibility are used in (1). BecauseG is con-
nected, by the pigeonhole principle, following a
path from the highest coordinate of xt to the lowest
one leads to an edge i, j for which ((xt)i−(xt)j)2

is at least n−2 varχ0. It follows by induction that

varχk ≤ (1− n−O(1))k varχ0 .

The variance of χk thus decays exponentially in k.
Since the initial vector x0 is arbitrary, this implies
that the matrix P t has rows that have `2 differences
at most e−tn

−O(1)
, which proves rapid mixing. 2

DISCUSSION. Step [1] introduces the time-
reversal chain (hence the reverse arrow): we still

use P because the chain is reversible. Steps
[3,4] output only unbiased random variables: this
is the algorithmicization of reversibility: techni-
cally, self-adjointness over L2(p) (which is visu-
ally apparent in step [3]). Informally, the algo-
rithm expresses the fact that the correlation be-
tween yesterday and tomorrow can be inferred to-
day. This is the key to rapid mixing and the ba-
sis, implicit or not, of every known proof. Re-
call that Perron-Frobenius alone cannot prove bet-
ter than exponential-time mixing, and the crux of
any eigenvalue proof is a bound on the spectral
gap. Our proof does this indirectly. Its use of
the pigeonhole principle along a path mimics the
Landau-Odlyzko spectral gap proof [23], while the
Dirichlet form in (1) follows its use by Mihail [30].

2.2 Colored Random Walks
Colored random walks are an interesting vari-

ant of the standard sort: each step brings in a
new graph to walk on. It was introduced to com-
puter science in the context of interactive proof
systems [8, 9]. Being all about inhomogeneous
products of stochastic matrices, however, the no-
tion has been investigated in many other areas [37].
Let G be a set of connected graphs over the same
set of n vertices: each graph is assigned a ran-
dom walk with every positive transition probabil-
ity bounded below by some parameter δ > 0. We
also assume that the walk is bidirectional, mean-
ing that if the transition probability from i to j is
nonzero then the same is true from j to i. (Note
that reversibility implies bidirectionality but not
the other way around.) Since graphs are thus anno-
tated with probability distributions at the vertices,
the set G is possibly infinite. A colored random
walk is defined by a starting vertex and a word
G0G1 · · ·GN , where the Gis belong in G but need
not be distinct. At step t, the walk takes place in
Gt.

Can the probability of hitting a certain vertex
at time t be exponentially small in t for arbitrar-
ily large t? If G consists of only one graph, then
the answer is clearly no. But what if |G| > 1?
Then, indeed, some nonzero probabilities might
decay exponentially in t; see [6] for an example
with |G| = 2. Colored random walks are, in-
deed, different. Yet Lorenz [27] and, indepen-
dently, Hendrickx and Blondel [14], proved the
surprising result that nonzero probabilities can be
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bounded from below uniformly as long as the walk
is lazy. In other words, assuming that the transition
matrix of eachGt has a nonzero diagonal, then, af-
ter t steps of a colored random walk, the probabil-
ity of hitting a vertex is either 0 or at least δO(n2),
as opposed to, say, δΘ(t). We improve the expo-
nent to linear. This is obviously optimal: consider
the probability of reaching one end of a chain from
the other one in time equal to the number of edges
between them.

THEOREM 2.1. Any lazy bidirectional colored
random walk whose nonzero transition probabil-
ities are bounded below by δ > 0 hits any ver-
tex with probability either 0 or at least δn−1. This
holds at any time uniformly.

The proof of this result is quite easy. We en-
hance it a little to establish a general result about
ergodicity. With each vertex v, we define an infi-
nite sequence of sets

Sv(t1) ⊇ Sv(t2) ⊇ · · ·Sv(∞) ⊇ {v} (2)

such that, if the walk begins at t = 0 in Sv(tk),
for k = δ−cn with constant c large enough, and
hits v at time tk, then there is no way to tell which
vertex of Sv(tk) the walk started from other than
by a random guess (with exponentially small de-
viation). These sets, called stabilizers in [6], play
an important role in products of inhomogeneous
stochastic matrices [14, 27]. What makes them
highly useful is that they depend only the commu-
nication process generated by the graph sequence
and not on the random walk itself.

