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Abstract

Influence systems form a large class of multiagent systems designed to model
how influence, broadly defined, spreads across a dynamic network. We build a gen-
eral analytical framework which we then use to prove that, while Turing-complete,
influence dynamics of the diffusive type is almost surely asymptotically periodic.
Besides resolving the dynamics of a popular family of multiagent systems, the other
contribution of this work is to introduce a new type of renormalization-based bifur-
cation analysis for multiagent systems.

(Preliminary version in Proc. 53rd IEEE FOCS 2012 )

1 Introduction

This paper has three objectives: (i) to bring under one roof a wide variety of popular
multiagent systems; (ii) to build an “algorithmic calculus” to help us analyze them; (iii)
to resolve the complexity of their “diffusive” restriction. Influence systems are discrete-
time dynamical systems specified by a map x 7→ f(x) from (Rd)n to (Rd)n and a function
G mapping each x to an n-node graph: the point x = (x1, . . . , xn) encodes the position
xi ∈ Rd of each agent i = 1, . . . , n; the map x 7→ G(x) specifies the communication
graph, with one node per agent. Each coordinate function fi of f = (f1, . . . , fn) takes
as input the neighbors of agent i in G(x), together with their locations, and outputs
the new position fi(x) of agent i in Rd. By distinguishing between G and f , the model
separates the syntactic (where the information travels across the dynamic network) from
the semantic (how it is used by each agent’s personal algorithm fi). This distinction
reflects the focus on systems in which emergence owes more to the flow of communication
among the agents than to the sheer computational power of f . A deterministic influence
system is called diffusive if the map f keeps each agent within the convex hull of its
neighbors.

An overarching ambition of social dynamics is to understand and predict the collec-
tive behavior of agents influencing one another across an endogenously changing net-
work [10]. Influence systems provide a versatile platform for such investigations [14].
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The model includes swarming, synchronization, consensus systems, neural nets, Bayesian
social learning, protein interaction networks, the Ising model, etc.1 Diffusive systems
remain bounded and make consensus (all xi being equal) a fixed point. HK systems have
emerged in the last decade as a prototypical platform in social dynamics [18]. Diffusive
influence systems unify their varied strands (eg, bounded-confidence, bounded-influence,
truth-seeking, Friedkin-Johnsen type, deliberative exchange) into a single framework and
supply closed-loop analogs to standard consensus models [3, 25,27].

In a diffusive influence system, f(x) = (P (x) ⊗ Id )x, where P (x) is a stochastic
matrix whose positive entries correspond to the edges of G(x) and are rationals assumed
larger than some arbitrarily small ρ > 0; the Kronecker product with the d-by-d identity
Id makes the transition matrix P (x) act on (Rd)n and not Rn. We grant the agents a
measure of self-confidence by adding a self-loop to each node of G(x). Agent i computes
the i-th row of P (x) by means of its own algebraic decision tree; that is, on the basis of
the signs of a finite number of dn-variate polynomials evaluated at the coordinates of x.
This high level of generality allows G(x) to be specified by any first-order sentence over
the reals:2 in a recent bird flocking model [2], for instance, the communication graph
joins every agent to its 7 nearest neighbors. We state our main result:3

Theorem 1.1. Given any initial state, the orbit of an influence system is attracted
exponentially fast to a limit cycle whp under an arbitrarily small random perturbation.
The period and preperiod are bounded by a polynomial in the reciprocal of the failure
probability. Without perturbation, the model is Turing-complete. In the bidirectional
case, the system is attracted to a fixed point. The convergence time is ρ−O(n)|log ε| whp,
where n is the number of agents and ε is the distance to the fixed point.

Remarks. The Turing machine simulation can be done with linear decision trees and
d = 1. The (infinite) number of limit cycles is actually finite up to foliation. A system
is called bidirectional if all the communication graphs are undirected. To perturb the
system means: to apply a random shift, ie, to pick a small random δ and replace each
test polynomial q(x) by q(x) + δ; and to apply a perturbation rule stipulating that
(a) the status of an edge (i, j) is constant when agents i, j are infinitesimally close to
each other; and (b) no edge that disappears indefinitely can return; in both cases, the
threshold can be an arbitrary function of n, so the perturbation rule is unnecessary in
practice. Even in theory it can sometimes be relaxed: for example, (b) is not needed in
the bidirectional case. We need to emphasize, however, that some form of perturbation
rule is required: without (a, b) or some variant, Theorem 1.1 is provably false; in

1 The states of an influence system can be opinions, Bayesian beliefs, neuronal spiking sequences,
animal herd locations, chemotactic responses, cell populations, schooling fish velocities, sensor networks
data, synchronization phases, heart pacemaker cell signals, cricket chirpings, firefly flashings, yeast cell
suspensions, microwave oscillator frequencies, flocking headings, etc [6, 8, 10,30,32].

2 This is the language of geometry and algebra over the reals, with statements specified by any number
of quantifiers and polynomial (in)equalities. It was shown to be decidable by Tarski and amenable to
quantifier elimination and algebraic cell decomposition by Collins [15].

3All influence systems in the remainder of this paper are assumed to be diffusive, so we drop the
qualifier. We use the shorthand whp for “with probability arbitrarily close to 1.”
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general, randomization is necessary but not sufficient. Note that the perturbation rule
is not a heuristic assumption but a local rule that agents can easily implement. It is
not a roundabout way to enforce connectivity either, since agents are given free rein
to drop edges at any time. In the context of social dynamics, our results might be
disconcerting. Influence systems model how people change opinions over time as a
result of human interaction and knowledge acquisition. Strangely, unless people keep
varying the modalities of their interactions, as mediated by trust levels, self-confidence,
etc, they will be caught forever recycling the same opinions in the same order.

Following their introduction by Sontag [35], piecewise-linear systems have become the
subject of an abundant literature, which we do not attempt to review here. Influence
systems with undirected communication graphs always converge to a fixed point [13,
17, 20, 25, 27] but convergence times are known only in a few cases [6, 13]. Without
bidirectionality, known convergence results are conditional [9, 11, 12, 21, 26–28, 31, 36].4

The standard assumption is that some form of joint connectivity property should hold in
perpetuity; as we show below, however, to check such a property is usually undecidable.
A significant recent advance was Bruin and Deane’s unconditional resolution of planar
piecewise contractions, which are special kinds of influence systems with a single mobile
agent [5].

Piecewise-linear systems are known to be Turing-complete [1, 4, 22, 34]. A typical
simulation relies on the existence of Lyapunov exponents of both signs, negative ones
to move the head in one direction and positive ones to move it the other way. Influence
systems have no positive exponents and yet are Turing-complete. In dynamics, chaos
is typically associated with positive topological entropy, which entails expansion, hence
positive Lyapunov exponents. But piecewise linearity blurs this picture. With only null
Lyapunov exponents, isometries are not chaotic [7] but contractions, with only negative
exponents, can be [23]. Influence systems, which, with only null and negative Lyapunov
exponents, sit in the middle, can be chaotic. Plainly, the spectral lens breaks down in
the face of piecewise linearity and calls for a different approach: we use an algorithmic
brand of bifurcation analysis.

2 Preliminaries

We show in §2.1 that influence systems can have periodic orbits of length exponential
in the number of agents: this result is resistant to perturbation. Quite the opposite,
the next two results require careful finetuning. In §2.2, we build a conjugation with the
baker’s map to exhibit chaos and, in §2.3, we show how to simulate a Turing machine.
All three constructions use linear decision trees. This is not surprising in view of §2.4,
where we show how to linearize the decision procedure of any influence system.

4 As they should be, since convergence is not assured. An exception is truth-seeking HK systems,
which have been shown to converge unconditionally [13,19,24].
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2.1 Long periods

Periodic orbits can be made arbitrarily long by increasing the bit-length of the encoding.
More interesting is the fact that exponential periods can be achieved with only loga-
rithmic bit-length. We simulate a counter modulo 2 by building a system with d = 1
and n = 3: the first two agents are fixed at 0 and 3 while the third oscillates between
positions 1 and 2; this is trivially achieved with a two-test linear decision tree. Add
another mobile agent oscillating between 1 and 2 like the previous one, but which moves
only when the first oscillating agent is at position 1. (Adding a single test makes this
possible.) Iterating in this fashion produces an n-agent influence system with O(n) tests
whose period is exactly 2n−2.

2.2 Why perturbation is necessary

Random shifts are required for any uniform convergence bound. To see why, set d = 1
and n = 3. The first two agents move toward each other according to the rule:(

x1

x2

)
f7−→ 1

3

(
2 1
1 2

)(
x1

x2

)
. (1)

Starting at positions −1 and 1, agents 1 and 2 move to ±3−t at time t. Imagine now
a third agent starting at position 0.9 < x3 < 1 and set to join with agent 1 when their
distance is no more than one: this happens after on the order of |log(1−x3)| steps. The
convergence time goes to infinity as x3 approaches 1, indicating the impossibility of a
uniform bound.

We claimed earlier than random shifting is not enough and a perturbation rule is
needed. To see why, we set d = 1 and n = 4. The first two agents stay on opposite sides
of the origin, with the agent further from it moving toward it while the other one stays
put:

(x1, x2)
f7−→ 1

2

{
( 2x1, x1 + x2 ) if x1 + x2 ≥ 0

(x1 + x2, 2x2 ) else.

