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Abstract—Influence systems form a large class of multiagent
systems designed to model how influence, broadly defined,
spreads across a dynamic network. We build a general an-
alytical framework which we then use to prove that, while
Turing-complete, influence dynamics of the diffusive type is
almost surely asymptotically periodic. Besides resolving the
dynamics of a popular family of multiagent systems, the
other contribution of this work is to introduce a new type
of renormalization-based bifurcation analysis for multiagent
systems.

I. INTRODUCTION

This paper has three objectives: (i) to bring under one
roof a wide variety of popular multiagent systems; (ii) to
build an “algorithmic calculus” to help us analyze them;
(iii) to resolve the complexity of their “diffusive” restric-
tion. Influence systems are discrete-time dynamical systems
specified by a map x 7→ f(x) from (Rd)n to (Rd)n and a
function G mapping each x to an n-node graph: the point
x = (x1, . . . , xn) encodes the position xi ∈ Rd of each
agent i = 1, . . . , n; the map x 7→ G(x) specifies the com-
munication graph, with one node per agent. Each coordinate
function fi of f = (f1, . . . , fn) takes as input the neighbors
of agent i in G(x), together with their locations, and outputs
the new position fi(x) of agent i in Rd. By distinguishing
between G and f , the model separates the syntactic (where
the information travels across the dynamic network) from the
semantic (how it is used by each agent’s personal algorithm
fi). This distinction reflects the focus on systems in which
emergence owes more to the flow of communication among
the agents than to the sheer computational power of f . A
deterministic influence system is called diffusive if the map
f keeps each agent within the convex hull of its neighbors.

An overarching ambition of social dynamics is to under-
stand and predict the collective behavior of agents influ-
encing one another across an endogenously changing net-
work [10]. Influence systems provide a versatile platform for
such investigations [14]. The model includes swarming, syn-
chronization, consensus systems, neural nets, Bayesian so-
cial learning, protein interaction networks, the Ising model,

etc.1 Diffusive systems remain bounded and make consensus
(all xi being equal) a fixed point. HK systems have emerged
in the last decade as a prototypical platform in social
dynamics [18]. Diffusive influence systems unify their varied
strands (eg, bounded-confidence, bounded-influence, truth-
seeking, Friedkin-Johnsen type, deliberative exchange) into a
single framework and supply closed-loop analogs to standard
consensus models [3], [25], [27].

In a diffusive influence system, f(x) = (P (x) ⊗ Id )x,
where P (x) is a stochastic matrix whose positive entries
correspond to the edges of G(x) and are rationals assumed
larger than some arbitrarily small ρ > 0; the Kronecker
product with the d-by-d identity Id makes the transition
matrix P (x) act on (Rd)n and not Rn. We grant the agents
a measure of self-confidence by adding a self-loop to each
node of G(x). Agent i computes the i-th row of P (x)
by means of its own algebraic decision tree; that is, on
the basis of the signs of a finite number of dn-variate
polynomials evaluated at the coordinates of x. This high
level of generality allows G(x) to be specified by any first-
order sentence over the reals:2 in a recent bird flocking
model [2], for instance, the communication graph joins every
agent to its 7 nearest neighbors. We state our main result:3

THEOREM 1.1: Given any initial state, the orbit of an in-
fluence system is attracted exponentially fast to a limit cycle
whp under an arbitrarily small random perturbation. The
period and preperiod are bounded by a polynomial in the
reciprocal of the failure probability. Without perturbation,
the model is Turing-complete. In the bidirectional case, the
system is attracted to a fixed point. The convergence time is
ρ−O(n)|log ε| whp, where n is the number of agents and ε
is the distance to the fixed point.

1 The states of an influence system can be opinions, Bayesian beliefs,
neuronal spiking sequences, animal herd locations, chemotactic responses,
cell populations, schooling fish velocities, sensor networks data, synchro-
nization phases, heart pacemaker cell signals, cricket chirpings, firefly
flashings, yeast cell suspensions, microwave oscillator frequencies, flocking
headings, etc [6], [8], [10], [30], [32].

2 This is the language of geometry and algebra over the reals, with state-
ments specified by any number of quantifiers and polynomial (in)equalities.
It was shown to be decidable by Tarski and amenable to quantifier
elimination and algebraic cell decomposition by Collins [15].

3All influence systems in the remainder of this paper are assumed to be
diffusive, so we drop the qualifier; “whp”= with high probability.



Remarks. The Turing machine simulation can be done with
linear decision trees and d = 1. The (infinite) number
of limit cycles is actually finite up to foliation. A system
is called bidirectional if all the communication graphs are
undirected. To perturb the system means: to apply a random
shift, ie, to pick a small random δ and replace each test
polynomial q(x) by q(x) + δ; and to apply a perturbation
rule stipulating that (a) the status of an edge (i, j) is constant
when agents i, j are infinitesimally close to each other; and
(b) no edge that disappears indefinitely can return; in both
cases, the threshold can be an arbitrary function of n, so the
perturbation rule is unnecessary in practice. Even in theory it
can sometimes be relaxed: for example, (b) is not needed in
the bidirectional case. We need to emphasize, however, that
some form of perturbation rule is required: without (a, b)
or some variant, Theorem 1.1 is provably false; in general,
randomization is necessary but not sufficient. Note that the
perturbation rule is not a heuristic assumption but a local
rule that agents can easily implement. It is not a roundabout
way to enforce connectivity either, since agents are given
free rein to drop edges at any time. In the context of social
dynamics, our results might be disconcerting. Influence
systems model how people change opinions over time as
a result of human interaction and knowledge acquisition.
Strangely, unless people keep varying the modalities of their
interactions, as mediated by trust levels, self-confidence, etc,
they will be caught forever recycling the same opinions in
the same order.