First, we dualize the problem to view it as a
deterministic communication process. We con-
sider the graphs G0 · · ·GN in reverse order, ie,
H0 · · ·HN , where Hi = GN−i. Each vertex v
holds a water reservoir with an amount Rv . To
Ht-average the vertices is to replace each Rv by∑
w pvwRw at time t, where pvw is the probability

of going from v to w. It is obvious that, starting
the walk at u at time 0, the probability of being
at vertex v at time N + 1 is precisely equal to the
reservoir amount Ru after the vertices have been
Ht-averaged, for t = 0, 1, . . . , N , assuming that
all reservoirs are empty at time t = 0, except for
Rv = 1. Any vertex w with an empty reservoir is
called dry; otherwise (Rw > 0) it is wet. We make

the graph sequence H0 · · ·HN infinite by repeat-
ing it forever if need be.

PROOF

[1] Initialize tv and all reservoirs to 0, except for
Rv = 1. Set Sv(0) = {v}.

[2] Repeat forever:
[2.1] For t = tv, tv + 1, . . . ,∞:

• Ht-average all the vertices.
• Sv(t + 1)← Sv(t)∪

{ all wet vertices dry at time t }.
• If Sv(t + 1) ⊃ Sv(t), then set tv to

t+1 and make a record of all the reser-
voirs.

[2.2] Restore all reservoirs to their values at tv .
Let m = min Ru and M = max Ru over all
u ∈ Sv(tv).

[2.3] If Rv < 1
2
(M + m), then set

Ru ← M − Ru for all u ∈ Sv(tv)
else set Ru ← Ru −m for all u ∈ Sv(tv).

Whenever Sv(t + 1) = Sv(t), no new vertex is
made wet; so, by directionality, no wet vertex is
averaged with dry ones. This implies that the min-
imum reservoir amount cannot decrease. Suppose
now that Sv(t + 1) ⊃ Sv(t) in step [2.1]. Then
each newly wet vertex inherits at least a fraction
δ of the minimum nonzero reservoir amount. By
laziness, a wet vertex Ht-averages itself with its
neighbors (all of which could be dry prior to t),
and so its reservoir level drops by at most a factor
of δ. But this can happen at most n − 1 times, so
in step [2.2], m ≥ δn−1; hence Theorem 2.1.

To prove the ergodicity claim, let t1 < t2 < · · ·
be the values of tv initializing the for-loop of step
[2.1]. Since water flows between adjacent vertices
and is occasionally removed, (2) trivially holds.
The transformationRu ←M−Ru ensures that, at
the next round in the infinite loop [2], the amount
of water at v is in the upper half of the range
formed by the wet vertices. This in turn guaran-
tees that in the next iteration the next value of m
will always be at least m′ ≥ δn−1(M − m)/2;
so M decreases by a factor of 1 − 1

2δ
n−1. Note

that the amount of water in the entire system may
sometimes increase: the decay is only observable
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in the maximum reservoir level M . This proves
our claim that the colored random walk is ergodic
when starting in Sv(tk) at t = 0, for k = δ−Θ(n),
in that all starting points have roughly the same
probability of leading to v at time tk. 2

DISCUSSION. The algorithm has two infinite
loops. The outer loop models the infinite (time-
reversed) random walk while the inner one goes
through time looking for stabilizers: their appear-
ance can take arbitrarily long. Indeed, an adver-
sary can drive each ti as high as it wants. The
proof is an algorithmicization of Schur’s Lemma.
The flip/shift [2.3] is intended to empty at least
one reservoir and bring the water supply at v into
the upper half of the range. This is the “Gram-
Schmidt” part of the algorithm: the shift corre-
sponds to a (partial) projection of the water vec-
tor along the principal right eigenvector. We use
the fact that all matrices share this eigenvector (but
possibly none others) without attempting to capi-
talize on individual spectral gaps, which would be
futile. As in Schur’s Lemma, the algorithm identi-
fies an eigenvector and factors it out of the system
by projection. The main difference is that the di-
mension of that vector may keep shrinking.