The two agents converge toward 0 but the order in which they proceed (ie, their symbolic
dynamics) is chaotic. Let xi(t) be the position of agent i at time t. Assume that
x1(0) < 0 < x2(0) and consider the trajectory of a line L: X2 = uX1, for u < 0. If
the point (x1(t), x2(t)) is on the line, then x1(t) + x2(t) ≥ 0 implies that u ≤ −1 and
L is mapped to X2 = 1

2(u + 1)X1; if x1(t) + x2(t) < 0, then u > −1 and L becomes
X2 = 2u

u+1 X1. The parameter u obeys the dynamics: u 7→ 1
2(u + 1) if u ≤ −1 and

u 7→ 2u/(u + 1) if −1 < u ≤ 0. Writing u = (v + 1)/(v − 1) gives v 7→ 2v + 1 if v < 0
and v 7→ 2v − 1 else. The system v escapes for |v(0)| > 1 and otherwise conjugates
with the baker’s map [16]. To turn this into actual chaos, the third agent oscillates in
[x1, x4] ≈ [0, 1], with x4 = 1, depending on the order in which the first two agents move:
x3 7→ 1

3(x3 + 2x1) if x1 + x2 ≥ 0 and x3 7→ 1
3(x3 + 2x4) else. Agent 3 is either at most

0.4 or at least 0.6 depending on which of agent 1 or 2 moves. This implies that the
system has positive topological entropy: to know where agent 3 is at time t requires on
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the order of t bits of accuracy in the initial state. We easily check that no random shift
can prevent this and a perturbation rule is indeed necessary to prevent chaos.

2.3 Turing completeness

Absent perturbation, an influence system can simulate a general piecewise-linear system
and hence a Turing machine. We show how this is done. Given a nonzero n-by-n real-
valued matrix A, let A+ (resp. A−) be the matrix obtained by zeroing out the negative
entries of A (resp. −A), so that A = A+ −A−. Define the matrices

B = r

(
A+ A−

A− A+

)
and C =

B (I2n −B)1 0
0 1 0
0 1− r r

 ,

where r = mini{1, 1/
∑

j |Aij |}. It is immediate that C is stochastic and semiconjugates
with the dynamics of A (up to scaling). Indeed, given x ∈ Rn, if x denotes the (2n +
2)-dimensional column vector (x,−x, 0, 1), then C x = rAx; hence the commutative
diagram:

x −−−−→ Axy y
x −−−−→ r−1C x .

Imagine now a piecewise-linear system consisting of a number of matrices {Ak} and a
hyperplane arrangement with a matrix Ak associated with each cell.5 We add n negated
clones to the existing set of n agents, plus a stochasticity agent permanently positioned
at x−1 = 0 as well as a projectivity agent initialized at x0. This allows us to form the
vector x = (x,−x, x−1, x0). The system scales down, so we rewrite any hyperplane
aTx = a0 with homogeneous coordinates as aTx = a0x0. We can use the same value
of r throughout by picking the smallest one among all the matrices Ak used in the
piecewise-linear system.

Koiran et al [22] have shown how to simulate a Turing machine with a 3-agent
piecewise-linear system, so we set n = 3. We need an output agent to indicate whether
the system is in an accepting state: this is done by pointing to one of two fixed agents.
We can enlist one of the three original agents for that purpose, which keeps the total
agent count below 10. Predicting nontrivial state properties of an influence system (such
as basic connectivity properties of the communication graph) is therefore undecidable.

2.4 Linearization

Beginning with the case d = 1, we can write x more simply as (x1, . . . , xn) ∈ Rn. We
show how to linearize an influence system by tensor powering. Let d be the maximum

5 A cell is the solution set of any collection (finite or infinite) of linear (strict or nonstrict) inequalities.
If it lies in an affine subspace of dimension k but not k − 1, it is called a k-cell.
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total degree6 of the polynomial tests used in the algebraic decision trees (recall that
each agent comes equipped with its own). We can always assume the existence of an
agent confined to position 1 with no in/out-link: we use it to homogeneize the test
polynomials, so that every monomial has degree exactly d. We define the monomial
yk1,...,kd =

∏d
i=1 xki (1 ≤ k1, . . . , kd ≤ n) and, listing them in lexicographic order, form

y = (yk1,...,kd) ∈ RN , where N = nd; note that y lies on a (real) algebraic variety V
smoothly parametrized injectively by x. The map x 7→ f(x) induces the lifted map
y 7→ g(y), where g(y) = P (x)⊗ d y and

P (x)⊗ d =

d︷ ︸︸ ︷
P (x)⊗ · · · ⊗ P (x) .

Being the Kronecker product of stochastic matrices, P (x)⊗ d is stochastic: its diagonal
is positive and its nonzero entries all exceed ρd. Its associated graph, whose edges map
out its nonzero entries, is the tensor graph product G(x)⊗ d. We use the term ground
agents to refer to the n agents positioned at x. Including all the test polynomials from
all the ground agents’ decision trees gives us as many hyperplanes in RN and the sign
conditions of a cell c specify a unique stochastic matrix Qc. This matrix is always a
tensor power P⊗ d but it is guaranteed to be of the form P (x)⊗ d only if c contains a
point y of V parametrized by x.

Whereas a random shift produces affine forms a1y1+· · ·+aNyN +δ, the perturbation
rule acts in a more subtle way. While the whole point of the lifting is to forget about
the variety V, the tensor structure of the matrices Qc brings benefits we will want to
exploit. Given K ⊆ {1, . . . , n}, the cluster CK refers to the subset of |K|d agents with
labels in Kd. If all the agents of a cluster fit within a tiny interval then so do their
ground agents; to see why, just expand (xi − xj)d. By the perturbation rule, therefore,
the induced subgraph of the cluster cannot change until it is pulled apart by outside
agents. We revisit this point below in greater detail. Assume now that d > 1. We write

x = (x1,1, . . . , x1,d, . . . , xn,1, . . . , xn,d),

with the homogeneizing agent 1 permanently positioned at (x1,1, . . . , x1,d) = 1d. Next,
we define y = (y1, . . . ,yN ), where N = (dn)d and yl =

∏d
i=1 xki,ji with l denoting the

lexicographic rank of the string (k1, j1, . . . , kd, jd) for ki ∈ {1, . . . , n} and ji ∈ {1, . . . , d}.
The matrix Qc associated with cell c is of the form (P ⊗ Id)

⊗ d; furthermore, P = P (x)
whenever y satisfies the N conditions yl =

∏d
i=1 xki,ji for some x ∈ Rdn. The cluster

CK consists now of (d|K|)d agents. For notational simplicity, we assume that d and d

are constants although no such requirement is actually required.

3 An Algorithmic Calculus

We assume that P (x) = Pc, for any x ∈ c, where c is any atom (open n-cell) of an
arrangement of hyperplanes in Rn, called the switching partition (SP ). Given a shift δ,

6 Not to be confused with d.
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we define the margin

Mδ =
⋃
SP

{
x ∈ Rn |aTx = 1 + δ

}
, (2)

over all the hyperplanes aTx = 0 of the switching partition. Given an atom c ofMδ, the
stochastic matrix Pc = (P c⊗Id )⊗ d is a tensor power of a ground matrix P c. We assume
that all the relevant parameters (matrix entries, number and coefficients of hyperplanes,
ρ, etc) can be encoded as rationals over O(log n) bits: this assumption can be freely
relaxed—in fact, the bit lengths can be arbitrarily large as a function of n—and is only
made to simplify the notation.

Figure 1: The atom c of the SP maps via f = Pc to a cell intersecting two atoms.

As in statistical mechanics, the system’s complexity arises from the tension between
two opposing forces: one, caused by the map’s discontinuities, is “entropic” and leads
to chaos; the other one, related to the Lyapunov exponents, is “energetic” and pulls
the system toward an attracting manifold within which the dynamics is periodic. The
goal is to show that, outside a vanishingly small critical region in parameter space,
entropy always loses. What does it mean? If, unlike in Fig.1, the iterated image of
any ball b never intersected the SP hyperplanes, as is easily shown, it would bounce
around until eventually periodicity kicked in. In the figure, however, f3(b) refuses to
follow this script and splits into two smaller bodies. Both of them will bounce around
until possibly splitting again and so on. If this branching, “entropic” process gets out
of control, chaos will ensue. To squelch it, we can count on the paracontractivity of
the map, which causes the ball b to shrink—at least in directions outside the dominant
eigenspace (alas of arbitrary dimension)—and thus dissipate a form of “energy.” Entropy
vs energy: which one will win? For entropy to lose out, the ball b must avoid splitting
too frequently. This can be expressed by an (infinite) system of linear inequalities.
Feasibility then hinges on a type of matrix rigidity question: in this case, given a certain
matrix, how many rows must be removed before we can express the first column as a
linear combinations of the others? The matrix in question is extracted from the system’s
stochastic matrices and the SP equations and hence is highly structured: this is the key
to order.
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3.1 Phase space refinement

By scale invariance and convexity, we may confine the phase space to the open unit box
Ω = (0, 1)n. It is useful to classify the initial states by how long it takes their orbits to
hit the margin Mδ, if ever. With f0 = In and min ∅ = ∞, we define the label `(x) of
x ∈ Ω as the minimum integer t such that f t(x) ∈Mδ. The point x is said to vanish at
time `(x) if its label is finite. The points that do not vanish before time t form the set
St: we have S0 = Ω; and, for t > 0,

St = Ω \
t−1⋃
k=0

f−k(Mδ) .

We impose the condition δ > −1 to keep the preimages of the hyperplanes ofMδ empty
or of codimension one, which implies that the volume of St is always 1. Each of St’s
connected components is specified by a set of strict linear inequalities in Rn, so St is a
union of disjoint open n-cells, whose number we denote by #St. Each cell of St+1 lies
within a cell of St. The limit set S∞ =

⋂
t≥0 St collects the points that never vanish.

We say that the system is nesting at t if St = St+1. The minimum value of t (or ∞) is
called the nesting time ν of the system. Observe that labels cannot be skipped: if k is
a label, then so is k − 1. The following facts follow easily from this observation.

Lemma 3.1. The nesting time ν is the minimum t such that, for each cell c of St, f t(c)
lies within an atom. If c is a cell of Sν , then f(c) intersects at most one cell of Sν and
Sν = S∞. Any nonvanishing orbit is eventually periodic and the sum of its period and
preperiod is bounded by #Sν .

