
Geometric Searching over the Rationals∗

Bernard Chazelle†

chazelle@cs.princeton.edu

Abstract

We revisit classical geometric search problems under the assumption of rational coor-
dinates. Our main result is a tight bound for point separation, ie, to determine whether
n given points lie on one side of a query line. We show that with polynomial storage the
query time is Θ(log b/ log log b), where b is the bit length of the rationals used in specifying
the line and the points. The lower bound holds in Yao’s cell probe model with storage in
nO(1) and word size in bO(1). By duality, this provides a tight lower bound on the com-
plexity on the polygon point enclosure problem: given a polygon in the plane, is a query
point in it?

1 Introduction

Preprocess n points in the plane, using nO(1) storage, so that one can quickly tell whether a
query line passes entirely below or above the points. This point separation problem is dual
to deciding whether a query point lies inside a convex polygon. As is well known, this can
be done in O(log n) query time and O(n) storage, which is optimal in the algebraic decision
tree model [8, 9]. This is suitable for infinite-precision computations [3, 4, 20], but it does
not allow for bucketing or any form of hashing. Unfortunately, these happen to be essential
devices in practice. In fact, the computational geometry literature is rife with examples of
speed-ups derived from finite-precision encodings of point coordinates, eg, range searching on
a grid [17], nearest neighbor searching [11, 12], segment intersection [13], point location [16].

To prove lower bounds is usually difficult; even more so when hashing is allowed. Algebraic
models are inadequate and one must turn to more general frameworks such as the cell probe
model [18] or, in the case of range searching, the arithmetic model [7, 19]. As a searching
(rather than computing) problem, point separation lends itself naturally to the cell probe
model and this is where we confine our discussion. Our main interest is in pinpointing what sort
of query time can or cannot be achieved with polynomial storage. Note that some restriction
on storage is essential since constant query time is trivially achieved with exponential space.

Let P be a set of n points in the plane, whose coordinates are rationals of the form p/q,
where p and q are b-bit integers. A cell probe algorithm for point separation consists of a table
of size nc, with each cell holding up to bd bits, for some arbitrarily large constants c, d. A query
is answered by looking up a certain number of cells and outputting yes or no, depending on
the information gathered. For lower bound purposes, the query time counts only the number
of cells that are looked up during the computation.

∗Proceedings of Seventh Annual European Symposium on Algorithms (ESA), 1999, pp. 354–365. This work
was supported in part by NSF Grant CCR-96-23768, ARO Grant DAAH04-96-1-0181, NEC Research Institute,
Ecole Polytechnique, and INRIA.

†Department of Computer Science, Princeton University, and NEC Research Institute

1

Theorem 1.1 Given any cell-probe algorithm for point separation, there exist an input of n
points and a query line that require Ω(log b/ log log b) time. The lower bound is tight.

The upper bound can be achieved on a standard unit-cost RAM. Take the convex hull of the
points and, given the query line, search for the edges whose slopes are nearest that of the line.
Following local examination of the relative heights of the line and edge endpoints, conclude
whether there is point separation or not. This is elementary computational geometry and
details can be skipped. The main point is that the problem reduces to predecessor searching
with respect to slopes (rational numbers over O(b) bits), which can be done optimally using
a recent algorithm of Beame and Fich [2]. Their algorithm preprocesses n integers in [0,N],
so that the predecessor of any query integer can be found in O(log log N/ log log log N) time,
using nO(1) storage. By appropriate scaling and truncation, their scheme can be used for
predecessor searching over the rationals, with the query time becoming O(log b/ log log b), for
rationals with O(b)-bit numerators and denominators.

2 The Complexity of Point Separation

The input consists of a set P of n points in R
2, which is encoded in a table T of size nc, where

c is an arbitrarily large constant. To simplify the notation we can replace c by max{c, d}, and
require that each cell should hold at most w = bc bits. A cell probe algorithm is characterized
by a table assignment procedure (ie, a function mapping any P to an assignment of the table
T to actual values) together with an infinite sequence of functions f1, f2, etc. Given a query `
(ie, a certain line in R

2), we evaluate the index f1(`) and look up the table entry T [f1(`)]. If
T [f1(`)] encodes whether ` separates the point set or not, we answer the query and terminate.
Otherwise, we evaluate f2(`, T [f1(`)]) and look up the entry T [f2(`, T [f1(`)])], and we iterate
in this fashion until a cell probe finally reveals the desired answer. Note that such a framework
is so general it easily encompasses every known solution to the point separation problem.