Following their introduction by Sontag [35], piecewise-
linear systems have become the subject of an abundant
literature, which we do not attempt to review here. Influ-
ence systems with undirected communication graphs always
converge to a fixed point [13], [17], [20], [25], [27] but
convergence times are known only in a few cases [6],
[13]. Without bidirectionality, known convergence results are
conditional [9], [11], [12], [21], [26]–[28], [31], [36].4 The
standard assumption is that some form of joint connectivity
property should hold in perpetuity; as we show below,
however, to check such a property is usually undecidable.
A significant recent advance was Bruin and Deane’s uncon-
ditional resolution of planar piecewise contractions, which
are special kinds of influence systems with a single mobile
agent [5].

Piecewise-linear systems are known to be Turing-
complete [1], [4], [22], [34]. A typical simulation relies
on the existence of Lyapunov exponents of both signs,
negative ones to move the head in one direction and positive
ones to move it the other way. Influence systems have no
positive exponents and yet are Turing-complete. In dynam-
ics, chaos is typically associated with positive topological
entropy, which entails expansion, hence positive Lyapunov

4 As they should be, since convergence is not assured. An exception is
truth-seeking HK systems, which have been shown to converge uncondi-
tionally [13], [19], [24].

exponents. But piecewise linearity blurs this picture. With
only null Lyapunov exponents, isometries are not chaotic [7]
but contractions, with only negative exponents, can be [23].
Influence systems, which, with only null and negative Lya-
punov exponents, sit in the middle, can be chaotic. Plainly,
the spectral lens breaks down in the face of piecewise
linearity and calls for a different approach: we use an
algorithmic brand of bifurcation analysis.

II. PRELIMINARIES

We show in §II-A that influence systems can have periodic
orbits of length exponential in the number of agents: this
result is resistant to perturbation. Quite the opposite, the
next two results require careful finetuning. In §II-B, we
build a conjugation with the baker’s map to exhibit chaos
and, in §II-C, we show how to simulate a Turing machine.
All three constructions use linear decision trees. This is not
surprising in view of §II-D, where we show how to linearize
the decision procedure of any influence system.

A. Long periods

Periodic orbits can be made arbitrarily long by increasing
the bit-length of the encoding. More interesting is the
fact that exponential periods can be achieved with only
logarithmic bit-length. We simulate a counter modulo 2 by
building a system with d = 1 and n = 3: the first two
agents are fixed at 0 and 3 while the third oscillates between
positions 1 and 2; this is trivially achieved with a two-test
linear decision tree. Add another mobile agent oscillating
between 1 and 2 like the previous one, but which moves
only when the first oscillating agent is at position 1. (Adding
a single test makes this possible.) Iterating in this fashion
produces an n-agent influence system with O(n) tests whose
period is exactly 2n−2.

B. Why perturbation is necessary

Random shifts are required for any uniform convergence
bound. To see why, set d = 1 and n = 3. The first two
agents move toward each other according to the rule:(

x1

x2

)
f7−→ 1

3

(
2 1
1 2

)(
x1

x2

)
. (1)

Starting at positions −1 and 1, agents 1 and 2 move to ±3−t

at time t. Imagine now a third agent starting at position
0.9 < x3 < 1 and set to join with agent 1 when their
distance is no more than one: this happens after on the order
of |log(1−x3)| steps. The convergence time goes to infinity
as x3 approaches 1, indicating the impossibility of a uniform
bound.

We claimed earlier than random shifting is not enough
and a perturbation rule is needed. To see why, we set d = 1
and n = 4. The first two agents stay on opposite sides of



the origin, with the agent further from it moving toward it
while the other one stays put:

(x1, x2)
f7−→ 1

2

{
( 2x1, x1 + x2 ) if x1 + x2 ≥ 0

(x1 + x2, 2x2 ) else.

The two agents converge toward 0 but the order in which
they proceed (ie, their symbolic dynamics) is chaotic. Let
xi(t) be the position of agent i at time t. Assume that
x1(0) < 0 < x2(0) and consider the trajectory of a line
L: X2 = uX1, for u < 0. If the point (x1(t), x2(t)) is on
the line, then x1(t) + x2(t) ≥ 0 implies that u ≤ −1 and L
is mapped to X2 = 1

2 (u+ 1)X1; if x1(t) + x2(t) < 0, then
u > −1 and L becomes X2 = 2u

u+1 X1. The parameter
u obeys the dynamics: u 7→ 1

2 (u + 1) if u ≤ −1 and
u 7→ 2u/(u+1) if −1 < u ≤ 0. Writing u = (v+1)/(v−1)
gives v 7→ 2v + 1 if v < 0 and v 7→ 2v − 1 else. The
system v escapes for |v(0)| > 1 and otherwise conjugates
with the baker’s map [16]. To turn this into actual chaos,
the third agent oscillates in [x1, x4] ≈ [0, 1], with x4 = 1,
depending on the order in which the first two agents move:
x3 7→ 1

3 (x3 + 2x1) if x1 + x2 ≥ 0 and x3 7→ 1
3 (x3 + 2x4)

else. Agent 3 is either at most 0.4 or at least 0.6 depending
on which of agent 1 or 2 moves. This implies that the system
has positive topological entropy: to know where agent 3 is at
time t requires on the order of t bits of accuracy in the initial
state. We easily check that no random shift can prevent this
and a perturbation rule is indeed necessary to prevent chaos.