We define the directed graph F with one node per cell c of Sν and an edge from
(c, c′), where c′ is the unique cell of Sν , if it exists, that intersects f(c). The edge
(c, c′) is labeled by the linear map f|c defined by the matrix Pa, where a is the unique
atom a ⊇ c. The graph defines a sofic shift (ie, a regular language) of the functional
kind, meaning that each node has exactly one outgoing edge, possibly a self-loop, so
any infinite path leads to a cycle. Periodicity follows immediately. The trajectory of
a point x is the string s(x) = c0c1 · · · of atoms that its orbit visits: f t(x) ∈ ct for all
0 ≤ t < `(x). It is infinite if and only if x does not vanish, so all infinite trajectories
are eventually periodic. A serious obstacle is that influence systems are rarely nesting.
Some points can take infinitely long to vanish. In the 2-agent system (1), for example,
the marginMδ consisting of the line x3−x1 = 1+δ yields an infinite cell decomposition
S∞; this holds for any δ, so randomization is of no help. There are two solutions: one is
to thicken the margin by a tiny amount; the other is to break up the phase space into
invariant manifolds and argue that most of them are “good” in a technical sense. We
follow the latter approach.

3.2 The coding tree

The previous discussion hints at the tree structure of the space of orbits. We explore
this idea further. The coding tree T encodes into one geometric object the set of all
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orbits and the full symbolic dynamics. It is the system’s “Rosetta stone,” from which
everything of interest can be read off. Intuitively, the tree divides up the phase space
into maximal regions over which the iterated map is linear. It is embedded in Ω × N,
with the last dimension representing time. Each child v of the root is associated with
an atom Uv. The phase tube (Uv, Vv) of each child v is the “time cylinder” whose cross-
sections at times 0 and 1 are Uv and Vv = f(Uv), respectively. In general, a phase tube
is a discontinuity-avoiding sequence of iterated images of a given cell in phase space.

Figure 2: A phase tube (Uw, Vw) of length two: Vw = f(c) = f tw(Uw).

The coding tree T is built recursively by subdividing Vv into the cells c formed
by its intersection with the atoms, and attaching a new child w for each c: we set
Vw = f(c) and Uw = Uv ∩ f−tv(c), where tv is the depth of v (Fig.2). Whereas Uv
is always an open n-cell, Vv and c can be of lower dimension. By δ > −1, the cell
Vv cannot lie inside the margin, so at least one cell c exists and the coding tree has
no leaves. We denote by Pw the matrix of the map’s restriction to c. The phase tube
(Uv, Vv) consists of all the cylinders whose cross-sections at t = 0, . . . , tv are, respectively,
Uv, f(Uv), . . . , f

tv(Uv) = Vv.

Building T

[1] The root v has depth tv = 0; set Uv ← Vv ← Ω.

[2] Repeat forever:

[2.1] For each newly created node v:

• For each cell c of Vv \Mδ, create a child w of v and
set Pw ← f|c ; Vw ← Pw c ; Uw ← Uv ∩ f−tv (c).
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Let ww′w′′ · · · denote the upward, tw-node path from w to the root (but excluding
the root). Using the notation P≤w = PwPw′Pw′′ · · · , we have the identities Vw = P≤w Uw
and Sk =

⋃
w{Uw | tw = k }, with Sk ⊇ Sk+1. Labeling each node w by the atom that

contains the cell c allows us to interpret any path as the prefix of a trajectory and define
the language L(T ) of all such words. Each infinite path v0, v1, v2, . . . down the tree
has its own limit cell

⋂
t≥0 Uvt which, unlike those of St, might not always be open:

collectively, they form the cells of S∞.

• The nesting time ν = ν(T ) is the minimum depth at which all nodes have a single
child (Lemma 3.1); the number can be infinite. A node v is deep if tv > ν and
shallow otherwise.

• The word-entropy h(T ) expresses the growth rate of the language L(T ): it is
defined as the logarithm of the number of shallow nodes;7 #Sν ≤ 2h(T ).

We need additional parameters, such as the attraction rate and the augmented word-
entropy, but we postpone their introduction. Later, we will randomize δ within a small
interval ∆, so it is useful to define the global coding tree T ∆ as the coding tree derived
from the system (x, δ) 7→ (f(x), δ), with the phase space Ω×∆. The sets Mδ, Uv and
Vv are now polyhedra in Rn+1.

3.3 The arborator

We assemble the coding tree by glueing together smaller coding trees defined recursively.
We entrust this task to the arborator, a recursive algorithm expressed in a language for
“lego-like” assembly. The arborator needs two (infinite) sets of parameters to do its
job, the coupling times and the renormalization scales. To produce these numbers, we
use the flow tracker, which is a form of breadth-first search for dynamic graphs. The
arborator relies on a few primitives that we now describe. The direct sum and direct
product are tensor-like operations that we use to assemble the coding tree from smaller
pieces. We can also compile a dictionary to keep track of the tree’s parameters (nesting
time, word-entropy, etc) as we build it up one piece at a time.

Direct sum. The coding tree T = T1⊕T2 models two independent systems of size n1

and n2. The phase space of the direct sum is of dimension n = n1+n2. A path w0, w1, . . .
of T is a pairing of paths in the constituent trees: the node wt is of the form (ut, vt),
where ut (resp. vt) is a node of T1 (resp. T2) at depth t. The direct sum is commutative
and associative; furthermore, Uw = Uu × Uv, Vw = Vu × Vv, and Pw = Pu ⊕ Pv.

7 All logarithms are to the base 2.
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Figure 3: The two tensor operations.

Direct product. We begin with a few words of intuition. Consider two systems S1

and S2, governed by different dynamics yet evolving in the same phase space Ω. Given
an arbitrary region Λ ⊂ Ω, define the hybrid system S with the dynamics of S2 over
Λ and S1 elsewhere. Suppose we had complete knowledge of the coding tree Ti of each
Si (i = 1, 2). Could we then combine them in some ways in cut-and-paste style to
assemble the coding tree T of S? The direct product T1 ⊗ T2 provides the answer.
The operation is associative but (being chronological) not commutative. It begins by
marking certain nodes of T1 as absorbed and pruning the subtrees below. This operation
is called absorption by analogy with the absorbing states of a Markov chain: any orbit
reaching an absorbed leaf comes to a halt, broken only after we reattach a copy of T2 at
that leaf. The copy must be properly cropped: in Fig.3, for example, Uroot(T2) must be
clipped to match Vw(T1), which in turn might involve pruning T2.

Renormalization. Directs sums model independent subsystems through parallel com-
position. Direct products model sequential composition. What are the benefits? In
pursuit of some form of contractivity, the flow tracker (discussed below) classifies the
communication graphs by their connectivity properties and breaks up orbits into se-
quential segments accordingly. It partitions the set of stochastic matrices into classes
and decompose the coding tree T into maximal subtrees consisting of nodes v with ma-
trices Pv from the same class. The power of this “renormalization” procedure is that
it can be repeated recursively. We classify the ground communication graphs by their
block-directionality type: G(x) is of type m→ n−m if the agents can be partitioned
into A,B (|A| = m) so that no B-agent ever links to an A-agent; if in addition, no
A-agent links to any B-agent, G(x) is of type m ‖n−m.

3.4 The flow tracker

A little imagery will help. Suppose that m < n. Pour water on the B-agents while
keeping the A-agents dry. Whenever an edge of the communication graph links a dry
agent to a wet one, the former gets wet; note how the water flows in the reverse direction
of the edges. As soon as all agents become wet (if ever), dry them but leave the B-
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agents wet; repeat. The case m = n is identical, with one agent designated wet once
and for all. The sequence of times at which water spreads or drying occurs plays a
central role in building the arborator. Assume that n > 1 and 0 < m ≤ n from
now on. Let Tm→n−m denote the coding tree of a block-directional system of type
m→ n−m: we assume inheritance, so it can also be written, albeit less informatively,
as Tn. Likewise, Tm ⊕ Tn−m can be expressed as Tm ‖n−m but the converse is not true.
When the initial state x is undersood, we use the shorthand Gt = G(f t(x)) to designate
the communication graph at time t and we denote by Wt the set of wet agents at that
time. The flow tracker monitors communication among the ground agents: information
exchanges among lifted agents are implied.

[1] t0 ← 0.

[2] Repeat forever:

[2.1] If m < n then Wt0 ← {m+ 1, . . . , n} else Wt0 ← {1}.
[2.2] For t = t0, t0 + 1, . . . ,∞

Wt+1 ←Wt ∪ { i | ∃ (i, j) ∈ Gt & j ∈Wt }.
[2.3] If |W∞| = n then t0 ← min{ t > t0 : |Wt| = n } else stop.

The set Wt of wet agents is never empty. The assignments of t0 in step [2.3] divide the
timeline into epochs, time intervals during which either all agents become wet or, failing
that, the flow tracker comes to a halt. Each epoch is itself divided into subintervals by
the coupling times t1 < · · · < t`, such that Wtk ⊂ Wtk+1. The last coupling time t`
marks either the end of the flow tracking (if not all A-agents become wet) or one less
than the next value of t0 in the loop.