We use Miltersen’s reformulation [15] of a cell probe algorithm as a communication com-
plexity game between two players [14]. Alice chooses a set L1 of candidate queries (ie, a set
of lines in the plane), while Bob decides on a collection P1 of n-point sets. Note that each
pair (`, P) ∈ L1 × P1 specifies a problem instance. Alice and Bob’s task is then to exhibit
a problem instance (`, P) ∈ L1 × P1 that requires Ω(log b/ log log b) probes in T to answer.
They do that by simulating each probe by a round in a communication complexity game.

The nc possible values of the index f1(`) partition L1 into equivalence classes. Alice
chooses one of them and sends to Bob the corresponding value of f1(`). Of all the possible 2w

assignments of the entry T [f1(`)] Bob chooses one of them and narrows down his candidate
set P1 to the set P2 of point sets leading to that chosen value of T [f1(`)]. Bob sends back to
Alice his choice of T [f1(`)]. Knowing ` and T [f1(`)], Alice chooses a value for f2(`, T [f1(`)])
and communicates it to Bob, etc. Each round k produces a new pair (Lk+1,Pk+1) with the
property that, for all queries in Lk+1 and all point sets in Pk+1, Bob and Alice exchange the
same information during the first k rounds, which are thus unable to distinguish among any
of the problem instances in Lk+1 × Pk+1.

We say a query line (resp. point set) is active at the beginning of round k if it belongs
to Lk (resp. Pk). The set Lk × Pk is called unresolved if it contains at least two problem
instances (`, P) and (`′, P ′) with different yes/no outcomes: in such a case, Bob and Alice need
to proceed with round k, and the cost of the protocol (ie, the minimum number of rounds
necessary) is at least k. We show that for some suitable n = n(b), given any cell probe table

2

assignment procedure, there exist a starting set L1 of query lines and a starting collection
P1 of n-point sets in the plane that allow Bob and Alice to produce a nested sequence of
unresolved sets

L1 × P1 ⊇ · · · ⊇ Lt × Pt,

where t = Θ(log b/ log log b).
The protocol between Bob and Alice builds on our earlier work on approximate searching

over the Hamming cube [5], which itself borrows ideas from the work of Ajtai [1] on prede-
cessor searching. A protocol for predecessor queries of a similar flavor was recently devised
independently by Beame and Fich [2].

2.1 Points and Lines

Let pi denote the point (i, i2), and given i < j, let aij = 1
2(i+j, i2+j2) and bij = ((i+j)/2, ij).

Any of Bob’s n-point sets P is of the form

P =
{

pi1,Xi1i2, pi2 ,Xi2i3, . . . , pis−1
,Xis−1is , pis

}

,

for some i1 < · · · < is, where n = 2s − 1 and X denotes the symbol a or b (not necessarily
the same one throughout the sequence). Thus, P can be specified by an index set I = I(P) =
{i1, . . . , is} consisting of s distinct b-bit integers and a bit vector σ = σ(P) of length s − 1
specifying the X’s. For technical reasons, we require that all the integers of the index set I
be even.

query lines

Figure 1: A set P with n = 7 points and two queries with different answers.

The starting query set L1 consists of the lines of the form, y = 2kx − k2, for all odd
b-bit integers k. Note that this is the equation of the line through pk tangent to the parabola
y = x2. The number of bits needed to encode any point coordinate or line coefficient is 2b
(and not b, a minor technicality). Note that the problem does not become suddenly easier
with other representations such as αx+βy = 1, and that for the purposes of our lower bound,
all such representations are essentially equivalent. The following is immediate.

Lemma 2.1 Let pij and pij+1
be two points of P and let ` be the line y = 2kx − k2, where

ij < k < ij+1. The line ` separates the point set P if and only if the symbol X in Xij ij+1
is of

type b.

3

2.2 A Hierarchy of Tree Contractions

Keeping control of Alice query lines is quite simple. The same cannot be said of Bob’s point
sets. Not only Bob’s collections of point sets must be kept large but they must include point
sets of all shape (but not size; remember that their size n is fixed). This variety is meant
to make the algorithm’s task more difficult. Some point sets must stretch widely with big
gaps between consecutive points, while others must be confined to narrow intervals. For this
reason, we cannot define point sets by picking points at random uniformly. Instead, we use a
tree and a hierarchy of contractions of subtrees to define intervals from which we can specify
the point sets.