C. Turing completeness

Absent perturbation, an influence system can simulate a
general piecewise-linear system and hence a Turing ma-
chine. We show how this is done. Given a nonzero n-by-
n real-valued matrix A, let A+ (resp. A−) be the matrix
obtained by zeroing out the negative entries of A (resp. −A),
so that A = A+ −A−. Define the matrices

B = r

(
A+ A−

A− A+

)
and C =

B (I2n −B)1 0
0 1 0
0 1− r r

 ,

where r = mini{1, 1/
∑
j |Aij |}. It is immediate that C is

stochastic and semiconjugates with the dynamics of A (up
to scaling). Indeed, given x ∈ Rn, if x denotes the (2n+2)-
dimensional column vector (x,−x, 0, 1), then C x = rAx;
hence the commutative diagram:

x −−−−→ Axy y
x −−−−→ r−1C x .

Imagine now a piecewise-linear system consisting of a num-
ber of matrices {Ak} and a hyperplane arrangement with a

matrix Ak associated with each cell.5 We add n negated
clones to the existing set of n agents, plus a stochasticity
agent permanently positioned at x−1 = 0 as well as a
projectivity agent initialized at x0. This allows us to form
the vector x = (x,−x, x−1, x0). The system scales down,
so we rewrite any hyperplane aTx = a0 with homogeneous
coordinates as aTx = a0x0. We can use the same value
of r throughout by picking the smallest one among all the
matrices Ak used in the piecewise-linear system.

Koiran et al [22] have shown how to simulate a Turing
machine with a 3-agent piecewise-linear system, so we set
n = 3. We need an output agent to indicate whether the
system is in an accepting state: this is done by pointing
to one of two fixed agents. We can enlist one of the three
original agents for that purpose, which keeps the total agent
count below 10. Predicting nontrivial state properties of an
influence system (such as basic connectivity properties of
the communication graph) is therefore undecidable.

D. Linearization
Beginning with the case d = 1, we can write x more

simply as (x1, . . . , xn) ∈ Rn. We show how to linearize
an influence system by tensor powering. Let d be the
maximum total degree6 of the polynomial tests used in
the algebraic decision trees (recall that each agent comes
equipped with its own). We can always assume the existence
of an agent confined to position 1 with no in/out-link: we
use it to homogeneize the test polynomials, so that every
monomial has degree exactly d. We define the monomial
yk1,...,kd =

∏d
i=1 xki (1 ≤ k1, . . . , kd ≤ n) and, listing them

in lexicographic order, form y = (yk1,...,kd) ∈ RN , where
N = nd; note that y lies on a (real) algebraic variety V
smoothly parametrized injectively by x. The map x 7→ f(x)
induces the lifted map y 7→ g(y), where g(y) = P (x)⊗ d y
and

P (x)⊗ d =

d︷ ︸︸ ︷
P (x)⊗ · · · ⊗ P (x) .

Being the Kronecker product of stochastic matrices, P (x)⊗ d

is stochastic: its diagonal is positive and its nonzero entries
all exceed ρd. Its associated graph, whose edges map out its
nonzero entries, is the tensor graph product G(x)⊗ d. We use
the term ground agents to refer to the n agents positioned
at x. Including all the test polynomials from all the ground
agents’ decision trees gives us as many hyperplanes in RN
and the sign conditions of a cell c specify a unique stochastic
matrix Qc. This matrix is always a tensor power P⊗ d but it
is guaranteed to be of the form P (x)⊗ d only if c contains
a point y of V parametrized by x.

Whereas a random shift produces affine forms a1y1 +
· · ·+ aNyN + δ, the perturbation rule acts in a more subtle

5 A cell is the solution set of any collection (finite or infinite) of linear
(strict or nonstrict) inequalities. If it lies in an affine subspace of dimension
k but not k − 1, it is called a k-cell.

6 Not to be confused with d.



way. While the whole point of the lifting is to forget about
the variety V , the tensor structure of the matrices Qc brings
benefits we will want to exploit. Given K ⊆ {1, . . . , n}, the
cluster CK refers to the subset of |K|d agents with labels in
Kd. If all the agents of a cluster fit within a tiny interval then
so do their ground agents; to see why, just expand (xi−xj)d.
By the perturbation rule, therefore, the induced subgraph of
the cluster cannot change until it is pulled apart by outside
agents. We revisit this point below in greater detail. Assume
now that d > 1. We write

x = (x1,1, . . . , x1,d, . . . , xn,1, . . . , xn,d),

with the homogeneizing agent 1 permanently positioned at
(x1,1, . . . , x1,d) = 1d. Next, we define y = (y1, . . . ,yN ),
where N = (dn)d and yl =

∏d
i=1 xki,ji with l denoting

the lexicographic rank of the string (k1, j1, . . . , kd, jd) for
ki ∈ {1, . . . , n} and ji ∈ {1, . . . , d}. The matrix Qc
associated with cell c is of the form (P ⊗ Id)

⊗ d; further-
more, P = P (x) whenever y satisfies the N conditions
yl =

∏d
i=1 xki,ji for some x ∈ Rdn. The cluster CK

consists now of (d|K|)d agents. For notational simplicity,
we assume that d and d are constants although no such
requirement is actually required.

III. AN ALGORITHMIC CALCULUS

We assume that P (x) = Pc, for any x ∈ c, where c is
any atom (open n-cell) of an arrangement of hyperplanes in
Rn, called the switching partition (SP ). Given a shift δ, we
define the margin

Mδ =
⋃
SP

{
x ∈ Rn |aTx = 1 + δ

}
, (2)

over all the hyperplanes aTx = 0 of the switching partition.
Given an atom c of Mδ , the stochastic matrix Pc =
(P c ⊗ Id )⊗ d is a tensor power of a ground matrix P c.
We assume that all the relevant parameters (matrix entries,
number and coefficients of hyperplanes, ρ, etc) can be
encoded as rationals over O(log n) bits: this assumption can
be freely relaxed—in fact, the bit lengths can be arbitrarily
large as a function of n—and is only made to simplify the
notation.