2.3 Multiagent Agreement Systems
Moreau introduced a general model for agree-

ment systems [32] and established several con-
vergence criteria, but with no quantitative analy-
sis to go along. We introduce an analytical tool
for that purpose, which we call the total s-energy.
Moreau’s model consists of n agents represented at
time t by points x1(t), . . . , xn(t) in Rd, together
with an infinite sequence of undirected n-vertex
graphs G0, G1, etc. At time t ≥ 0, each agent
is free to move anywhere in the relative interior of
the convex hull of the set consisting of its own po-
sition and those of its adjacent agents in Gt. As
observed in [1], there is nothing special about the
convex hull and the model can be generalized to
other regions. We use enclosing boxes for simplic-
ity. Although this gives more room for the agents
to move about, all of our upper and lower bounds
apply to Moreau’s model just the same.

We capture the dynamics of the system by defin-
ing a generating function for the edge lengths. By
analogy with the Riesz s-energy of points on a

sphere, we define the total s-energy of the system
as

E(s) =
∑
t≥0

∑
(i,j)∈Gt

‖xi(t)− xj(t)‖s2. (3)

This sum is a general Dirichlet series. To see why,
assume thatE(s) converges. All the terms are non-
negative, so they can be rearranged in nonincreas-
ing order. This allows us to match the standard
definition of the general Dirichlet series [12]:

E(s) =
∑
n≥1

ane
−λns,

where an is the number of edges (i, j) such that
‖xi(t) − xj(t)‖2 = dn, and λn = − ln dn. Note
that if each Gt were to consist of a single edge of
length 1

t+1 then the total s-energy would be the
Riemann zeta function. We show that E(s) con-
verges for all s > 0 and diverges for s ≤ 0. By
classical results in complex analysis [12], it then
follows that the series converges uniformly over
any finite region D of the complex plane within
<(s) ≥ σ > 0, for any σ > 0; furthermore E(s)
defines an analytic function over D. We prove that
s = 0 is a pole of order n − 1. We use this fact to
bound the convergence time of multiagent agree-
ment systems.

Let u1, . . . , ud be an arbitrary unit coordinate
system in Rd, for constant d > 0; the vectors need
not be orthogonal. Given a set S, let pp(S) de-
note the smallest parallelepiped

∑
i[ai, bi]ui ⊇ S,

and let ‖S‖p be the `p-norm of the vector
∑
i(bi−

ai)ui. Fix arbitrary ρ > 0 smaller than a suit-
able constant and shrink pp(S) ever so slightly by
defining

pp(S) = (1− ρ)pp(S) + ρc(S),

where c(S) is the mass center of pp(S). Note that
pp(S) ⊆ pp(S). Let X(0) = {x1(0), . . . , xn(0)}
be n points in Rd specifying the locations of the
agents at time 0, and let G0, G1, . . . be an infi-
nite sequence of undirected graphs over n vertices
v1, . . . , vn (the agents). We define the following
adversarial process. At each step t, the adver-
sary moves each xi(t) anywhere inside the small-
est (perturbed) parallepiped enclosing its neigh-
bors and itself; specifically, if we define

Nt,i =
⋃
{xj(t) | (vi, vj) ∈ Gt or j = i },
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then xi(t + 1) can be anywhere in pp(Nt,i). If
xi(t) is already inside pp(Nt,i), note, of course,
that motion is allowed but not required. Since the
sequence Gt is infinite, the process goes on for-
ever.

Previous convergence results makes various
connectivity assumptions [1, 5, 14, 17, 25, 27, 32,
33, 41]. These assumptions are often necessary
for global consensus (eg, infinitely recurring all-
pair message passing) but they cannot be checked
ahead of time: the only way to tell if they hold
is to run the system until it converges. Our model
avoids any such assumptions. We restrict ourselves
to undirected graphs and positive ρ because both
are necessary for guaranteed convergence. Relax-
ing either one opens the door to perpetual macro-
oscillations (easy exercise). This is not to dismiss
the nonbidirectional case, which is actually highly
interesting, but to say that different techniques are
likely to be required.

