A Geometric Approach to Inelastic Collapse*

Bernard Chazelle ${ }^{1}$, Kritkorn Karntikoon ${ }^{2}$, and Yufei Zheng ${ }^{3}$

1 Department of Computer Science, Princeton University chazelle@cs.princeton.edu
2 Department of Computer Science, Princeton University kritkorn@cs.princeton.edu
3 Department of Computer Science, Princeton University yufei@cs.princeton.edu

Abstract

We show in this note how to interpret logarithmic spiral tilings as one-dimensional particle systems undergoing inelastic collapse. By deforming the spirals appropriately, we can simulate collisions among particles with distinct or varying coefficients of restitution. Our geometric constructions provide a strikingly simple illustration of a widely studied phenomenon in the physics of dissipative gases: the collapse of inelastic particles.

Lines 154

1 Introduction

Collisions in a granular gas preserve momentum but not kinetic energy. Interactions are dissipative, with the velocities of two colliding particles governed by a stochastic matrix $\binom{p q}{q}$, for $p \leq 1 / 2$. When the coefficient of restitution, defined as $r=1-2 p$, is less than 1, the collisions are inelastic and the particles may collapse to a single point in a finite amount of time: this intriguing phenomenon of inelastic collapse was first investigated in one dimension by Bernu \& Mazighi [2] and McNamara \& Young [6]. Further studies and extensions to a larger number n of particles were given in $[1,2,3,4,5,6,7,8]$. In the case $n=3$, inelastic collapse requires $r<7-4 \sqrt{3}[4,6,7]$, while in general the requirement is that $n \gtrsim 2(\ln 2) /(1-r)$. Matching constructions for large n exist but entail intricate eigenvalue estimates $[1,2]$. We rederive these bounds by simple geometric means, and we also extend them to other types of collisions. Our particle systems are derived from one-dimensional projections of spiral tilings of a disk (see §2). Using different spirals allows the presence of particles with different coefficients of restitution (see $\S 3$). The notable feature of our arguments is to be entirely geometric.

2 The Inelastic Collapse of Identical Particles

We describe the dynamics of n identical particles moving towards the center of a disk and colliding along the way. The one-dimensional system is derived by projection to a line. We begin with the geometry of the system, which is a quadrilaterial tiling of the complex unit disk by logarithmic spirals.

2.1 Spiral tilings

We describe the dynamics of n identical particles moving towards the center of a disk and colliding along the way. The one-dimensional system is derived by projection to a line. We

[^0]begin with the geometry of the system, which is a quadrilaterial tiling of the complex unit disk by logarithmic spirals.

2.2 Spiral tilings

Fix $0<\lambda_{o}<1$ and let $\mathcal{C}_{\alpha}=\left\{\lambda_{o}^{|\varphi-\alpha|} e^{i \varphi} \mid \varphi \in \mathbb{R}\right\}$. The curve \mathcal{C}_{α} consists of two logarithmic spirals running clockwise and counterclockwise from the point $e^{i \alpha}$. The family $\left\{\mathcal{C}_{\alpha}\right\}_{0 \leq \alpha<2 \pi}$ forms two foliations of the unit complex disk \mathcal{D} (minus the origin). Whereas no pair of spirals going in the same direction meet, the other pairs intersect infinitely often along the diameter bisecting their starting points. Fix an integer $n>2$ and write $\theta=\pi / n$. We rectify the spiral \mathcal{C}_{α} by creating the vertices $\lambda_{o}^{|k \theta-\alpha|} e^{i k \theta}$ for all $k \in \mathbb{Z}$; then we join consecutive pairs by straightline segments, which produces the polygonal spiral \mathcal{C}_{α}^{R} in Figure 1(i).

Figure 1 (i) The spirals \mathcal{C}_{α} and \mathcal{C}_{α}^{R}, for $\alpha=0$ and $\theta=\pi / 3$; (ii) an (n, λ)-tiling for a system of $2 n=12$ colliding particles.

The collection of polygonal curves $\left\{\mathcal{C}_{2 j \theta}^{R} \mid 0 \leq j<n\right\}$ forms an infinite sequence of nested concentric similar $2 n$-gons $P_{k}:=\lambda e^{i \theta} P_{k-1}$, where $\lambda=\lambda_{o}^{\theta}$ and P_{0} is the outer "star" shown in Figure 1(ii): its vertices $e^{i l \theta} \lambda^{\left(1-(-1)^{l}\right) / 2}$ run in counterclockwise order $(0 \leq l<2 n)$. To ensure that the shape is indeed a star, every other vertex of P_{0} needs to be reflex, which requires that $\lambda<\cos \theta$. This partitions the polygon P_{0} into an infinite collection of similar convex quadrilaterals, which forms an (n, λ)-tiling. We define the fundamental ratio $\rho:=a e / a c$ of the (n, λ)-tiling and justify its name by noting that it is independent of the polygon P_{k} used to define it. Referring to Figure 1(ii), we observe that $a c=1-\lambda \cos \theta$ and $a e=\lambda \cos \theta-\lambda^{2}$ and that, for any $0<\lambda<\cos \theta$,

$$
\begin{equation*}
\rho=\frac{\lambda(\cos \theta-\lambda)}{1-\lambda \cos \theta} \quad \text { and } \quad 0<\rho<1 \tag{1}
\end{equation*}
$$