Consider the perfect binary tree whose leaves (nodes of depth b) correspond to the integers
0 through 2b − 1, and let T1 denote its subtree of depth dt sharing its root, where1

t =

⌊

log b

2 log log b

⌋

and d = bc2 log bc (1)

1

(v)

1

1

v v

Figure 2: The tree T1 and its contraction into U1.

We assume throughout that the bit size b and the constant c are both suitably large. Note
that b greatly exceeds dt and so the tree T1 is well defined. Given a node v of the tree T1, let
T1(v) denote its subtree of depth dt−1 rooted at v. Contract all the edges of T1 except those
whose (lower) incident node happens to be a leaf of T1(v), for some node v of depth at most
dt − dt−1 and divisible by dt−1. This transforms the tree T1 into a smaller one, denoted U1,
of depth d. Note that the depth-one subtree formed by an internal node v of U1 and its 2dt−1

children forms a contraction of the tree T1(v) (Fig.2).
Repeating this process leads to the construction of Uk for 1 < k ≤ t. Given an internal

node v of Uk−1, the depth-one tree formed by v and its children is associated with the subtree
Tk−1(v), which now plays the role of T1 earlier, and is renamed Tk. For any node u ∈ Tk of
depth at most dt−k+1 − dt−k and divisible by dt−k, let Tk(u) denote the subtree of Tk of depth
dt−k rooted at u: as before, turn the leaves of Tk(u) into the children of u by contracting the
relevant edges. This transforms Tk into the desired tree Uk of depth d.

The contraction process is the same for all k < t, but not for k = t. We simply make
all the leaves of Tt into the children of the root and remove the other internal nodes, which
produces a depth-one tree Tt with 2d leaves. Although Tk is defined nondeterministically, it is
always a perfectly balanced binary tree of depth dt−k+1.

1All logarithms are to the base two.

4

Lemma 2.2 Any internal node of any Uk has exactly 2dt−k
children if k < t, and 2d children

if k = t.

d

d

d

d

1

1

2

t

1

2

t

d

t-1

t

Figure 3: The hierarchy of trees.

2.3 A Product Space Construction

We define any Pk by means of a distribution Dk. We specify a lower bound on the probability
that a random point set Pk drawn from Dk is active prior to round k, ie, belongs to Pk.

• Distribution D1: A random P1 is defined by picking a random index set I1 (more on this
below) and, independently, a random bit vector σ1 uniformly distributed in {0, 1}s−1: I1 is
defined recursively in terms of I2, . . . , It. Each Ik is defined with respect to a certain tree Uk.
Any node v in any Uk is naturally associated with an interval of integers between 0 and 2b − 1
of size larger than any fixed constant (go back to the node v of T1 to which it corresponds
to see why): call the smallest even integer in that interval the mark point of v. We define a
random index set I1 by setting k = 1 in the procedure below:

• For k = t, a random Ik (within some Tk) is formed by the mark points of w5 nodes
selected at random, uniformly without replacement, among the leaves of the depth-one
tree Uk.

• For k < t, a random Ik (within some Tk) is defined in two stages:

[1] For each j = 1, 2, . . . , d−1, choose w5 nodes of Uk of depth j at random, uniformly
without replacement, among the nodes of depth j that are not descendants of nodes
chosen at lower depth (< j). The (d − 1)w5 nodes selected are said to be picked by

Ik.

[2] For each node v picked by Ik, recursively choose a random Ik+1 within Tk+1 = Tk(v).
The union of these (d − 1)w5 sets Ik+1 forms a random Ik within Tk.

Note that a random P1 (drawn) from D1 is active with probability 1 since no information
has been exchanged yet between Bob and Alice. We see by induction that a random Ik consists

5

of s = (d− 1)t−kw5(t−k+1) integers. Setting k = 1, and using the fact that n = 2s− 1, we have
the identity

n = 2(d − 1)t−1w5t − 1. (2)

• Distribution Dk: We enforce the following

• point set invariant: For any 1 ≤ k ≤ t, a random Pk from Dk is active with
probability at least 2−w2

.

By abuse of terminology, we say that Pk ∈ Dk if sampling from Dk produces Pk with nonzero
probability. Once the probability of a point set is zero in some Dk, it remains so in all
subsequent distributions Dj (j > k), or put differently,

D1 ⊇ · · · ⊇ Dt.