As in statistical mechanics, the system’s complexity arises
from the tension between two opposing forces: one, caused
by the map’s discontinuities, is “entropic” and leads to
chaos; the other one, related to the Lyapunov exponents,
is “energetic” and pulls the system toward an attracting
manifold within which the dynamics is periodic. The goal
is to show that, outside a vanishingly small critical region
in parameter space, entropy always loses. What does it
mean? If the iterated image of any ball b never intersected
the SP hyperplanes, as is easily shown, it would bounce
around until eventually periodicity kicked in. In the figure
below, however, f3(b) refuses to follow this script and splits
into two smaller bodies. Both of them will bounce around

until possibly splitting again and so on. If this branching,
“entropic” process gets out of control, chaos will ensue.
To squelch it, we can count on the paracontractivity of
the map, which causes the ball b to shrink—at least in
directions outside the dominant eigenspace (alas of arbitrary
dimension)—and thus dissipate a form of “energy.” Entropy
vs energy: which one will win? For entropy to lose out,
the ball b must avoid splitting too frequently. This can
be expressed by an (infinite) system of linear inequalities.
Feasibility then hinges on a type of matrix rigidity question:
in this case, given a certain matrix, how many rows must
be removed before we can express the first column as a
linear combinations of the others? The matrix in question is
extracted from the system’s stochastic matrices and the SP
equations and hence is highly structured: this is the key to
order.

A. Phase space refinement

By scale invariance and convexity, we may confine the
phase space to the open unit box Ω = (0, 1)n. It is useful to
classify the initial states by how long it takes their orbits to
hit the margin Mδ , if ever. With f0 = In and min ∅ =∞,
we define the label `(x) of x ∈ Ω as the minimum integer
t such that f t(x) ∈ Mδ . The point x is said to vanish at
time `(x) if its label is finite. The points that do not vanish
before time t form the set St: we have S0 = Ω; and, for
t > 0,

St = Ω \
t−1⋃
k=0

f−k(Mδ) .

We impose the condition δ > −1 to keep the preimages of
the hyperplanes ofMδ empty or of codimension one, which
implies that the volume of St is always 1. Each of St’s
connected components is specified by a set of strict linear
inequalities in Rn, so St is a union of disjoint open n-cells,
whose number we denote by #St. Each cell of St+1 lies
within a cell of St. The limit set S∞ =

⋂
t≥0 St collects the

points that never vanish. We say that the system is nesting
at t if St = St+1. The minimum value of t (or ∞) is called
the nesting time ν of the system. Observe that labels cannot



be skipped: if k is a label, then so is k − 1. The following
facts follow easily from this observation.

LEMMA 3.1: The nesting time ν is the minimum t such
that, for each cell c of St, f t(c) lies within an atom. If c is
a cell of Sν , then f(c) intersects at most one cell of Sν and
Sν = S∞. Any nonvanishing orbit is eventually periodic and
the sum of its period and preperiod is bounded by #Sν .

We define the directed graph F with one node per cell
c of Sν and an edge from (c, c′), where c′ is the unique
cell of Sν , if it exists, that intersects f(c). The edge (c, c′)
is labeled by the linear map f|c defined by the matrix Pa,
where a is the unique atom a ⊇ c. The graph defines a sofic
shift (ie, a regular language) of the functional kind, meaning
that each node has exactly one outgoing edge, possibly a
self-loop, so any infinite path leads to a cycle. Periodicity
follows immediately. The trajectory of a point x is the string
s(x) = c0c1 · · · of atoms that its orbit visits: f t(x) ∈ ct for
all 0 ≤ t < `(x). It is infinite if and only if x does not
vanish, so all infinite trajectories are eventually periodic. A
serious obstacle is that influence systems are rarely nesting.
Some points can take infinitely long to vanish. In the 2-agent
system (1), for example, the margin Mδ consisting of the
line x3 − x1 = 1 + δ yields an infinite cell decomposition
S∞; this holds for any δ, so randomization is of no help.
There are two solutions: one is to thicken the margin by a
tiny amount; the other is to break up the phase space into
invariant manifolds and argue that most of them are “good”
in a technical sense. We follow the latter approach.

B. The coding tree

The previous discussion hints at the tree structure of the
space of orbits. We explore this idea further. The coding tree
T encodes into one geometric object the set of all orbits
and the full symbolic dynamics. It is the system’s “Rosetta
stone,” from which everything of interest can be read off.
Intuitively, the tree divides up the phase space into maximal
regions over which the iterated map is linear. It is embedded
in Ω × N, with the last dimension representing time. Each
child v of the root is associated with an atom Uv . The phase
tube (Uv, Vv) of each child v is the “time cylinder” whose
cross-sections at times 0 and 1 are Uv and Vv = f(Uv),
respectively. In general, a phase tube is a discontinuity-
avoiding sequence of iterated images of a given cell in phase
space.

The coding tree T is built recursively by subdividing Vv
into the cells c formed by its intersection with the atoms, and
attaching a new child w for each c: we set Vw = f(c) and
Uw = Uv ∩ f−tv (c), where tv is the depth of v. Whereas
Uv is always an open n-cell, Vv and c can be of lower
dimension. By δ > −1, the cell Vv cannot lie inside the
margin, so at least one cell c exists and the coding tree
has no leaves. We denote by Pw the matrix of the map’s

restriction to c. The phase tube (Uv, Vv) consists of all
the cylinders whose cross-sections at t = 0, . . . , tv are,
respectively, Uv, f(Uv), . . . , f

tv (Uv) = Vv .
Let ww′w′′ · · · denote the upward, tw-node path from

w to the root (but excluding the root). Using the notation
P≤w = PwPw′Pw′′ · · · , we have the identities Vw =
P≤w Uw and Sk =

⋃
w{Uw | tw = k }, with Sk ⊇ Sk+1.