2.3 Particles traveling in a disk

Place two particles at each one of the n outer vertices of P_{0} and set them in motion along the two incident edges with a speed equal to $b c$. We show below that the particles will zigzag toward the center (as in the trajectory c, b, e, f, g, \ldots) provided that the coefficient of restitution r is equal to $\rho<1$, where $r=1-2 p$; recall that, whenever two particles with
velocities $u, v \in \mathbb{C}$ collide, they bounce away from each other and update their velocities as follows:

$$
\binom{u}{v} \leftarrow\left(\begin{array}{cc}
p & q \\
q & p
\end{array}\right)\binom{u}{v} ;
$$

where $0<p<q<1$ and $p+q=1$.

- Lemma 2.1. The $2 n$ particles travel along the edges of the tiling through pairwise collisions if and only if the fundamental ratio ρ is equal to the coefficient of restitution r. If each particle spends one unit of time on the boundary ∂P_{0}, then it travels on ∂P_{k} for a duration of δ^{k}, where $\delta=\lambda^{2} / \rho$. The total travel time is bounded if and only if $\lambda<\frac{1}{\cos \theta}-\tan \theta$, in which case it is equal to $1 /(1-\delta)$.

Proof. For convenience, we tilt the tiling by θ to put b and f on the X-axis (Figure 2). Two particles travel from c and h to b with velocity u and v respectively. The first one bounces at b and proceeds with velocity $u^{\prime}=p u+q v$. Since $u_{x}=v_{x}$ and $u_{y}=-v_{y}$, we have $u_{x}^{\prime}=u_{x}$ and $u_{y}^{\prime}=-r u_{y}$; therefore $\left|\operatorname{slope}\left(u^{\prime}\right)\right|=r|\operatorname{slope}(u)|$. By similarity, $b c$ and $e f$ are parallel; hence $\left|\operatorname{slope}\left(u^{\prime}\right)\right|=r \mid$ slope $(e f) \mid$. The consistency of the particle collision with the tiling means that u^{\prime} should be parallel to the segment be. The condition thus becomes \mid slope $(b e)|=r|$ slope $(e f) \mid$; hence $r=m f / m b=\rho$.

Figure 2 How colliding particles follow the edges of the (n, λ)-tiling. The coefficient of restitution must be equal to the ratio $\rho=m f / m b$.

If the particle travels from c to b in one unit of time, then $u_{y}=a c$ and $u_{y}^{\prime}=-r u_{y}=-r a c$. It follows that the time δ for the particle to bounce from b to e is equal to $m e /\left|u_{y}^{\prime}\right|=$ $\frac{1}{r} m e / a c=\lambda^{2} / r$. More generally, δ is the ratio between the time spent on be and that spent on $c b$. By symmetry, the same ratio δ holds between the travel times along any two consecutive edges on the trajectory. This follows from the fact that the travel time along an edge is itself a ratio length/speed and that, from one boundary ∂P_{k} to the next, ∂P_{k+1}, the ratio between consecutive lengths is independent of k and the same is true of consecutive speeds. This implies a travel time of δ^{k} on ∂P_{k}. Convergence implies that $\delta<1$, which, by (1), means that λ must be less than the smaller root of $\lambda^{2} \cos \theta-2 \lambda+\cos \theta$ (since the larger one exceeds 1). This gives us the inequality $\lambda<(1-\sin \theta) / \cos \theta$. Note that this condition is not implied by the previous requirement that $0<\lambda<\cos \theta$.

By (1), setting $r=\rho$ for any $\lambda<\cos \theta$ produces a valid particle system traveling inward through the (n, λ)-tiling. Of course, the interesting question is whether this holds for any value
of the coefficient of restitution. We address this issue below in the context of one-dimensional systems.