Let P1 = (I1, σ1) be an input point set {pi1 ,Xi1i2 , . . . ,Xis−1is , pis} in D1. In the recursive
construction of I1, if v is a node of Uk picked by Ik in step [1], let {ia, . . . , ib} be the Ik+1

defined recursively within Tk+1 = Tk(v). The set

P |v
def
=
{

pia ,Xiaia+1
, . . . ,Xib−1ib , pib

}

is called the v-projection of P1. Similarly, one may also refer to the v-projection of any Pj

(j ≤ k), which might be empty. Obviously, it is possible to speak of a random P |v (with
v fixed), independently of any P1, as the point set formed by a random Ik and a uniformly
distributed random bit vector σk of size |Ik|−1. It is this distribution that will be understood
in any further reference to a random P |v.

Assume that we have already defined Dk, for k < t. A distribution Dk is associated with a
specific tree Tk. To define Dk+1, we must first choose a node v in Uk and make Tk+1 = Tk(v)
our reference tree for Dk+1. Any n-point set of Dk whose probability is not explicitly set below
is assigned probability zero under Dk+1. Consider each possible point set P |v in turn (for v
fixed), and apply the following rule:

• If P |v is the v-projection of some Pk in Pk, then take one2 such Pk, and set its probability
under Dk+1 to be that of picking P |v randomly.

• Otherwise, take one Pk ∈ Dk whose v-projection is P |v, and again set its probability
under Dk+1 to be that of picking P |v randomly.

During that round k, Bob reduces the collection of active point sets in Dk+1 to form Pk+1.
To summarize, a random Pk is defined with reference to a specific tree Tk. Note that the
distribution Dk is isomorphic to that of a random P |v, for fixed v ∈ Uk−1, or equivalently, a
random (Ik, σk), where σk is a uniformly distributed random bit vector of size |Ik| − 1.

2It does not matter which one, but it has to be unique.

6

2.4 Alice’s Query Lines

As the game progresses, L1 decreases in size to produce the nested sequence L1 ⊇ · · · ⊇ Lt.
Prior to round k, the currently active query set Lk is associated with the same reference tree
Tk used to define a random Pk. As we observed in the last section, each node of Uk corresponds
to a unique interval of integers in [0, 2b). By abuse of notation, we also let Lk designate the
set of integers j defining the lines y = 2jx − j2 in the set. We maintain the following:

• query invariant: For any 1 ≤ k ≤ t, the fraction of the leaves in Uk whose
intervals intersect Lk is at least 1/b.

Lemma 2.3 If Lt and Pt satisfy their respective invariant, then Lt × Pt is unresolved.

Proof: Suppose that Lt satisfies the query invariant and that Lt × Pt is not unresolved: we
show that Pt must then violate the point set invariant. For each leaf of Ut whose interval
intersects Lt, pick one ji ∈ Lt in that interval. By Lemma 2.2 and the query invariant, this
gives us a sequence j1 < · · · < jm of length

m ≥
2d

b
. (3)

Given Pt ∈ Dt, we define the spread of Pt, denoted spread(Pt), as the number of intervals of
the form [ji, ji+1] (0 ≤ i ≤ m) that intersect the index set I(Pt) (Fig.4); for consistency we
write j0 = 0 and jm+1 = 2b − 1. Suppose that the spread |S| is defined by some fixed set
S of size less than w4. Of the m + 1 candidate intervals [ji, ji+1], a random It must then
avoid m + 1 − |S| of them. Although such an interval may not always enclose a whole leaf
interval, it does contain at least one mark point, and so the choice of It is confined to at most
2d −m− 1+ |S| leaves of Ut. Thus, the probability that the spread is defined by S is bounded
by

(

2d + |S| − m − 1

w5

)

/

(

2d

w5

)

≤
(

1 −
m − |S|

2d

)w5

.