Labeling each node w by the atom that contains the cell c
allows us to interpret any path as the prefix of a trajectory
and define the language L(T ) of all such words. Each
infinite path v0, v1, v2, . . . down the tree has its own limit
cell

⋂
t≥0 Uvt which, unlike those of St, might not always

be open: collectively, they form the cells of S∞.
• The nesting time ν = ν(T ) is the minimum depth at

which all nodes have a single child (Lemma 3.1); the
number can be infinite. A node v is deep if tv > ν and
shallow otherwise.

• The word-entropy h(T ) expresses the growth rate of
the language L(T ): it is defined as the logarithm of
the number of shallow nodes; #Sν ≤ 2h(T ).

We need additional parameters, such as the attraction rate
and the augmented word-entropy, but we postpone their in-
troduction. Later, we will randomize δ within a small interval
∆, so it is useful to define the global coding tree T ∆ as the
coding tree derived from the system (x, δ) 7→ (f(x), δ), with
the phase space Ω ×∆. The sets Mδ , Uv and Vv are now
polyhedra in Rn+1.

C. The arborator

We assemble the coding tree by glueing together smaller
coding trees defined recursively. We entrust this task to the
arborator, a recursive algorithm expressed in a language
for “lego-like” assembly. The arborator needs two (infinite)
sets of parameters to do its job, the coupling times and the
renormalization scales. To produce these numbers, we use
the flow tracker, which is a form of breadth-first search for
dynamic graphs. The arborator relies on a few primitives
that we now describe. The direct sum and direct product are
tensor-like operations that we use to assemble the coding
tree from smaller pieces. We can also compile a dictionary
to keep track of the tree’s parameters (nesting time, word-
entropy, etc) as we build it up one piece at a time.



Direct sum: The coding tree T = T1 ⊕T2 models two
independent systems of size n1 and n2. The phase space
of the direct sum is of dimension n = n1 + n2. A path
w0, w1, . . . of T is a pairing of paths in the constituent trees:
the node wt is of the form (ut, vt), where ut (resp. vt)
is a node of T1 (resp. T2) at depth t. The direct sum is
commutative and associative; furthermore, Uw = Uu × Uv ,
Vw = Vu × Vv , and Pw = Pu ⊕ Pv .

Direct product: We begin with a few words of intuition.
Consider two systems S1 and S2, governed by different
dynamics yet evolving in the same phase space Ω. Given
an arbitrary region Λ ⊂ Ω, define the hybrid system S with
the dynamics of S2 over Λ and S1 elsewhere. Suppose we
had complete knowledge of the coding tree Ti of each Si
(i = 1, 2). Could we then combine them in some ways in
cut-and-paste style to assemble the coding tree T of S? The
direct product T1 ⊗ T2 provides the answer. The operation
is associative but (being chronological) not commutative.
It begins by marking certain nodes of T1 as absorbed
and pruning the subtrees below. This operation is called
absorption by analogy with the absorbing states of a Markov
chain: any orbit reaching an absorbed leaf comes to a halt,
broken only after we reattach a copy of T2 at that leaf. The
copy must be properly cropped.

Renormalization: Directs sums model independent sub-
systems through parallel composition. Direct products model
sequential composition. What are the benefits? In pursuit
of some form of contractivity, the flow tracker (discussed
below) classifies the communication graphs by their con-
nectivity properties and breaks up orbits into sequential seg-
ments accordingly. It partitions the set of stochastic matrices
into classes and decompose the coding tree T into maximal
subtrees consisting of nodes v with matrices Pv from the
same class. The power of this “renormalization” procedure
is that it can be repeated recursively. We classify the ground
communication graphs by their block-directionality type:
G(x) is of type m→ n−m if the agents can be partitioned
into A,B (|A| = m) so that no B-agent ever links to an
A-agent; if in addition, no A-agent links to any B-agent,
G(x) is of type m ‖n−m.

D. The flow tracker

A little imagery will help. Suppose that m < n. Pour
water on the B-agents while keeping the A-agents dry.
Whenever an edge of the communication graph links a dry
agent to a wet one, the former gets wet; note how the
water flows in the reverse direction of the edges. As soon
as all agents become wet (if ever), dry them but leave the
B-agents wet; repeat. The case m = n is identical, with
one agent designated wet once and for all. The sequence
of times at which water spreads or drying occurs plays a
central role in building the arborator. Assume that n > 1 and
0 < m ≤ n from now on. Let Tm→n−m denote the coding

tree of a block-directional system of type m→ n−m: we
assume inheritance, so it can also be written, albeit less
informatively, as Tn. Likewise, Tm⊕Tn−m can be expressed
as Tm ‖n−m but the converse is not true. When the initial
state x is undersood, we use the shorthand Gt = G(f t(x))
to designate the communication graph at time t and we
denote by Wt the set of wet agents at that time. The flow
tracker monitors communication among the ground agents:
information exchanges among lifted agents are implied.

[1] t0 ← 0.
[2] Repeat forever:

[2.1] If m < n then Wt0 ← {m+1, . . . , n} else
Wt0 ← {1}.

[2.2] For t = t0, t0 + 1, . . . ,∞
Wt+1 ←Wt∪{ i | ∃ (i, j) ∈ Gt & j ∈
Wt }.

[2.3] If |W∞| = n then t0 ← min{ t > t0 :
|Wt| = n } else stop.

The set Wt of wet agents is never empty. The assignments of
t0 in step [2.3] divide the timeline into epochs, time intervals
during which either all agents become wet or, failing that,
the flow tracker comes to a halt. Each epoch is itself divided
into subintervals by the coupling times t1 < · · · < t`, such
that Wtk ⊂ Wtk+1. The last coupling time t` marks either
the end of the flow tracking (if not all A-agents become wet)
or one less than the next value of t0 in the loop.