2.4 One-dimensional collapse

The real parts of the $2 n$ particles' positions in the unit disk \mathcal{D} describe a one-dimensional particle system. To see why, it is useful to distinguish between the positive particles, those numbered $1, \ldots, n$ counterclockwise around \mathcal{D}, from the others, the negative particles. The name comes from the fact that the positive (resp. negative) particles always remain in the upper (resp. lower) complex halfplane. Each positive particle j is naturally paired with the negative particle $2 n+1-j$, since their trajectories are conjugate. Particles can only collide with other particles of the same sign or with their conjugates; in the latter case, the collision does not alter the motion along the real axis. All the other collisions occur in conjugate pairs. This shows that the real-axis motion of the positive particles alone constitutes a bona fide collision system over n particles with the same coefficient of restitution.

- Theorem 2.2. Fix any integer $n>2$, and write $\theta=\pi / n$ and $r_{0}=(1-\sin \theta) /(1+\sin \theta)$. Given any positive coefficient of restitution $r \leq r_{0}$, there is a scaling factor λ such that the line projection of the (n, λ)-tiling forms the trajectory of a one-dimensional n-particle system exhibiting inelastic collapse. The collapse time is $r /\left(r-\lambda^{2}\right)$ for any $r<r_{0}$ and $\lambda=q \cos \theta-\left(q^{2} \cos ^{2} \theta-r\right)^{1 / 2}$, where $q=(1+r) / 2$.

Proof. Setting $r=\rho$ in (1) yields the quadratic equation

$$
\begin{equation*}
\lambda^{2}-2 q(\cos \theta) \lambda+r=0 \tag{2}
\end{equation*}
$$

hence $\lambda=q \cos \theta \pm \sqrt{q^{2} \cos ^{2} \theta-r}$. The roots need to be real; hence $\sin \theta \leq p / q$ or, equivalently, $r \leq r_{0}$. We verify that $0<\lambda<\cos \theta$, as required of a valid (n, λ)-tiling, which is a consequence of $\sqrt{q^{2} \cos ^{2} \theta-r}<p \cos \theta$. By Lemma 2.1, the collapse time is infinite if $\delta=\lambda^{2} / r \geq 1$ and equal to $\sum_{k \geq 0} \delta^{k}=1 /(1-\delta)=r /\left(r-\lambda^{2}\right)$ if $\delta<1$. The smaller root of (2), if strictly smaller, always satisfies the latter condition while the larger one never does. This follows from the fact that $\lambda_{-} \lambda_{+}=r, q \cos \theta \geq \sqrt{r}$, and $\lambda_{+} \geq q \cos \theta$; hence $\lambda_{+}^{2} \geq r$.

In our construction, the upper bound on the coefficient of restitution is $(1-\sin \theta) /(1+\sin \theta)$. As n goes to infinity, this gives us $n \gtrsim 2 \pi /(1-r)$, which matches the bounds from [1, 2]. For $n=3$, our construction rediscovers the classic bound of $7-4 \sqrt{3}[4,6,7]$.

3 Distinct Coefficients of Restitution

Our construction does not require a fixed scaling λ. Instead of placing the vertices on circles of radius λ^{k} for $k \geq 0$, we can use an arbitrary decreasing radius sequence $\left(\lambda_{k}\right)_{k \geq 0}$, with $\lambda_{0}=1$. We assign a coefficient restitution r_{k} for the collisions at radius λ_{k}; the dependency on k might reflect a gain or loss of elasticity after repeated collisions. For notational convenience, let $p=\left(1-r_{1}\right) / 2, \lambda=\lambda_{1}$, and $\mu=\lambda_{2}$. By reference to Figure 3, we now kick a particle from a to b with velocity $u=b-a$ (using complex numbers), and one from c to b with velocity $v=b-c$. Post-collision, the first particle travels from b to d with velocity $u^{\prime}=p u+(1-p) v=\sigma_{1}(d-b)$, for some $\sigma_{1}>0$; hence $b-c+p(c-a)=\sigma_{1}(d-b)$. Since $a=1, b=\lambda e^{i \theta}, c=e^{2 i \theta}$, and $d=\mu$, we divide the equation by $e^{i \theta}$ and find that

$$
\lambda-e^{i \theta}+2 p i \sin \theta=\sigma_{1}\left(\mu e^{-i \theta}-\lambda\right) ;
$$

therefore, $\lambda-\cos \theta=\sigma_{1}(\mu \cos \theta-\lambda)$ and $r_{1}=\sigma_{1} \mu$. More generally, for $k>0$, we replace λ and μ by λ_{k} and λ_{k+1}, respectively, and we scale the relations by λ_{k-1} :

$$
\begin{equation*}
\sigma_{k}=\frac{\lambda_{k-1} \cos \theta-\lambda_{k}}{\lambda_{k}-\lambda_{k+1} \cos \theta} \quad \text { and } \quad r_{k}=\frac{\cos \theta-\lambda_{k} / \lambda_{k-1}}{\lambda_{k} / \lambda_{k+1}-\cos \theta} \tag{3}
\end{equation*}
$$

Of course, we retrieve the relation $r=\rho$ in (1) in the case $\lambda_{k}=\lambda^{k}$ corresponding to having fixed coefficients of restitution.