Example 3.4: The third column below lists a graph sequence G0, . . . , G11 in chrono-
logical order, with the superscript w indicating the edges through which water prop-
agates to dry nodes. The system is block-directional with three A-agents labeled
a, b, c and one B-agent labeled d. For clarity, we spell out the agents as subscripts.
Note that we use Tab→ cd and not Tabd→ c. The latter would be correct but induc-
tively unsound: a system of type 3→ 1 should not be calling a system of the same
type recursively; that is, unless other structure is put in place—as will be done later.
After all, with a, b, d already wet, the phase awaits the wetting of c. This strategy
would be inductively unsound, however, because it would resolve a system Tabc→ d

by means of another one, Tabd→ c, of the same type 3→ 1. Renormalization, which
is denoted by underlining, compresses into single time units all the time intervals
during which wetness does not spread to dry agents. With the subscripts (resp.
superscript) indicating the time compression rates (resp. tree height), the 11-node
path of Tabc→ d matching the graph sequence above can be expressed as

Td ‖ abc |3 ⊗ T
|1
abcd ⊗ Ta→ bcd |2 ⊗ T

|1
abcd ⊗ Tab→ cd |3 ⊗ T

|1
abcd .
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Flow tracking

W0 = {d } d a→ b→ c
W1 = {d } d a← b→ c Td ‖ abc
W2 = {d } d a→ b← c

t1 = 3 W3 = {d } d
w← a← b← c Tabcd

W4 = {a, d } d← a→ b→ c Ta→ bcd

W5 = {a, d } d a→ b→ c

t2 = 6 W6 = {a, d } d← a
w← b← c Tabcd

W7 = {a, b, d } d← a→ b→ c
W8 = {a, b, d } d← a← b c Tab→ cd

W9 = {a, b, d } d← a→ b→ c

t3 = 10 W10 = {a, b, d } d← a→ b
w← c Tabcd

W11 = {a, b, c, d } d a← b c Td ‖ abc

If we define the renormalization scale wk = |Wtk+1| − n + m for k = 1, . . . , ` − 1, any
path of the coding tree can be expressed as Tm→n−m =⇒

Tm ‖n−m | t1
⊗ T |1n ⊗

{ `−1⊗
k=1

(
Twk→n−wk | tk+1−tk−1

⊗ T |1n
)}
⊗ Tm→n−m . (3)

The expression above describes a maximal (infinite) path of the coding tree. Recursion
operates in two distinct ways: first, via the rewriting rule Tm→n−m ⇒ · · · { }⊗Tm→n−m;
second, through calls to the inductively smaller subsystems Twk→n−wk . All these deriva-
tions extend easily to the global coding trees.

4 Bidirectional Systems

We prove Theorem 1.1 for undirected communication graphs. We run the flow tracker
with respect to the ground agents and their communication graphs. This induces wetness
among the actual agents (in lifted space) in the obvious way: if Wt is the set of ground
agents that are wet at time t, the cluster CWt consists of the (dn)d wet agents. We use
the perturbation space to ∆ = (0, n−b), where b is a suitably large constant (the higher b
the smaller the perturbation). We only need part (a) of the perturbation rule: the status
of an edge between two ground agents apart by at most n−b is fixed and independent of
the other agents.8 Let diam (s) be the diameter of the system after the s-th epoch. If
‖Wt‖ denotes the length of the smallest interval enclosing Wt, it can be easily shown by
induction that ‖Wtk+1‖ ≤ 1 − ρO(k) (see (14) in [13]), where ρ is the smallest nonzero
entry among the ground matrices. We conclude that water propagation to all the agents

8 We could use exponentially small thresholds or even lower, if so desired; crucially, such a rule is
required to avoid chaotic behavior.
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entails the shrinking of the system’s diameter by at least a factor of 1 − ρO(n). Since
an epoch witnesses the wetting of all the agents, repeated applications of this principle
yields

diam (s) ≤ e−sρO(n)
. (4)

After ρ−cn epochs have elapsed (if ever), for a large enough constant c, the diameter
of the system falls beneath n−b and, by convexity, never rises again. By the perturbation
rule, the communication subgraph is now frozen and can no longer change. Fix the initial
(ground) state x ∈ Ω once and for all. The sets Uv and Vv become open intervals of ∆,
so a node v has at most nO(1) children. With the outer product enumerating the first
ρ−O(n) epochs leading to the combinatorial “freezing” of the system, we rewrite (3) as:

T ∆
n =⇒

{ ρ−O(n)⊗
s=1

`s−1⊗
k=1

(
T ∆
wk ‖n−wk | tk+1−tk−1

⊗ T |1n
)}
⊗ T ∗n . (5)

Note that wk = wk(s), tk = tk(s). A single communication graph is associated with T ∗n ,
hence a fixed matrix P = P (x). The rewriting rule in (5) produces terms of the form
T ∆
w1‖w2‖ ...‖wk , where

∑
wi = n. To keep the notation simple, we denote by T ∆

‖w any such

coding tree, with w = max{wi}: the n ground agents are partitioned into groups of size
at most w with no edges between them; the status of an edge may depend on all the
ground agents, so the system is not a direct sum. Thus,

T ∆
‖w =⇒

{ ρ−O(w)⊗
s=1

(
T ∆
‖w−1 ⊗ T

|1
n

)}
⊗ T ∗‖w , (6)

where the matrix P for T ∗‖w is of the form ⊕iPi, with each Pi at most w-by-w. (The

rank of P is at least n/w and possibly much bigger.) By basic Markov chain theory

and (4), there exists another matrix Π = Π(P ) such that ‖P k −Π‖max = e−kρ
−O(n)

, for
any k ≥ 0. Let µ(T ∆

‖w) be the (maximum) time at which the direct product with T ∗‖w
(or earlier absorption) can take place. Given any small ε > 0, there is a time θε(T ∆

‖w),

the attraction rate, after which f t(x) is forever confined to a ball of radius ε, where

θε(T ∆
‖w) ≤ µ(T ∆

‖w) + ρ−O(n)|log ε|. (7)

Removing from ∆ a mere nO(1) intervals of length nO(1)ε is sufficient to form a new
set ∆′ ⊆ ∆ such that T ∗‖w witnesses no inter-group communication after ρ−O(n)|log ε|
steps: this follows from the observation that, in the nO(1) equations, aTx = 1 + δ, of the
margin (2), the left-hand side can vary by at most nO(1)ε. Extending this idea to all of

the renormalized trees in (6) leads to ∆ ⊆ ∆ such that: ν(T ∆
‖n) ≤ θε(T ∆

‖n) and, by (7),

µ(T ∆
‖n) ≤ ρ−O(n)µ(T ∆

‖n−1) + ρ−O(n)|log ε| ≤ ρ−O(n2)|log ε|.

We prove that this holds almost surely by showing that ∆ \ ∆ is of arbitrarily small

measure. For this, it is convenient to define the augmented word-entropy h(T ∆
‖n) to be
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the logarithm of the (maximum) number of nodes of depth at most θε(T ∆
‖n). Since no

absorption occurs at higher depths, quasi-subadditivity obtains:

h(T ∆
1 ⊗ T

∆
2 ) ≤ h(T ∆

1 ) + h(T ∆
2 ) + log max-degree (T ∆

1 );

hence, for ε small enough,

h(T ∆
‖n) ≤ ρ−O(n)

(
h(T ∆
‖n−1) +O

(
n|log ρ|+ log |log ε|+ log n

) )
≤ ρ−O(n2) log |log ε|.

The Lebesgue measure of ∆ \∆ is bounded by

ε nO(1)2h(T ∆
n ) ≤ ε|log ε|ρ−O(n2)

<
√
ε,

Setting ε small enough but in exp(−ρ−O(n2)) proves the birectional case of Theorem 1.1,
with a convergence time of ρ−O(n2). We can improve the exponent to O(n) by using
known bounds on the total 1-energy. With x fixed, each edge of the ground communi-
cation graph has a length at time t that depends only on δ. We call a node v of T ∆

n

heavy if its graph contains one or more edges of length at least n−2b (and light other-
wise). For fixed δ, the number of times the communication graph has at least one edge
of length λ or more is called the communication count Cλ: it has been shown, using the
total s-energy [13], that Cλ ≤ λ−1ρ−O(n). It follows that, along any path of the global
coding tree, the number of heavy nodes is ρ−O(n). The convergence bound follows then
from the fact that all the light nodes between two heavy ones correspond to the same
communication graph (hence the same ground matrix). We omit the rest of the proof,
which repeats much of the previous argument. 2

5 Nonbidirectional Systems

We prove the general case of Theorem 1.1, beginning with the case d = d = 1, which
removes the distinction between ground and lifted agents. We first consider a simpler
system and show later how to reduce any influence system to it. Let to be the timing
threshold of the perturbation rule (b) and let H be a directed n-node graph.9 Given
x ∈ Ω, as soon as G(f t(x)) contains an edge not in H or some edge of H fails to appear
within a time interval of length to, we stop the system. The coding tree Tn is still well
defined. The difference is that some nodes are now absorbed (and their subtree pruned)
because the corresponding orbits are entering a “wrong” atom. We show that whp the
orbit of any point is attracted to a limit cycle or its path in the coding tree reaches an
absorbed leaf. Intuitively, H is our guess for the persistent graph, defined to include
exactly the edges that appear infinitely often in G(f t(x))|t≥0. The new system is no
longer Markovian but this is a minor technicality.

Consider the directed graph derived from H by identifying each strongly connected
component with a single node. Let B1, . . . , Br be the components whose corresponding

9 We can pick to as large as we please, say, doubly exponential in n, to make it irrelevant in practice.
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nodes are sinks and let ni denote the number of agents in the group Bi; write n =
m+n1 + · · ·+nr. The system is block-directional system with m (resp. n−m) A-agents
(resp. B-agents) and, for fixed δ, the coding tree is of the form Tm→n−m, with

P≤v =

(
A≤v Cv

0 B≤v

)
. (8)

We break down the bifurcation analysis in four stages: in §5.1 we bound the rate at which
phase tubes thin out; in §5.2 we argue that, deep enough in the coding tree, perturbations
keep the expected (mean) degree below one; in §5.3, we show how perturbed phase tubes
avoid being split by SP discontinuities at high depths; finally, in §5.4, we show to reduce
any influence system to the “persistent” case. We assume throughout this section that
ρ > n−O(1): this is not required for the proof, but it simplifies the calculations and
allows us to recycle the notation ρ for a different purpose.

5.1 The thinning rate

As the depth of a node v of the global coding tree grows, A≤v and B≤v tend to matrices
of ranks 0 and r, respectively, at a “thinning” rate that we can bound.

Lemma 5.1. Given a node v of Tm→n−m, there exist vectors zi ∈ Rni (i = 1, . . . , r),
such that, for any tv ≥ tc := ncnto and a large enough constant c,

(i) ‖A≤v1m‖∞ ≤ e−γtv and (ii)
∥∥∥B≤v − diag (1n1z

T
1 , . . . ,1nrz

T
r )
∥∥∥

max
≤ e−γ′tv ,

where γ = 1/tc and γ′ = n−cn.