If we define the renormalization scale wk = |Wtk+1| −
n+m for k = 1, . . . , `− 1, any path of the coding tree can
be expressed as Tm→n−m =⇒

Tm ‖n−m | t1
⊗ T |1n ⊗{ `−1⊗

k=1

(
Twk→n−wk | tk+1−tk−1

⊗ T |1n
)}
⊗ Tm→n−m .

(3)

The expression above describes a maximal (infinite) path
of the coding tree. Recursion operates in two distinct ways:
first, via the rewriting rule Tm→n−m ⇒ · · · { }⊗Tm→n−m;
second, through calls to the inductively smaller subsystems
Twk→n−wk

. All these derivations extend easily to the global
coding trees.

IV. BIDIRECTIONAL SYSTEMS

We prove Theorem 1.1 for undirected communication
graphs. We run the flow tracker with respect to the ground
agents and their communication graphs. This induces wet-
ness among the actual agents (in lifted space) in the obvious
way: if Wt is the set of ground agents that are wet at
time t, the cluster CWt

consists of the (dn)d wet agents.
We use the perturbation space to ∆ = (0, n−b), where b



is a suitably large constant (the higher b the smaller the
perturbation). We only need part (a) of the perturbation
rule: the status of an edge between two ground agents
apart by at most n−b is fixed and independent of the other
agents.7 Let diam (s) be the diameter of the system after
the s-th epoch. If ‖Wt‖ denotes the length of the smallest
interval enclosing Wt, it can be easily shown by induction
that ‖Wtk+1‖ ≤ 1 − ρO(k) (see (14) in [13]), where ρ is
the smallest nonzero entry among the ground matrices. We
conclude that water propagation to all the agents entails the
shrinking of the system’s diameter by at least a factor of
1 − ρO(n). Since an epoch witnesses the wetting of all the
agents, repeated applications of this principle yields

diam (s) ≤ e−sρ
O(n)

. (4)

After ρ−cn epochs have elapsed (if ever), for a large
enough constant c, the diameter of the system falls beneath
n−b and, by convexity, never rises again. By the perturbation
rule, the communication subgraph is now frozen and can no
longer change. Fix the initial (ground) state x ∈ Ω once
and for all. The sets Uv and Vv become open intervals of
∆, so a node v has at most nO(1) children. With the outer
product enumerating the first ρ−O(n) epochs leading to the
combinatorial “freezing” of the system, we rewrite (3) as:
T ∆
n =⇒

{ ρ−O(n)⊗
s=1

`s−1⊗
k=1

(
T ∆
wk ‖n−wk | tk+1−tk−1

⊗ T |1n
)}
⊗ T ∗n .

(5)
Note that wk = wk(s), tk = tk(s). A single communi-
cation graph is associated with T ∗n , hence a fixed matrix
P = P (x). The rewriting rule in (5) produces terms of
the form T ∆

w1‖w2‖ ...‖wk
, where

∑
wi = n. To keep the

notation simple, we denote by T ∆
‖w any such coding tree,

with w = max{wi}: the n ground agents are partitioned
into groups of size at most w with no edges between them;
the status of an edge may depend on all the ground agents,
so the system is not a direct sum. Thus,

T ∆
‖w =⇒

{ ρ−O(w)⊗
s=1

(
T ∆
‖w−1 ⊗ T

|1
n

)}
⊗ T ∗‖w , (6)

where the matrix P for T ∗‖w is of the form ⊕iPi, with
each Pi at most w-by-w. (The rank of P is at least n/w
and possibly much bigger.) By basic Markov chain theory
and (4), there exists another matrix Π = Π(P ) such that
‖P k − Π‖max = e−kρ

−O(n)

, for any k ≥ 0. Let µ(T ∆
‖w)

be the (maximum) time at which the direct product with
T ∗‖w (or earlier absorption) can take place. Given any small
ε > 0, there is a time θε(T ∆

‖w), the attraction rate, after

7 We could use exponentially small thresholds or even lower, if so
desired; crucially, such a rule is required to avoid chaotic behavior.

which f t(x) is forever confined to a ball of radius ε, where

θε(T ∆
‖w) ≤ µ(T ∆

‖w) + ρ−O(n)|log ε|. (7)

Removing from ∆ a mere nO(1) intervals of length nO(1)ε is
sufficient to form a new set ∆′ ⊆ ∆ such that T ∗‖w witnesses
no inter-group communication after ρ−O(n)|log ε| steps: this
follows from the observation that, in the nO(1) equations,
aTx = 1+δ, of the margin (2), the left-hand side can vary by
at most nO(1)ε. Extending this idea to all of the renormalized
trees in (6) leads to ∆ ⊆ ∆ such that: ν(T ∆

‖n) ≤ θε(T ∆
‖n)

and, by (7),

µ(T ∆
‖n) ≤ ρ−O(n)µ(T ∆

‖n−1)+ρ−O(n)|log ε| ≤ ρ−O(n2)|log ε|.

We prove that this holds almost surely by showing that ∆\∆
is of arbitrarily small measure. For this, it is convenient
to define the augmented word-entropy h(T ∆

‖n) to be the
logarithm of the (maximum) number of nodes of depth at
most θε(T ∆

‖n). Since no absorption occurs at higher depths,
quasi-subadditivity obtains:

h(T ∆
1 ⊗T

∆
2 ) ≤ h(T ∆

1 ) +h(T ∆
2 ) + log max-degree (T ∆

1 );

hence, for ε small enough,

h(T ∆
‖n) ≤ ρ−O(n)(h(T ∆

‖n−1) +O
(
n|log ρ|+ log |log ε|

+ log n
)

) ≤ ρ−O(n2) log |log ε|.