Summing over all S’s of size less than w4, it follows from (3) that

Prob
[

spread(Pt) < w4
]

≤
∑

k<w4

(

m + 1

k

)

(

1 −
1

2b

)w5

≤ 2−w4

. (4)

Suppose now that the spread is at least w4. Then

Pt =
{

pi1,Xi1i2, pi2 ,Xi2i3, . . . , pis−1
,Xis−1is , pis

}

includes a subset P ∗ of at least w4 − 1 points pij , every one of which can be paired with a
line y = 2kx − k2 of Lt, where ij < k < ij+1. Pick a random Pt from Dt, and let Ξ denote
the event: “all queries from Lt give the same answer yes/no with respect to point set Pt.” By
Lemma 2.1, the Xij ,ij+1

’s are all of the form aij ,ij+1
or all of the form bij ,ij+1

(no mix). As we
observed earlier, Dt is isomorphic to the distribution of a random (It, σt), where σt is a string
of w5 −1 bits (drawn uniformly, independently). The constraint on the X’s reduces the choice
of a random Pt by a factor of at least 2w4−2, and hence,

Prob
[

Ξ | spread(Pt) ≥ w4
]

≤ 22−w4

. (5)

7

i1

2

3

4

j

j j

ji

i

i

21

3

4

p
p

p

p

Figure 4: A spread of 3 determined by [j0, j1], [j2, j3], [j4, j5].

Putting together (4,5), we find

Prob[Ξ] = Prob[Ξ | spread(Pt) < w4] · Prob[spread(Pt) < w4]
+ Prob[Ξ | spread(Pt) ≥ w4] · Prob[spread(Pt) ≥ w4]

≤ 2−w4

+ 22−w4

< 2−w2

,

which violates the point set invariant.
�

During the k-th round, Alice chooses an index in Bob’s table. As we discussed earlier, the
set of nc possible choices partitions her current query set Lk into as many equivalence classes.
An internal node v of Uk is called heavy if one (or more) of these classes intersects the intervals
associated with a fraction at least 1/b of the children of v. The following is a variant of a
result of Ajtai [1].

Lemma 2.4 The union of the intervals associated with the heavy nodes of Uk contains at least

a fraction 1/2b of the leaves’ intervals.

Proof: Fix an equivalence class and color the nodes of Uk whose intervals intersect it. Mark
every non-root colored node that is heavy with respect to the equivalence class. Then, mark
every descendant in Uk of a marked node. Let N be the number of leaves in Uk and let Nj

be the number of leaves of Uk whose depth-j ancestor in Uk is colored and unmarked (we
include v as one of its ancestors). For j > 1, an unmarked, colored, depth-j node is the child
of an unmarked, colored, depth-(j − 1) node that is not heavy for the chosen class, and so
Nj < Nj−1/b. We have N1 ≤ N and, for any j > 0,

Nj ≤
N

bj−1
.

Repeating this argument for all the other equivalence classes, we find that all the unmarked,
colored nodes (at a fixed depth j > 0) are ancestors of at most ncN/bj−1 leaves. This implies
that the number of unmarked, colored leaves is at most ncN/bd−1 < N/2b. (This follows

8

from (1, 2).) The query invariant guarantees that at least N/b leaves of Uk are colored and so
at least N/2b are both colored and marked. It follows that the marked nodes whose parents
are unmarked are themselves are ancestors of at least N/2b leaves: all these nodes are heavy.
�

Alice’s strategy is to keep her active query sets as “entangled” as possible with Bob’s point
sets. Put differently, ideally the two should form a low-discrepancy set system [6] (at least in
the one-way sense). The next result says that this is true on at least one level of Uk, where
many heavy nodes end up being picked by a random Ik.

Lemma 2.5 For any 0 < k < t, there is a depth j (0 < j < d) such that, with probability

at least 2−w2−1, a random Pk from Dk is active and its index set Ik picks at least w3 heavy

depth-j nodes in its associated Uk.

Proof: Recall that Dk is isomorphic to a random (Ik, σk). Fix σk once and for all. The heavy
nodes of Uk are ancestors of at least a fraction 1/2b of the leaves (Lemma 2.4). It follows that,
for some 0 < j < d, at least a fraction 1/2bd of the nodes of depth j are heavy. Among these,
Ik may pick only those that are not picked further up in the tree: this caveat rules out fewer
than dw5 candidate nodes, which by Lemma 2.2, represents a fraction at most dw5/2d of all
the nodes of depth j. So, it appears that among the set of depth-j nodes that may be picked
by Ik, the fraction α of heavy ones satisfies

α ≥
(1

2db
− dw52−d

)/(

1 − dw52−d
)

>
1

3db
.