Proof. We begin with (i). Consider the initial state x = (1m,0n−m), with all the A-
agents at 1 and the B-agents at 0, and let y = P≤vx; obviously, ‖A≤v1m‖∞ = ‖y‖∞.
To bound the `∞-norm of y, we apply to x the sequence of maps specified along the
path of Tm→n−m from the root to v.10 Referring to the arborator (3), let’s analyze the
factor

Twk→n−wk | tk+1−tk−1
⊗ T |1n .

The wait period tk+1 − tk before wetness propagates again at time tk+1 is at most to:
indeed, by definition, any A-agent can reach some B-agent in H via a directed path, so
all of them will eventually get wet. It follows that the set Wk cannot fail to grow in t0
steps unless it already contains all n nodes or the trajectory reaches an absorbing leaf.
Assume that the agents of Wtk+1, the wet agents at time tk + 1 lie in (0, 1−σ]. Because
their distance to 1 can decrease by at most a polynomial factor at each step, they all lie
in (0, 1− σn−O(to)] between times tk and tk+1. The agents newly wet at time tk+1 + 1,
ie, those in Wtk+1+1 \Wtk+1

, move to a weighted average of up to n numbers in (0, 1),

at least one of which is in (0, 1− σn−O(to)]. This implies that the agents of Wtk+1+1 lie

10 The path need not track the orbit of x.
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in (0, 1− σn−O(to)]. Since σ ≤ 1, when all the A-agents are wet, which happens within
nto steps, their positions are confined within (0, 1− n−O(nto)]. It follows that

‖y‖∞ ≤ e−btv/(nto)cn
−O(nto)

,

which proves (i). We establish (ii) along similar lines. The coding tree Tm→n−m can
be written as an absorbed instance of Tm→ (n1‖···‖nr) The subgraph H|Bi of H induced
by the agents of any given Bi is strongly connected, so viewed as a separate subsystem,
the B-agents are newly wetted at least once every nto steps. By repeating the following
argument for each Bi, we can assume, for the purposes of this proof, that B = B1,
n1 = n−m and r = 1.

Initially, place B-agent j at 1 and all the others at 0; then apply to it the sequence
of maps leading to B≤v (again, this may not be the actual trajectory of that initial
state). The previous argument shows that the entries of the j-th column of B≤v, which
denote the locations of the agents at time tv, are confined to an interval of length
e−btv/(nto)cn

−O(nto)
. By the perturbation rule (a), as stated in §4, this implies that the

communication subgraph among the B-agents must freeze at some time tc = ncnto for
a constant c large enough, hence become H|B. Let {ui} be the nO(ntc) nodes of the
coding tree at depth tc. Any deeper node v is such that B≤v = Qtv−tuiB≤ui for some
i, where Q is the stochastic matrix associated with H|B. Since that graph is strongly

connected, the previous argument shows that the entries in column j of Qk lies in an
interval of length e−kn

−O(n)
; we lose the delay to. Since Qk+1 is derived from Qk by

taking convex combinations of the rows of Qk, as k grows, these intervals are nested
downwards and hence converge to a number zj . It follows that Qk tends to 1n1z

T , with

‖Qk − 1n1z
T ‖max ≤ e−kn

−O(n)
. Doubling the value of tc yields part (ii) of the lemma. 2

The lemma points to Cv as the key to the dynamics and the necessary focus of our
attention. We state the thinning rate bound in terms of the global coding tree for the
perturbation interval I = (−1, 1).

Lemma 5.2. Any node v of T I
m→n−m of depth tv ≥ tc has an ancestor u of depth tc

such that ∥∥∥P≤v − (0 Cv
0 Du

)∥∥∥
max
≤ e−γtv ,

where Du is a stochastic matrix of the form Du = diag (1n1z1(u)T , . . . ,1nrzr(u)T ).

5.2 Sparse branching

Bruin and Deane [5] used a simple, elegant argument to show that generic planar (single-
agent) contractions do not branch out nearly as often as one could fear. We prove,
likewise, that branching tapers off deep enough in the coding tree. Our argument is
not nearly as simple, however, because of the bewildering complexity of the interactions
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among the agents. By elucidating the entropic contribution of the process, this argument
constitutes the heart of the proof. Let Lin [x1, . . . , xn] denote any real linear form over
x1, . . . , xn, with Aff [x1, . . . , xn] designating the affine version; in neither case may the
coefficients depend on δ or on the agent positions.11 With y1, . . . , yr understood, a gap
of type ω denotes an interval of the form a + ω I, where a = Aff [y1, . . . , yr]. We define
the set

C[y1, . . . , yr] =
{

( ξ ,

n1︷ ︸︸ ︷
y1, . . . , y1 , . . . ,

nr︷ ︸︸ ︷
yr, . . . , yr ) | ξ ∈ (0, 1)m

}
.

The variables y1, . . . , yr denote the limit positions of the B-agents: they are linear
combinations of their initial positions xm+1, . . . , xn. Let v be a node of the global coding
tree T I

m→n−m. The matrix P≤v is a product Ptv · · ·P0, with P0 = In and P0, . . . , Ptv
form what we call a valid matrix sequence. Fix a parameter ρ > 0 (not to be confused
with the matrix bound ρ used earlier) and a point x in Rn. The phase tube formed
by the cube B = x + ρ In and the matrix sequence P0, . . . , Ptv consists of the cells
P0 B, . . . , (Ptv · · ·P0)B. Note that it might not track an actual orbit from B. We say
that the phase tube splits at node v if (Pk · · ·P0 B) \MI is disconnected. The following
result is the key to sparse branching:

Lemma 5.3. Fix ρ > 0, D0 ≥ 2(1/γ)n+1
, and (y1, . . . , yr) ∈ Rr, where γ = n−cnto. There

exists a union W of nO(nD0) gaps of type ρnO(n5D0) such that, for any interval ∆ ⊆ I\W
of length ρ and any x ∈ C[y1, . . . , yr], the phase tube formed by the box x + ρ In along

any path of T ∆
m→n−m of length at most D0 cannot split at more than D1−γn+1

0 nodes.

Proof. The crux of the lemma is the uniformity over x: only (y1, . . . , yr) needs to be
fixed. We begin with a technical lemma. For k = 0, . . . , D, let ak be a row vector in
Rm with O(log n)-bit rational coordinates and Ak be an m-by-m nonnegative matrix
whose entries are rationals over O(logN) bits, for N > n. Write vk = akAk · · ·A0,
with A0 = Im, and assume that the maximum row-sum α = max k>0 ‖Ak1‖∞ satisfies
0 < α < 1. Given I ⊆ {0, . . . , D}, denote by V|I the matrix whose rows are, from top
to bottom, the row vectors vk with the indices k ∈ I sorted in increasing order. The
following result is an elimination device meant to factor out the role of the A-agents.

Lemma 5.4. Given any integer D ≥ 2(1/β)m+1
and I ⊆ {0, . . . , D} of size |I| ≥

D1−βm+1
, where β = |logα|/(cm3 logN) for a constant c large enough, there exists

a unit vector u such that

uTV|I = 0 and uT1 ≥ N−cm3D.

This implies that 1|I| is not in the column space of V|I . Although unrelated, we can

pick the same constant c as the one used in Lemma 5.1. Since α ≥ N−O(1), β can be
assumed much less than 1. To prove Lemma 5.3, we first consider the case where the

11 For example, we can express y = δ + x1 − 2x2 as y = δ + Lin [x1, x2] and y = δ + x1 − 2x2 + 1 as
y = δ + Aff [x1, x2].
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splitting nodes are well separated along their path, which allows for Lemma 5.1 to be
used; then we extend this result to all cases. Given a valid matrix sequence P0, . . . , PD0 ,
pick a sequence of D + 1 integers 0 = s0 < · · · < sD ≤ D0 such that

D ≥ 2(1/β)m+1
and 1/γ ≤ sk − sk−1 ≤ 3/γ, (9)

for k = 1, . . . , D: we identify the matrix Ak of Lemma 5.4 with the m-by-m upper left
principal submatrix of PskPsk−1 · · ·Psk−1+1; using the notation of (8), Ak = A≤w, for
some node w (not necessarily an ancestor of v) of depth tw = sk − sk−1 ≥ 1/γ. Thus,
by Lemma 5.1, for k > 0, the maximum row-sum of any Ak satisfies α ≤ 1/e: each
Ak is a submatrix of a product of at most 3/γ transition matrices, so each entry is an
O(logN)-bit rational, with N = nn

2/γ . What is the row vector ak? For k = 0, . . . , D,
pick any one of the nO(1) margin hyperplanes and denote by ak the m-dimensional vector
consisting of the O(log n)-bit rational coefficients indexed by the A-agents.12 Fix δ ∈ I
and pick I in Lemma 5.4 to be of size dD1−βm+1e. Assume that, given x ∈ C[y1, . . . , yr],
the phase tube formed by the box x + ρ In and Ps0 , . . . , PsD splits at every index of I
along the chosen hyperplane. In other words, for each k ∈ I, there exist a node zk of
depth tzk = sk and ρi = ρi(k), for i = 1, . . . , n, such that |ρi| < ρ and

(ak, bk)

(
A≤zk Czk

0 B≤zk

)
(x1 + ρ1, . . . , xn + ρn)T = 1 + δ,

where the selected hyperplane is of the form ak(x1, . . . , xm)T+bk(xm+1, . . . , xn)T = 1+δ,
with bk ∈ Qn−m. Since akA≤zk = vk and x ∈ C[y1, . . . , yr], it follows that

vk(x1 + ρ1, . . . , xm + ρm)T + Lin [ y1, . . . , yr, ρm+1, . . . , ρn ] = 1 + δ , (10)

where the coefficients in the linear form are of magnitude nO(1).