The Lebesgue measure of ∆ \∆ is bounded by

ε nO(1)2h(T ∆
n ) ≤ ε|log ε|ρ

−O(n2)

<
√
ε,

Setting ε small enough but in exp(−ρ−O(n2)) proves the
birectional case of Theorem 1.1, with a convergence time of
ρ−O(n2). We can improve the exponent to O(n) by using
known bounds on the total 1-energy. With x fixed, each
edge of the ground communication graph has a length at
time t that depends only on δ. We call a node v of T ∆

n

heavy if its graph contains one or more edges of length at
least n−2b (and light otherwise). For fixed δ, the number
of times the communication graph has at least one edge
of length λ or more is called the communication count
Cλ: it has been shown, using the total s-energy [13], that
Cλ ≤ λ−1ρ−O(n). It follows that, along any path of the
global coding tree, the number of heavy nodes is ρ−O(n).
The convergence bound follows then from the fact that all
the light nodes between two heavy ones correspond to the
same communication graph (hence the same ground matrix).
We omit the rest of the proof, which repeats much of the
previous argument. 2



V. NONBIDIRECTIONAL SYSTEMS

We sketch the general case of Theorem 1.1, beginning
with the case d = d = 1, which removes the distinction
between ground and lifted agents. We first consider a simpler
system and show later how to reduce any influence system
to it. Let to be the timing threshold of the perturbation rule
(b) and let H be a directed n-node graph.8 Given x ∈ Ω, as
soon as G(f t(x)) contains an edge not in H or some edge
of H fails to appear within a time interval of length to, we
stop the system. The coding tree Tn is still well defined.
The difference is that some nodes are now absorbed (and
their subtree pruned) because the corresponding orbits are
entering a “wrong” atom. We show that whp the orbit of any
point is attracted to a limit cycle or its path in the coding tree
reaches an absorbed leaf. Intuitively, H is our guess for the
persistent graph, defined to include exactly the edges that
appear infinitely often in G(f t(x))|t≥0. The new system is
no longer Markovian but this is a minor technicality.

Consider the directed graph derived from H by identifying
each strongly connected component with a single node. Let
B1, . . . , Br be the components whose corresponding nodes
are sinks and let ni denote the number of agents in the
group Bi; write n = m + n1 + · · · + nr. The system is
block-directional system with m (resp. n − m) A-agents
(resp. B-agents) and, for fixed δ, the coding tree is of the
form Tm→n−m, with

P≤v =

(
A≤v Cv

0 B≤v

)
. (8)

We break down the bifurcation analysis in four stages: (i) we
bound the rate at which phase tubes thin out; (ii) we argue
that, deep enough in the coding tree, perturbations keep
the expected (mean) degree below one; (iii) we show how
perturbed phase tubes avoid being split by SP discontinuities
at high depths; finally, (iv) we show to reduce any influence
system to the “persistent” case. We assume throughout this
section that ρ > n−O(1): this is not required for the proof,
but it simplifies the calculations and allows us to recycle the
notation ρ for a different purpose.

A. The thinning rate

As the depth of a node v of the global coding tree grows,
A≤v and B≤v tend to matrices of ranks 0 and r, respectively,
at a “thinning” rate that we can bound.

LEMMA 5.1: Given a node v of Tm→n−m, there exist
vectors zi ∈ Rni (i = 1, . . . , r), such that, for any tv ≥
tc := ncnto and a large enough constant c,

(i) ‖A≤v1m‖∞ ≤ e−γtv and

(ii)
∥∥∥B≤v − diag (1n1

zT1 , . . . ,1nr
zTr )

∥∥∥
max
≤ e−γ

′tv ,

8 We can pick to as large as we please, say, doubly exponential in n,
to make it irrelevant in practice.

where γ = 1/tc and γ′ = n−cn.
Proof: We begin with (i). Consider the initial state x =

(1m,0n−m), with all the A-agents at 1 and the B-agents at
0, and let y = P≤vx; obviously, ‖A≤v1m‖∞ = ‖y‖∞. To
bound the `∞-norm of y, we apply to x the sequence of
maps specified along the path of Tm→n−m from the root to
v.9 Referring to the arborator (3), let’s analyze the factor

Twk→n−wk | tk+1−tk−1
⊗ T |1n .

The wait period tk+1−tk before wetness propagates again at
time tk+1 is at most to: indeed, by definition, any A-agent
can reach some B-agent in H via a directed path, so all
of them will eventually get wet. It follows that the set Wk

cannot fail to grow in t0 steps unless it already contains all
n nodes or the trajectory reaches an absorbing leaf. Assume
that the agents of Wtk+1, the wet agents at time tk + 1
lie in (0, 1 − σ]. Because their distance to 1 can decrease
by at most a polynomial factor at each step, they all lie in
(0, 1 − σn−O(to)] between times tk and tk+1. The agents
newly wet at time tk+1 + 1, ie, those in Wtk+1+1 \Wtk+1

,
move to a weighted average of up to n numbers in (0, 1), at
least one of which is in (0, 1−σn−O(to)]. This implies that
the agents of Wtk+1+1 lie in (0, 1−σn−O(to)]. Since σ ≤ 1,
when all the A-agents are wet, which happens within nto
steps, their positions are confined within (0, 1− n−O(nto)].
It follows that

‖y‖∞ ≤ e−btv/(nto)cn−O(nto)

,

which proves (i). We establish (ii) along similar lines. The
coding tree Tm→n−m can be written as an absorbed instance
of Tm→ (n1‖···‖nr) The subgraph H|Bi

of H induced by the
agents of any given Bi is strongly connected, so viewed as
a separate subsystem, the B-agents are newly wetted at least
once every nto steps. By repeating the following argument
for each Bi, we can assume, for the purposes of this proof,
that B = B1, n1 = n−m and r = 1.