Let En(s) be the maximum total s-energy for
a system of n agents with coordinates between 0
and L. Since En(s) scales with L as Ls, we can
set L = 1 once and for all. Note that the quantity
En(s) is defined adversarially by choosing both
the infinite graph sequence and the agent motion
so as to maximize the total s-energy.

THEOREM 2.2. For any 0 < s < 0.99,

s1−nρ−Ω(n) ≤ En(s) ≤ s1−nρ−n
2(1+o(1)).

Given ε > 0, let Tε be the number of times t
the graph Gt contains at least one edge of length
no shorter than ε. This quantity plays an essential
role in bounding the convergence time of agree-
ment systems.

THEOREM 2.3. Given any ε > 0,

Tε ≤ (log 1
ε )n−1ρ−n

2(1+o(1)).

Proof. Viewed as an infinite series, the total s-
energy adds εs or more to the sum for every graph
Gt with at least one edge of length at least equal
to ε. It follows then that Tε ≤ ε−sEn(s). Setting
s = min{0.99, (1 − n)/ ln ε } in the upper bound
of Theorem 2.2 gives us the desired result. 2

We now prove Theorem 2.2. We show that the
total s-energy satisfies the recurrence: E1(s) = 0

and, for n ≥ 2,

En(s) ≤ 2nEn−1(s)+

(1− ρ2n)sEn(s) + ds/2n3. (4)

As in the case of colored random walks, all agents
are initially dry, except for a selected agent v1,
which will spread “wetness” from one agent to the
next, causing the geometry to change in the pro-
cess. Once wet, an agent always remains so.

PROOF

[1] Initially, all agents are dry except for v1. Set
S(0) = {x1(0)}.

[2] For t = 0, 1, . . . ,∞:
[2.1] Declare wet any agent adjacent to a wet

agent in Gt.
[2.2] S∗(t) ← S(t)∪ { positions at time t

of dry agents just turned wet }.
[2.3] Move every agent adversarially with

respect to Gt. If no newly wet agent,
then we may carry all motion within
S(t) in isolation from the n − |S(t)|
other agents.

[2.4] S(t+1)←{ positions at time t+1 of
agents in S∗(t) }.

Let {tk} be the times t at which |S∗(t)| > |S(t)|.
The sets S∗(tk) track wetness propagation. We in-
terpret both S(t) and S∗(t) as multisets. No inter-
esting geometry can be inferred from the latter but
the same is not true of S(tk). We can show that

‖S(tk)‖∞ ≤ 1− ρ2k. (5)

Consider the case d = 1. Let [a, b] ⊆ [0, 1] be the
smallest interval enclosing S(tk). By flipping the
interval if necessary, we can assume that a+b ≥ 1.
By induction, it follows that a ≥ 1

2ρ
2k. Since

‖S(t)‖1 can increase only at times of the form
t = tl, we can prove (5) for tk+1 by showing that
[0, 1

2aρ)∩S(tk+1) = ∅. We proceed by contradic-
tion. Consider an agent vi contributing to S(tk+1)
with xi(tk + 1) < 1

2aρ. We distinguish between
two cases:
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• If xi(tk) is dry at time tk, thenGtk has at least
one edge (vi, vj) with vj wet, ie, xj(tk) ≥ a.
Since xi(tk + 1) < a, it lies in an interval

(1− ρ)[α, β] + 1
2 (α+ β)ρ,

where β ≥ a. It follows that

xi(tk + 1) ≥ 1
2βρ ≥

1
2aρ.

• If xi(tk) is wet at time tk, xi(tk) ≥ a and
xi(tk + 1) again lies in an interval

(1− ρ)[α, β] + 1
2 (α+ β)ρ,

where a ≤ xi(tk) ≤ β. It follows that

xi(tk + 1) ≥ 1
2aρ.