Lemma 5.4 allows us to eliminate the variables x1, . . . , xm: we premultiply V|I by

the unit vector u to find that Lin [ y1, . . . , yr ] + χ = (1 + δ)ξ, where |χ| ≤ ρDnO(1),
ξ ≥ N−cm3D, and the coefficients of the linear form are bounded by DnO(1); hence,

| δ + Aff [ y1, . . . , yr ] | ≤ ρNO(cm3D), (11)

where the coefficients of the affine form are bounded by NO(cm3D). (We leave the
constant c in the exponent to highlight its influence.) The whole point of the exercise
is that the variable δ never vanishes during the elimination. Thus, as long as it remains
outside a gap of type ρNO(cm3D), the phase tube formed by x + ρ In and P0, . . . , PD
cannot split at every index of I. Counting the number of possible choices of hyperplanes
per node raises the number of gaps to nO(|I|). The argument assumes that δ has the
same value in each of |I| inequalities. It need not be so: each δ in (10) can be replaced

12 With m = 3, x1 − x3 = 1 + δ gives ak = (1, 0,−1) and x2 − x4 = 1 + δ produces ak = (0, 1, 0).
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Figure 4: The phase tube splits at the nodes indexed by I = {2, 4, 6}. The nodes of depth sk
for k 6∈ I are represented as black dots: s0, s1, s3, s5, s7 (D = 7). The other nodes in the paths
are the white dots.

by δ + νk (k ∈ I), for |νk| ≤ ρ, and the new system of inequalities will still imply (11);
this will be crucial for the randomization. We summarize our results, using the bound
|logα| ≥ log e > 1.

Lemma 5.5. Let N = nn
2/γ and β = 1/(cm3 logN), where c is the constant used in

Lemma 5.4. Fix a path in T I
m→n−m from the root and pick D + 1 nodes on it of depth

0 = s0 < · · · < sD satisfying (9); out of these nodes, choose a subset I of size dD1−βm+1e.
There exists an exclusion zone W consisting of the union of at most nO(|I|) gaps of type
ρNO(cm3D), such that, for any interval ∆ ⊆ I \W of length ρ and any x ∈ C[y1, . . . , yr],
the phase tube formed by x+ρ In cannot split at all the nodes of I in T ∆

m→n−m (assuming
they exist).

To prove Lemma 5.3, we need to extend the previous lemma to all the paths of the
coding tree of the prescribed length and remove from (9) the lower bound of 1/γ on the
distance between consecutive splitting nodes. Fix D0 ≥ 2(1/γ)n+1

, and let v be a node
of T I

m→n−m of depth tv = D0. Since the path is fixed, we can uniquely identify the
node v and its ancestors by their depths and denote by Pt the transition matrix of the
node at depth t. Define the node set J = {1/γ, 2/γ, . . . , D0}, with |J | = dγD0e; recall
that 1/γ = tc is an integer. Let K be the set of ancestors of v at which the phase tube
formed by x + ρ In and P0, . . . , PD0 splits (with respect to T I

m→n−m); assume that

|K| ≥ D1−γn+1

0 . (12)

We define I to be the largest subset of K with no two elements of I ∪ {0} at a distance
less than 1/γ; obviously, |I| ≥ bγ|K|c − 1. To define s1, . . . , sD, we add all of J to I (to
keep distances between consecutive nodes small enough) and then clean up the set to
avoid distances lower than allowed: we define J ′ to be the smallest subset of J such that
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L = I ∪ (J \ J ′) contains no two elements at a distance less than 1/γ. Each element of
I can cause the disappearance of at most two elements in J for the addition of one into
L, hence |J |/2 ≤ |L| ≤ γD0 + 1. By construction, consecutive elements of L are at most
3/γ away from each other, so we can identify L with the sequence s1 < · · · < sD. By
m < n and the specifications of γ in Lemma 5.1 and N, β in Lemma 5.5, we can verify
that

(i) D0 ≥ 2(1/γ)n+1 ≥ γ−12(1/β)m+1+1 and (ii) D1−γn+1

0 ≥ 2
γ (γD0 + 1)1−βm+1

. (13)

Part (i) ensures (9). By Lemma 5.5, keeping δ outside the union W of at most nO(|I|)

gaps of type ρNO(m3D) prevents I from witnessing a phase tube split at each of its nodes,
and hence keeps K ⊇ I from being, as claimed, made entirely of “splitting” nodes. For
this, we need to ensure that |I| ≥ D1−βm+1

, which follows from: (12); |I| ≥ bγ|K|c − 1;
D = |L| ≤ γD0 + 1; and part (ii) of (13).

We conclude that, as long as we choose an interval ∆ ⊆ I \ W of length ρ, the
coding tree T ∆

m→n−m cannot witness splits at all of the nodes of K (if they exist: their
existence is ensured only in T I

m→n−m) for the phase tube formed by any box x + ρ In,
where y1, . . . , yr are fixed and x ∈ C[y1, . . . , yr]. Note the order of the quantifiers: first,
we fix the coordinates yk and the target length D0, and we pick a large enough candidate
splitting node set K in T I

m→n−m; these choices determine the exclusion zone W ; next,
we pick a suitable ∆ and then claim an impossibility result for any x in C[y1, . . . , yr].
To complete the proof of Lemma 5.3, we bound, by 2D0 and nO(nD0) respectively, the
number of ways of choosing K (hence I, L) and the number of nodes v in T I

m→n−m of
depth tv = D0. 2

Proof of Lemma 5.4. We can make the assumption that I includes 0, since all
cases easily reduce to it. Indeed, let l be the smallest index in I. If l > 0, subtract
l from the indices of I to define I ′ ⊇ {0}. Form the matrix V ′|I′ of vectors v′k, where

vk+l = v′kAl · · ·A0. Rewriting V|I as V ′|I′Al · · ·A0 takes us to the desired case (padding

V ′ to bring the size up back D): we observe that, if uTV ′|I′ = 0, then so does uTV|I .
We may also assume that all vk are nonzero since the lemma is trivial otherwise. All
the coordinates of vk can be expressed as O(m2(k + 1) logN)-bit rationals sharing a
common denominator; therefore,

N−O((k+1)m2) ≤ ‖vk‖1 ≤ 2−k|logα|+O(logn). (14)

The affine hull of V|I is the flat defined by { zTV|I : zT1 = 1 }: its dimension is called the
affine rank of V|I . Let g(D, r) be the maximum value of |I|, for {0} ⊆ I ⊆ {0, . . . , D},
such that V|I has affine rank at most r and its affine hull does not contain the origin.
Lemma 5.4 follows from this inequality, whose proof we postpone: for r = 0, . . . ,m− 1,

g(D, r) < D1−βm+1
, for any D ≥ 2(1/β)m+1

, (15)

where β = |logα|/(cm3 logN), for constant c large enough. Indeed, given any {0} ⊆
I ⊆ {0, . . . , D} of size at least D1−βm+1

, we have |I| > g(D,m− 1), so the affine hull of
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V|I contains the origin. If r is its affine rank, then there exists J ⊆ I of size r + 1 such
that the affine rank of V|J is r and its affine hull contains the origin, hence coincides with
the row space of V|J ,13 which is therefore of dimension r. This implies the existence of
r independent columns in V|J spanning its column space: add a column of r+ 1 ones to
the right of them to form the (r + 1)-by-(r + 1) matrix M . Since the affine hull of V|J
contains the origin, there exists z such that zTV|J = 0 and zT1 = 1, which in turn shows
that 1r+1 lies outside the column space of V|J ; therefore M is nonsingular. Since each
one of its rows consists of O(m2D logN)-bit rationals with a common denominator,

|detM | ≥ N−O(m3D). (16)

Let ξ be the (r+ 1)-dimensional vector whose k-th coordinate is the cofactor of the k-th
entry in the last column of ones in M . Determinant cofactor expansions yield

ξTM = (

r︷ ︸︸ ︷
0, . . . , 0 ,detM).

Since the first r columns of M span the column space of V|J , it follows that

ξT (V|J ,1r+1 ) = (

m︷ ︸︸ ︷
0, . . . , 0 , detM).

By Hadamard’s inequality and (14), each coordinate of ξ is at most nO(m) in absolute
value; so, by (16), straightforward rescaling and padding with zeroes turns ξ into a
suitable vector u such that uTV|I = 0 and uT1 ≥ N−c1m3D, for an absolute constant c1

that does not depend on c. Replacing c by max{c, c1} establishes Lemma 5.4.
It suffices now to prove (15), which we do by induction on r. If V|I has affine rank

r = 0 and its affine hull does not contain the origin, then all the rows of V|I are equal
and nonzero. Since V|I has the row v0, it follows from (14) that |I| ≤ 1 + max{k ∈ I} =
O(|logα|−1m2 logN), hence

g(D, 0) ≤ β−1. (17)

Assume now that r > 0 and that V|I has affine rank exactly r and its affine hull does
not contain the origin. Put I = {k0, k1, . . . , ki}, with k0 = 0, and consider the smallest
j such that V|J has affine rank r, where J = {k0, k1, . . . , kj} ⊆ I. Since the origin is not
in the affine hull of V|I hence of V|J , we can always pick a subset K ⊆ J consisting of
r + 1 independent rows: let M = V|K∪{ki} denote the (r + 2)-by-m matrix formed by
adding the row vki at the bottom of V|K .14 Since V|I has affine rank r, its rank is r + 1
(using once again the noninclusion of O in the affine hull of V|I), hence so is the rank of

13 Because any yTV|J can be written as (y + (1− yT1)z)TV|J , where zTV|J = 0 and zT1 = 1.
14 It may be the case that i = j or ki ∈ K. Since r > 0, we have ki ≥ kj ≥ 1 and j > 0.
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Figure 5: Why a large value of ki implies that the affine hull of V|I , hence of M , contains the
origin.