Initially, place B-agent j at 1 and all the others at 0; then
apply to it the sequence of maps leading to B≤v (again, this
may not be the actual trajectory of that initial state). The
previous argument shows that the entries of the j-th column
of B≤v , which denote the locations of the agents at time tv ,
are confined to an interval of length e−btv/(nto)cn−O(nto)

.
By the perturbation rule (a), as stated in §IV, this implies
that the communication subgraph among the B-agents must
freeze at some time tc = ncnto for a constant c large enough,
hence become H|B . Let {ui} be the nO(ntc) nodes of the
coding tree at depth tc. Any deeper node v is such that
B≤v = Qtv−tuiB≤ui

for some i, where Q is the stochastic
matrix associated with H|B . Since that graph is strongly
connected, the previous argument shows that the entries in
column j of Qk lies in an interval of length e−kn

−O(n)

;
we lose the delay to. Since Qk+1 is derived from Qk by

9 The path need not track the orbit of x.



taking convex combinations of the rows of Qk, as k grows,
these intervals are nested downwards and hence converge
to a number zj . It follows that Qk tends to 1n1z

T , with
‖Qk − 1n1z

T ‖max ≤ e−kn
−O(n)

. Doubling the value of tc
yields part (ii) of the lemma. 2

The lemma points to Cv as the key to the dynamics and the
necessary focus of our attention. We state the thinning rate
bound in terms of the global coding tree for the perturbation
interval I = (−1, 1).

LEMMA 5.2: Any node v of T I
m→n−m of depth tv ≥ tc

has an ancestor u of depth tc such that∥∥∥P≤v − (0 Cv
0 Du

)∥∥∥
max
≤ e−γtv ,

where Du is a stochastic matrix of the form Du =
diag (1n1

z1(u)T , . . . ,1nr
zr(u)T ).

B. Sparse branching

Bruin and Deane [5] used a simple, elegant argument
to show that generic planar (single-agent) contractions do
not branch out nearly as often as one could fear. We
prove, likewise, that branching tapers off deep enough in the
coding tree. Our argument is not nearly as simple, however,
because of the bewildering complexity of the interactions
among the agents. By elucidating the entropic contribution
of the process, this argument constitutes the heart of the
proof. Let Lin [x1, . . . , xn] denote any real linear form
over x1, . . . , xn, with Aff [x1, . . . , xn] designating the affine
version; in neither case may the coefficients depend on δ or
on the agent positions.10 With y1, . . . , yr understood, a gap
of type ω denotes an interval of the form a + ω I, where
a = Aff [y1, . . . , yr]. We define the set

C[y1, . . . , yr] =
{

( ξ ,

n1︷ ︸︸ ︷
y1, . . . , y1 , . . . ,

nr︷ ︸︸ ︷
yr, . . . , yr },

where ξ ∈ (0, 1)m. The variables y1, . . . , yr denote the limit
positions of the B-agents: they are linear combinations of
their initial positions xm+1, . . . , xn. Let v be a node of the
global coding tree T I

m→n−m. The matrix P≤v is a product
Ptv · · ·P0, with P0 = In and P0, . . . , Ptv form what we
call a valid matrix sequence. Fix a parameter ρ > 0 (not
to be confused with the matrix bound ρ used earlier) and
a point x in Rn. The phase tube formed by the cube B =
x+ρ In and the matrix sequence P0, . . . , Ptv consists of the
cells P0 B, . . . , (Ptv · · ·P0)B. Note that it might not track
an actual orbit from B. We say that the phase tube splits at
node v if (Pk · · ·P0 B)\MI is disconnected. The following
result is the key to sparse branching:

LEMMA 5.3: Fix ρ > 0, D0 ≥ 2(1/γ)n+1

, and
(y1, . . . , yr) ∈ Rr, where γ = n−cnto . There exists a union

10 For example, we can express y = δ+x1−2x2 as y = δ+Lin [x1, x2]
and y = δ + x1 − 2x2 + 1 as y = δ + Aff [x1, x2].

W of nO(nD0) gaps of type ρnO(n5D0) such that, for any
interval ∆ ⊆ I \W of length ρ and any x ∈ C[y1, . . . , yr],
the phase tube formed by the box x + ρ In along any path
of T ∆

m→n−m of length at most D0 cannot split at more than
D1−γn+1

0 nodes.
Proof: The crux of the lemma is the uniformity over

x: only (y1, . . . , yr) needs to be fixed. We begin with a
technical lemma. For k = 0, . . . , D, let ak be a row vector
in Rm with O(log n)-bit rational coordinates and Ak be
an m-by-m nonnegative matrix whose entries are rationals
over O(logN) bits, for N > n. Write vk = akAk · · ·A0,
with A0 = Im, and assume that the maximum row-sum
α = max k>0 ‖Ak1‖∞ satisfies 0 < α < 1. Given
I ⊆ {0, . . . , D}, denote by V|I the matrix whose rows are,
from top to bottom, the row vectors vk with the indices
k ∈ I sorted in increasing order. The following result is
an elimination device meant to factor out the role of the
A-agents.

LEMMA 5.4: Given any integer D ≥ 2(1/β)m+1

and
I ⊆ {0, . . . , D} of size |I| ≥ D1−βm+1

, where β =
|logα|/(cm3 logN) for a constant c large enough, there
exists a unit vector u such that

uTV|I = 0 and uT1 ≥ N−cm
3D.

The remainder of the proof and the full version of this paper
can be found at:

http://www.cs.princeton.edu/∼chazelle/pubs/focs12full.pdf
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