Figure 3 An irregular tiling.

3.1 Finite-time inelastic collapse

From the relation $u^{\prime}=\sigma_{1}(d-b)$, we see that the time spent crossing $b d$ is precisely $1 / \sigma_{1}$. More generally, $1 / \sigma_{k}$ is the time spent on the $(k+1)$-st star polygon, given a unit travel time on the previous polygon. It follows that the total travel duration is the sum of all the products of the form $1 / \sigma_{1} \cdots \sigma_{k}$, which is

$$
\begin{equation*}
1+\sum_{k=1}^{\infty} \prod_{j=1}^{k} \frac{\lambda_{j}-\lambda_{j+1} \cos \theta}{\lambda_{j-1} \cos \theta-\lambda_{j}} . \tag{4}
\end{equation*}
$$

By projection onto the real line, finite-time inelastic collapse is guaranteed if

$$
\lambda_{k+1} \geq \frac{1+c}{\cos \theta} \lambda_{k}-c \lambda_{k-1}
$$

for some fixed $c<1$. Again, we can check that, if $\lambda_{k}=\lambda^{k}$, then bounded travel time means that $\lambda<\frac{1}{\cos \theta}-\tan \theta$, as claimed in Lemma 2.1.

3.2 Red-blue particles

Consider two species of particles, blue and red. The blue particles collide together with the coefficient of restitution r_{1} and the same is true of the red ones. Particles of different colors, however, collide with the coefficient r_{2}. Arrange the particles as usual, with the sequence blue, blue, red, red, blue, blue, red, red, etc. Set the scaling factor $\lambda_{k}=\mu^{j}$ if $k=2 j$, and $\lambda_{k}=\lambda \mu^{j}$ if $k=2 j+1$. By (3), we choose

$$
r_{1}=\frac{\mu(\cos \theta-\lambda)}{\lambda-\mu \cos \theta} \quad \text { and } \quad r_{2}=\frac{\lambda \cos \theta-\mu}{1-\lambda \cos \theta} .
$$

Each factor in (4) is of the form

$$
\frac{\lambda_{j}-\lambda_{j+1} \cos \theta}{\lambda_{j-1} \cos \theta-\lambda_{j}}= \begin{cases}\mu(1-\lambda \cos \theta) /(\lambda \cos \theta-\mu)=\mu / r_{2} & \text { if } j \text { is even } \\ (\lambda-\mu \cos \theta) /(\cos \theta-\lambda)=\mu / r_{1} & \text { else }\end{cases}
$$

The travel time is finite if $\mu^{2}<r_{1} r_{2}$, which is

$$
\mu(\lambda-\mu \cos \theta)(1-\lambda \cos \theta)<(\cos \theta-\lambda)(\lambda \cos \theta-\mu) .
$$

—— References

1 D. Benedetto and E. Caglioti. The collapse phenomenon in one-dimensional inelastic point particle systems. Physica D: Nonlinear Phenomena, 132(4):457-475, 1999.
2 B. Bernu and R. Mazighi. One-dimensional bounce of inelastically colliding marbles on a wall. Journal of Physics A: Mathematical and General, 23(24):5745-5754, 1990.
3 B. Cipra, P. Dini, S. Kennedy, and A. Kolan. Stability of one-dimensional inelastic collision sequences of four balls. Physica D: Nonlinear Phenomena, 125(3):183-200, 1999.
4 P. Constantin, E. Grossman, and M. Mungan. Inelastic collisions of three particles on a line as a two-dimensional billiard. Physica D: Nonlinear Phenomena, 83(4):409-420, 1995.
5 S. McNamara. Inelastic collapse. pages $267-277,2002$.
6 W.R. Young. S. McNamara. Inelastic collapse and clumping in a one-dimensional granular medium. Physics of Fluids A: Fluid Dynamics, 4(3):496-504, 1992.
7 K. Shida and T. Kawai. Cluster formation by inelastically colliding particles in onedimensional space. Physica A: Statistical Mechanics and its Applications, 162(1):145 160, 1989.
8 L.P. Kadanoff. T. Zhou. Inelastic collapse of three particles. Physical review E, 54(1):623 - 628, 1996.

[^0]: * This work was supported in part by NSF grant CCF-2006125.

 37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.
 This is an extended abstract of a presentation given at EuroCG'21. It has been made public for the benefit of the community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