M ; in other words, adding vki does not increase the rank. We show that if ki is large
enough, the system below is feasible in ξ ∈ Rr+2:

ξTM+ = (

m︷ ︸︸ ︷
0, . . . , 0 , 1), (18)

where M+ is the (r + 2)-by-(m + 1) matrix (M,1r+2), which leads to a contradiction.
This is the crux of the argument and makes essential use of the rapid decay of the vectors
vk. Assume that ki > ckj |logα|−1m3 logN , for a large enough constant c. We first show
that M+ is of rank r + 2. Pick r + 1 independent columns of V|K , which is possible
since the latter has rank r+ 1, to form the full-ranked (r+ 1)-by-(r+ 1) matrix Q. Add
a new row to it by fitting the relevant part of vki (the last row of M) and call R the
resulting (r+ 2)-by-(r+ 1) matrix (Fig.5); consistent with our notation, R+ will denote
the matrix (R,1). A cofactor expansion of the determinant of R+ along the bottom row
shows that

|detR+| ≥ |detQ| −∆‖vki‖1,

where ∆ is an upper bound on the absolute values of the cofactors other than detQ. In
view of (14), the matrix entries involved in these cofactors are all in nO(1); by Hadamard’s
inequality, this shows that we can set ∆ = nO(m). Likewise, we find that

‖vki‖1 ≤ 2−ki|logα|+O(logn).

SinceQ is nonsingular, we can adapt (16) to derive |detQ| ≥ N−O(m3kj), hence |detR+| >
0. It follows that the linear system (18) is feasible if we replace M+ by R+. As it hap-
pens, there is no need to do so since every column of M missing from R lies in the
column space of the latter: thus the missing homogeneous equalities are automatically
satisfied by the solution ξ. The feasibility of (18) contradicts our assumption that the
origin is outside the affine hull of V|I ; therefore

kj ≥ βki > 0, (19)

where β = |logα|/(cm3 logN). By definition of j, the affine rank of V|{k0,...,kj−1} is
r − 1 and its affine hull does not contain the origin; therefore j ≤ g(kj−1, r − 1), with
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g(0, r − 1) = 1. Let w0 = akj and, for k > 0, wk = akj+kAkj+k · · ·Akj+1, thus ensuring
that vkj+k = wkAkjAkj−1 · · ·A1A0. Since the affine hull of V|I does not contain the
origin, neither does that of the matrix W with rows w0, wkj+1−kj , . . . , wki−kj . It follows
that the affine rank of W is less than m, so i − j + 1 ≤ g(ki − kj ,m − 1), hence15

i ≤ g(kj−1, r − 1) + g(ki − kj ,m − 1) − 1. By (19) and i = |I| − 1, we derive, by
monotonicity,

|I| ≤ g(k, r − 1) + g(D − k,m− 1),

where βD ≤ k ≤ D; hence, by (17), for m > 0 and D ≥ 0:

g(D, r) ≤


1 if D = 0

β−1 if r = 0

g(n1,m− 1) + · · ·+ g(nr,m− 1) + β−1 if 0 < r < m,

where n1 + · · ·+nr ≤ (1−βs)D, with s = |{ i |ni > 0 }|. Setting η = βm, we check that,
for all D,m > 0,

g(D,m− 1) ≤ β−2(2D1−η − 1). (20)

The case m = 1 follows from g(D, 0) ≤ β−1. For m > 1, we begin with the case s = 0,
where

g(D,m− 1) ≤ m− 1 + β−1 ≤ β−2(2D1−η − 1),

which follows from α ≥ N−O(1). For s = 1, by induction,

g(D,m− 1) ≤ β−2(2(1− β)1−ηD1−η − 1) +m− 2 + β−1

≤ 2β−2D1−η − (2β−1(1− η)−O(1))D1−η − β−2 + β−1 +m− 2

≤ β−2(2D1−η − 1).

Assume that s > 1. Being concave and nonnegative, the function x 7→ x1−η is subaddi-
tive for x ≥ 0; therefore,

n1−η
1 + · · ·+ n1−η

r ≤ (1− βs)1−ηD1−η.

Setting r = m− 1, relation (20) follows from the inequality,

g(D,m− 1) ≤ β−2(2(1− βs)1−ηD1−η − s) +m− s− 1 + β−1

≤ 2β−2(1− βm−1)1−ηD1−η − 3
2β
−2 ≤ 2β−2D1−η − β−2,

which proves (20), hence (15) and Lemma 5.4. 2

15 It would be nice to bound the affine rank as a function of r, but since we never perturb the
transition matrices it is unclear how to do that.
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5.3 The degree structure

We decompose the global coding tree into three layers: the top one has no degree
constraints; the second has mean degree less than two; and the third has no branching.
Consider an initial placement of the B-agents such that the diameter of each Bi is less
than n−b. By the perturbation rule (a), the communication subgraph induced by the
B-agents is frozen and its transition matrix Q is fixed and independent of the future
placement of the B-agents.16 By the proof of Lemma 5.1, we derive the existence of a
rank-r stochastic matrix

Q̃ = diag (1n1z
T
1 , . . . ,1nrz

T
r )

such that zi ∈ Rni and
‖Qk − Q̃‖max ≤ e−kn

−O(n)
. (21)

The B-agents find themselves attracted to the fixed point y = Q̃ξ, where ξ ∈ Rn−m is
their initial state vector and

y = (

n1︷ ︸︸ ︷
y1, . . . , y1, . . . ,

nr︷ ︸︸ ︷
yr, . . . , yr ).

Define Υ = (0, 1)m × ((0, 1)n−m ∩ΥB), where

ΥB = y + (n−2b In−m) ∩ ker Q̃.

If x ∈ Υ, the diameter of any group Bi is at most 2n−2b < n−b so the communication
graph induced by their agents is frozen and remains so. The B-agents are attracted
to y.17 This follows easily, as does the next lemma, whose proof we omit, from the
stochasticity of Q and the identities: Q̃Q = QQ̃ = Q̃2 = Q̃.

Lemma 5.6. The set Υ is forward-invariant. Furthermore, any ξ ∈ y + n−2b In−m
belongs to ΥB if and only if Q̃ξ = y.

We set ρ,D0 as in Lemma 5.3 and call an interval ∆ free if it does not intersect
the exclusion zone W = W (y). For counting purposes, it is convenient to partition the
perturbation space n−b I into so-called canonical intervals of length ρ (with possibly a
single smaller one). A gap of W can keep only nO(n5D0) canonical intervals from being
free, so the Lebesgue measure of the free ones satisfies:

Leb
{⋃

free canonical intervals
}
≥ 2n−b − ρnO(n5D0). (22)

16 We return to the rule used in §4 for convenience; we could use an arbitrarily small threshold instead.
17 Although the B-agents in ΥB have been essentially immobilized around y, they are not decoupled

from the rest. Indeed, while the increasingly microscopic movements of the B-agents can no longer affect
their own communication graph, they can still influence the communication among the A-agents, even
if none of the latter link to any B-agent.
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Fixing the B-agent attractor. With y fixed, we pick a free canonical interval ∆

and focus on the global coding tree T ∆|Υ
m→n−m, with the superscripts indicating the

perturbation and phase spaces, respectively. For any node v of depth tv ≥ tc, the limit
matrix Du in Lemma 5.2 is the same for all nodes u of depth tc. Indeed,∥∥∥P≤v − (0 Cv

0 Q̃

)∥∥∥
max
≤ e−γtv .

Pick v of depth tv ≥ 3tc and let w be its ancestor at depth tw = btv/2c. Given
x ∈ Uv ⊆ Υ,

x′ = f tw(x) = P≤w x ∈
(
Cw
Q̃

)
(xm+1, . . . , xn)T + ne−γtw In

∈
(
Cw(xm+1, . . . , xn)T

y

)
+ ne−γtw In.

We claim that x′ ∈ Υ. Let x′ be the vector formed by the last n−m coordinates of x′.
By (21),

‖x′ − y‖∞ ≤ ne−twn
−O(n)

< n−2b.

Our claim follows then from the fact that Q̃(x′ − y) = 0. By Lemma 5.6 and the
Markovian property of the system, therefore, there exists a node v′ of depth tv′ =
tv − tw ≥ tc such that,

f tv(x) = f tv′ (x′) = P≤v′ x
′

∈
(
Cv′

Q̃

)
(y + ne−γtw In−m) + ne−γtv′ In ⊆

(
Cv′y
y

)
+ 2ne−γtv/3 In.

It is important to note that v′ depends only on v and not on x ∈ Uv: indeed, the phase
tube from Uv between time tw and tv does not split; therefore f tw(Uv) ⊆ Uv′ . It follows
that, for tv ≥ 3tc and v′ = v′(v),

Vv ⊆
(
Cv′y
y

)
+ 2ne−γtv/3 In. (23)

The A-agents evolve toward convex combinations of the B-agents, which themselves
become static. The weights of these combinations (ie, the barycentric coordinates of
the A-agents), however, might change at every node, so there is no assurance that the
orbit is always attracted to a limit cycle. The layer decomposition of the coding tree,
which we describe next, allows us to bound the nesting time while exhibiting weak yet
sufficient conditions for periodicity.

To stratify the coding tree T ∆|Υ
m→n−m into layers, we set up three parameters D0, D1, and

D2: the first targets the topological entropy; the second specifies the height of the first
layer; the third indicates the nesting time. We examine each one in turn and indicate
their purpose and requirements.
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Figure 6: The global coding tree is stratified into three layers, with decreasing branching rates.

First layer. By (23), the phase tubes get thinner over time at a rate of roughly
e−γ/3, while the tree is branching at a rate of nO(n). To ensure that the topological
entropy is zero, the product of these two rates should be less than 1: with γ < 1, this is
far from being the case, so we need a sparsification mechanism. This is where Lemma 5.3

comes in. Indeed, deep enough in T ∆|Υ
m→n−m, the size of a subtree of height D0 will be

shown to be at most

D0(nO(n))D
1−γn+1

0 ,

while the tubes get thinner at a rate of 2ne−γD0/3 for every consecutive D0 nodes: the
choice of D0 below ensures that the product is less than 1, as desired. We justify this
choice formally below.