We get a contradiction in both cases, which
proves (5). The same argument can be repeated
along each dimension, so (5) holds for arbitrary
d. Note that the set S(tk) can only gain agents,
as k grows, but the set may stop growing before
it absorbs all of them. When t is not of the form
tk, step [2.3] indicates that the adversary can act
on S(t) in isolation from the rest. It follows that
the s-energy between tk−1 and tk is bounded by
E|S(tk)|(s) + En−|S(tk)|(s). At time tk, the extra
energy involved is∑

(i,j)∈Gtk

‖xi(t)− xj(t)‖s2 ≤
(
n

2

)
ds/2.

Using obvious monotonicity properties, it follows
that, up to the highest value of tk, the s-energy is
bounded by

n−1∑
l=1

{
El(s) + En−l(s) +

(
n

2

)
ds/2

}
≤ 2nEn−1(s) + ds/2n3.

When tk reaches its highest point t, if |S(t+1)| <
n then all the energy has been accounted for above.
Otherwise, we must add the future energy of the n
agents inX(t+1). By (5), however, their `∞-norm
has been reduced: ‖X(t+1)‖∞ ≤ 1−ρ2n. So, all
we need to do is add (1− ρ2n)sEn(s) inductively
to the s-energy; hence (4). We may assume that
0 < s < 1 for the purpose of the upper bound
proof.

The case n = 2 is worth special attention. The
problem is inherently one-dimensional, so we can
assume that the two agents start at 0 and 1, respec-
tively, and move toward each other by the mini-
mum allowed distance of ρ/2. This gives us the
equation

E2(s) = 1 + (1− ρ)sE2(s).

Scaling up to d dimensions gives us:

E2(s) =
ds/2

1− (1− ρ)s
≤ 2ds/2

sρ
. (6)

We now consider the case n > 2. For s ≤ 1,
(1 − ρ2n)s ≤ 1 − 1

2sρ
2n; it then follows from (4)

that

En(s) ≤ 4nEn−1(s) + 2n3ds/2

sρ2n
.

We verify that the numerator is at most
2n3En−1(s); therefore,

En(s) ≤ 2n3En−1(s)
sρ2n

≤ s1−nρ−n
2(1+o(1)).

This proves the upper bound of Theorem 2.2.
A much better asymptotic bound can be derived
for the special case s = 1 (which, analytically, is
indeed very special). But our proof is long and
complicated and it will be reported elsewhere. It is
easy to find forbidden structures and exploit them
to derive upper bounds for general s. Briefly, we
can show the existence of regions that can never be
occupied by any agents and that can be “crossed”
only in a special direction. This alone allows us
to bound the total s-energy, but the result is not as
tight and so far we have not been able to beat the
algorithmic proof of Theorem 2.2.

To establish the lower bound, we show that the
pole at s = 0 is, indeed, of order n−1. We describe
an algorithmA that moves n agents initially within
the smallest enclosing interval of [0, 1] toward a
single point x(n) while producing a total s-energy
S(n). Place n − 1 agents at position 0 and one at
position 1. The graph G0 consists of a single edge
between the agent i at 1 and any one, j, of those at
0. At time 0, agent j moves to position α def= ρ/2
while i shifts to 1−α. The n− 2 other agents stay
put. Next, apply A to the set of all agents but i.
This brings them to position αx(n − 1). Finally,
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apply A to all the agents. The attractor point x(n)
satisfies the recurrence x(1) = 1 and

x(n) = αx(n− 1) + (1− αx(n− 1)− α)x(n).

This implies that

1
x(n)

= 1 +
1

x(n− 1)
;

therefore x(n) = 1/n. It should not be a surprise
that x(n) does not depend on ρ. The operations of
A leave the center of mass invariant, so if x(n) ex-
ists it must be 1/n. The total s-energy S(n) satis-
fies the relation: S(1) = 0; and, for n > 1, by (6),

S(n) = αsS(n− 1)
+ (1− αx(n− 1)− α)sS(n) + 1

≥ αsS(n− 1) + 1
1− (1− 2α)s

≥ α(n−2)s

(1− (1− 2α)s)n−1
.

Since α = ρ
2 is small enough, (1−2α)s ≥ 1−3αs

and
S(n) ≥ s1−nρ−Ω(n).

We observe that Algorithm A cannot start the sec-
ond recursive call before the first one is finished.
Of course, that takes an infinite amount of time.
This technicality is easy to overcome, however.
This completes the proof of Theorem 2.2. 2

DISCUSSION. Self-confidence usually plays a cru-
cial role in the convergence of agreement systems.
This is the requirement that any agent should in-
clude itself in the averaging. What our result
shows is that this condition can be relaxed. The
shrinking by 1 − ρ, which is necessary, has less
to do with self-confidence than with the necessity
of not following extremes (for the example, the
boundary of the enclosing box). Of course, if one’s
opinion is itself extreme then by that same logic
one must move away from it at least a little bit.

2.4 Flocking, Opinion Consensus, and Syn-
chronization

Theorem 2.2 leads to new, or exponentially im-
proved, bounds for flocking, consensus dynamics,
and synchronization. We give a quick summary,
leaving the technical details for the full version of
the paper. Following Vicsek et al [42] and Cucker
& Smale [10], the dynamics of bird flocking is ex-
pressed in [6] by:

{
x(t) = x(t− 1) + v(t);
v(t+ 1) = (Pt ⊗ Id)v(t).

(7)

The vectors x(t), v(t) encode the positions and ve-
locities of the n birds in dimension d > 0. The
consensus matrix Pt is the stochastic transition
matrix of the flocking network, which links any
two birds within a fixed distance of each other.1

Instead of an adversary, the system has a closed
loop determined by the (intricate) geometric dy-
namics of the flocks. The evolution of the velocity
vector fits our model, however, with ρ = n−O(1).
Let 2 ↑↑ n denote the tower-of-twos of height n.
We proved that n birds may require as many as
2 ↑↑ log n

2 steps before reaching steady state and
never more than 2 ↑↑ 4 log n [6]. We also showed
that the maximum number of times the flocking
network can change is nO(n3). Theorem 2.3 im-
proves this bound to nO(n2). (Obviously, this can-
not have any incidence on the asymptotic conver-
gence time, which is already optimal.) A sim-
ilar improvement applies to the time for conver-
gence in the Hegselmann-Krause opinion dynam-
ics model [13]: this is a popular model in sociol-
ogy to measure polarization in political opinions in
a population. (Technically, this is not an improve-
ment but a new result, since we are not aware of
any previous asymptotic bound.)

Theorem 2.3 does not require linearity—both
flocking and opinion dynamics are piecewise lin-
ear systems. It can therefore be used for collective
synchronization. The Kuramoto model is a general
framework for coupled oscillators with so many
applications it is worth a brief mention here. Ex-
amples include flashing fireflies, chirping crickets,
microwave oscillators, yeast cell suspensions, cir-
cadian neurons, and pacemaker cells in the heart
(which keep our heart beating at roughly the same
pace). After Winfree’s pioneering work, Kuramoto
set out to explain how huge systems of coupled os-
cillators can reach synchrony with no centralized
control [39, 44]. He introduced a hugely influen-
tial model that is easy to describe. The system
consists of n oscillators: the i-th one has phase
θi and natural frequency ωi. Kuramoto followed
the same mean-field approximation as Winfree’s

1The tensor notation ⊗ distributes the averaging over each
coordinate. We skip the details of the model (including noise
and hysteresis) to keep the discussion simple.
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and assumed that all pairs of oscillators were cou-
pled. This gives the set of differential equations
(for 1 ≤ i ≤ n):

dθi
dt

= ωi +
K

n

n∑
j=1

sin(θj − θi).

Many authors have considered a more realistic re-
finement of the model where the sum applies only
to the neighbors of each agent in a network and
where delays might occur [11, 18, 26, 28, 29, 32,
34, 35, 43, 45]. Further work introduced a discrete
version of the model, again out of concern for real-
ism [28, 32, 40]. Assuming all oscillators share the
same natural frequency, a fixed phase shift gives
the dynamics:

θi(t+ 1) = θi(t)

+
K∆T

|Ni(t)|+ 1

∑
j∈Ni(t)

sin(θj(t)− θi(t)),

where Ni(t) is set of neighbors of vertex i in Gt.
Convergence to synchrony, when it happens, can
be bounded by applying Theorem 2.3.
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