D0 ≥ 2(1/γ)n+2
[ D0 big enough for thinning to outpace branching ]. (24)

Second layer. Technically, Lemma 5.3 addresses only the branching of the phase
tube formed by a small box x + ρ In, for x ∈ C[y1, . . . , yr], whereas we are concerned

here with phase tubes originating at some cell Vv of T ∆|Υ
m→n−m. To make Vv thin enough,

we choose a node v deep in the tree.18 By (23), Vv ⊆ x + ρ In, for x ∈ C[y1, . . . , yr],
provided that tv ≥ D1 and

D1 ≥
3

γ
log

2n

ρ
[ D1 big enough for tree branches to be thinner than ρ ]. (25)

Note that the requirement in (23) that tv ≥ 3tc = 3/γ is implied by tv ≥ D1. In view

of Lemma 5.3, the number of nodes in T ∆|Υ
m→n−m of depth no greater than t ≥ D1, is

bounded by

nO(nD1)︸ ︷︷ ︸
depth D1

× nO(nD1−γn+1

0 b(t−D1)/D0c)︸ ︷︷ ︸
from D1 to t in chunks of D0

× nO(nD0)︸ ︷︷ ︸
truncated chunk

× D0︸︷︷︸
single paths

.

18 Factoring out the B-agents gives us the sort of fixed-point attraction that is required by Lemma 5.3:
it is a dimension reduction device in attractor space.
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To see why, treat each path of single-child nodes as a single edge. Thus, for any t ≥ D1,∣∣∣ { v ∈ T ∆|Υ
m→n−m | tv ≤ t }

∣∣∣ ≤ nO(nD0+nD1+ntD−γ
n+1

0 ) . (26)

Third layer. The bottom layer of the stratified global coding tree begins at a depth
D2 ≥ D0 + D1. If the node v of depth tv ≥ D2 has more than one child, then, by
continuity, Vv contains a point right on the boundary of the global margin. By (23), this
implies the existence of ζ ∈ Rn such that ‖ζ‖∞ ≤ 2ne−γ D2/3 and Lin [y + ζ] = 1 + δ,
where the coefficients of the linear form are of magnitude nO(1) and depend only on

the node v and a margin’s hyperplane. It then follows from (26) that T ∆′|Υ
m→n−m has no

nontrivial branching at depth D2, provided that ∆′ = ∆\W ′, where W ′ consists of gaps
of type nO(1)e−γ D2/3 numbering at most

nO(nD0+nD1+nD2D
−γn+1

0 )︸ ︷︷ ︸
# nodes at depth D2

× nO(1)︸ ︷︷ ︸
# margin hyperplanes

.

This sets a bound of D2 on the nesting time. It follows that

Leb (W ′) ≤ e−γ D2/3nO(nD0+nD1+nD2D
−γn+1

0 ). (27)

Pick a large enough constant d = d(b, c); recall that γ = n−cnto . We set the parameters
ρ = n−dn

5D0 , where, rounding up to the nearest integer,
D0 = 2d(1/γ)n+2

D1 = d2n6D0/γ

D2 = dn2D1/γ.

(28)

We verify that conditions (24, 25) are both satisfied and that

D1 ≥ D2D
−γn+1

0 . (29)

Thus the measure bound (27) implies that Leb (W ′) ≤ ρ2−D0 . Since ∆ has length ρ,
this implies that, with probability at least 1−2−D0 , subjecting the system’s margin to a
perturbation δ chosen randomly in ∆ makes phase tube splitting impossible at time D2:
we call this success. In these conditions, by Lemma 3.1 and the fact that absorption is
determined only by time differences, splitting past time D2 is ruled out, too: any infinite
orbit (ie, nonvanishing or nonabsorbing) from x ∈ Υ is attracted to a limit cycle.19 The
full perturbation space is not ∆ but n−b I, so we apply the previous result to each free
canonical interval and argue as follows. If Λ is the measure of the union of all the free

19 Vanishing occurs with probability zero.
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canonical intervals, then the perturbations that do not guarantee success have measure
at most (2n−b − Λ) + 2−D0Λ. Dividing by 2n−b and applying (22) shows that

Probδ [ failure in T n−b I |Υ
m→n−m ] ≤ 1− (1− 2−D0)( 1− ρnO(n5D0) ) ≤ 21−D0 . (30)

Let Is denote the set of successful perturbations within n−b I. The nesting time is at
most D2, which, by (26, 29), implies that

h(T Is |Υ
m→n−m) ≤ O(D1n log n) ≤ γ−1nO(1)D0 . (31)

At depths D2 and higher, the coding tree can no longer branch but its paths can still end
in absorbing leaves. The period, preperiod, number of absorbing leaves, and maximum
depth of an absorbing leaf are all bounded by20

2h(T Is |Υ
m→n−m) + to . (32)

Freeing the B-agents. Set D3 = d3bγ−1 log ne and fix x in Ω = (0, 1)n. Let ξ denote
the projection of fD3(x) onto the last n−m coordinate axes. By Lemma 5.2, the coding

tree T n−b I
m→n−m has nO(ntc) nodes u such that tu = tc and

ξ ∈ y + ne−γD3 In−m ⊆ y + n−2b In−m,

where y = Du(xm+1, . . . , xn)T . The state vector for the B-agents is ξ at time D3

and Qt−D3ξ at t > D3, where Q is the transition matrix of the frozen communication
subgraph joining the B-agents at time D3. By taking t to infinity, it follows that
y = Q̃ξ (note that Q̃ may not be the same as Du) and, by Lemma 5.6, ξ ∈ ΥB hence
fD3(x) ∈ Υ. We can then apply the previous result. Since x is fixed, only the choice of

random perturbation δ can change which path in T n−b I
m→n−m the orbit will follow. The

failure probability of (30) needs to be multiplied by the number of nodes u, which yields
an upper bound of nO(ntc)21−D0 ; hence

Probδ [ failure in T n−b I
m→n−m ] ≤ 2−D0/2. (33)

If T ∗ denotes the part of the global coding tree extending to depth D3 and I′s the new
“success” perturbation set, then

T I′s
m→n−m = T ∗ ⊗ T I′s |Υ

m→n−m .

The upper bound on the number of absorbing leaves given in (32) still holds with Is
replaced by I′s. The tree T ∗ has at most nO(nD3) nodes; therefore, by (31),{

ν(T I′s
m→n−m) ≤ D2 +D3

h(T I′s
m→n−m) ≤ h(T I′s |Υ

m→n−m) +O(D3 n log n) ≤ γ−1nO(1)D0 .
(34)

20 The additive term to is only needed for the depth bound.
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5.4 Removing persistence

Since we do not know the graph H ahead of time, we initialize it to the complete
directed graph and update it at each absorbing node by removing the edge(s) whose
missing presence causes the absorption. This yields the rewriting rule21

T =⇒
k0⊗
k=1

Tmk→n−mk , (35)

where k0 ≤ n(n − 1). To keep the failure probability from being amplified by each
product, we reset D0 in (28) at every iteration: to do so, we define Ck as its suitable
value for a persistent graph consisting of k (nonloop) directed edges and let φk denote
the maximum failure probability for such a graph: Cn(n−1) ≥ D0 and φ0 = 0; and,
by (33, 34), for k > 0,

φk ≤ 2−Ck/2 + 2γ
−1naCkφk−1,

for some constant a > 0. Setting Cn(n−1)−j = γ−jn2ajD0, for j = 0, . . . , n(n − 1), we

verify by induction that φk ≤ 21−Ck/2, for k = 0, . . . , n(n− 1); hence,

Probδ [ failure ] ≤ φn(n−1) ≤ 21−D0/2.

The period and preperiod are bounded by

n(n−1)∏
k=0

(
2γ
−1naCk + to

)
≤ 2C0γ−1nO(1)

,

which grows polynomially in 2D0 , hence in the reciprocal of the failure probability (which
can be made arbitrarily small); the dependency on n grows much faster, of course. This
completes the proof of the case d = d = 1 of the nonbidirectional case of Theorem 1.1.
2

5.5 Arbitrary dimension and algebraic degree

The analysis readily extends to any dimension d and degree d via the tensor lifting
construction of §2.4. Recall that the two essential ingredients are: (i) the thinning
rate (Lemma 5.1); and (ii) sparse branching (Lemma 5.3). We easily check that both
conditions still hold (though with different rates). The matrix Qc associated with a cell
c of the SP is of the form (P⊗Id)⊗ d, with P = P (x) whenever y = y(x) for some y ∈ V.
We retain the coding tree type Tm→n−m over the m (resp. n − m) ground A-agents

21 We cannot require that the influence system reset to 0 the timeout counts of its edges at each
direct product. There is no need to do so anyway: no resetting means that absorption (and hence the
corresponding direct product) might come earlier. Since our calculations do not depend on the actual
number of absorbing leaves but only the number of nodes of depth no greater than the nesting time,
adding earlier absorptions is of no consequence; delaying them, of course, would be a different matter.
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(resp. B-agents). This induces a block-directional decomposition of the lifted system.
Recall that, given y ∈ V, the (lifted) agent l is at position yl =

∏d
i=1 xki,ji , where l is the

lexicographic rank of (k1, j1, . . . , kd, jd). The lifted agents fall into two groups: A consists
of the agents l with at least one constitutive ground agent ki in A; the others form
the group B. An edge in the power graph from (k1, j1, . . . , kd, jd) to (k′1, j

′
1, . . . , k

′
d, j
′
d)

requires the presence in the ground graph of the d edges (k1, k
′
1), . . . , (kd, k

′
d). This shows

that the lifted coding tree is of type TA→B. Any transition matrix entry corresponding
to an edge from A to A is of the form pi1j1 · · · pidjd , with at least one factor pikjk such
that ik and jk are both ground A-agents. The extension of Lemma 5.1 to the lifted
system, with its transition matrices of the form (P (x)⊗ Id)

⊗ d, follows immediately.
By lifting the thinning rate argument as we just did, we implicitly assumed that the

agent position y lay on the algebraic variety V, i.e., y = y(x) for some x. This need not
be case. A simple fix is absorb any orbit that strays from V. Specifically, we turn into
an absorbed leaf any node v whose parent w is such that Vv ∩ f(V ∩Vw) = ∅. Note that
these absorbed leaves are terminal and not the contact points of direct products. This
completes the proof of Theorem 1.1. 2
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