The index set Ik picks w5 depth-j nodes of Uk at random with no replacement. By Hoeffding’s
classical bounds [10], the probability that the number of heavy ones picked exceeds the lemma’s
target of w3 is at least

1 − e−2w5(α−1/w2)2 > 1 − 2−w3

.

It follows from the point set invariant and the independence of Ik and σk that, with probability
at least 2−w2

−2−w3

, a random Pk is active and its index set Ik picks at least w3 heavy depth-j
nodes in its associated Uk.

�

2.5 Probability Amplification

During the k-th round, Bob sends to Alice the contents of the cell T [fk(`, T [f1(`)], . . .)]. The 2w

possible values partition the current collection Pk of active point sets into as many equivalence
classes. We exploit the product nature of the distribution Dk to amplify the probability of
being active by projecting the distribution on one of its factors.

Lemma 2.6 For any 0 < k < t, there exists a heavy node v of Uk such that, with probability

at least 1/2, a random Pk+1 drawn from the distribution Dk+1 associated with Tk+1 = Tk(v)
belongs to Pk.

Proof: We refer to the depth j in Lemma 2.5. Let p|S denote the conditional probability that
a random Pk from Dk belongs to Pk, given that S is exactly the set of heavy nodes of depth
j picked by Ik. Summing over all subsets S of heavy depth-j nodes of size at least b3,

∑

S

Prob [S = set of heavy depth- j nodes picked by Ik] · p|S

9

is the sum, over all S, of the probability that Pk ∈ Pk and that S is precisely the set of heavy
nodes of depth j picked by its index set Ik. By Lemma 2.5, this sum is at least 2−w2−1, and
therefore p|S∗ ≥ 2−w2−1, for some set S∗ of at least w3 heavy nodes of depth j.

Because a random Pk whose Ik picks v consists of a random (Ik+1, σk+1) drawn at node v
independently of the rest of (Ik, σk), its v-projection has a distribution isomorphic to that of
(Ik+1, σk+1), which is also Dk+1. The same is true even if the distribution on Pk is conditioned
upon having S as the set of heavy depth-j nodes picked by Ik. If Pk belongs to Pk then its
v-projection maps to a unique set Pk+1 ∈ Dk+1 also in Pk.

Let p|v denote the probability that a random Pk+1 drawn from the distribution Dk+1

associated with Tk+1 = Tk(v) belongs to Pk. It follows that

p|S∗ ≤
∏

v∈S∗

p|v.

Since |S∗| ≥ w3, it follows that

p|v ≥
(

2−w2−1
)1/|S∗|

≥
1

2
,

for some v ∈ S∗.
�

Both query and point set invariants are trivially satisfied before round 1. Assume now
that they hold at the opening of round k < t. Let v denote the node of Uk in Lemma 2.6.
The nc possible ways of indexing into the table T partition Alice’s query set Lk into as many
equivalence classes. Because v is heavy, the intervals associated with a fraction at least 1/b of
its children intersect a particular equivalence class. Alice chooses such a class and the query
lines in it as her new query set Lk+1. The tree Uk+1 is naturally derived from Tk+1 = Tk(v),
and the query invariant is satisfied at the beginning of round k + 1.

Upon receiving the index from Alice, Bob must choose the contents of the table entry while
staying consistent with past choices. By Lemma 2.6, a random Pk+1 from Dk+1 (distribution
associated with Tk+1) is active at the beginning of round k with probability at least a half.
There are 2w choices for the table entry, and so for at least one of them, with probability at
least (1/2)2−w > 2−w2

, a random point set from Dk+1 is active at the beginning of round k
and produces a table with that specific entry value. These point sets constitute the newly
active collection Pk+1, and the point set invariant still holds at the beginning of round k + 1.

To show that t rounds are needed, we must prove that Lk ×Pk is unresolved, for any k ≤ t.
In fact, because of the nesting structure of these products, it suffices to show that Lt × Pt is
unresolved, which follows from Lemma 2.3. This proves the lower bound of Theorem 1.1.

�

Acknowledgments

I wish to thank the anonymous reviewer for useful suggestions. I also thank Faith Fich for
informing me of her recent work with Paul Beame, and in particular, their upper bound for
predecessor searching in a bounded universe.

References

[1] Ajtai, M. A lower bound for finding predecessors in Yao’s cell probe model, Combinatorica,
8 (1988), 235–247.

10

[2] Beame, P., Fich, F. Optimal bounds for the predecessor problem, Proc. 31st Annu. ACM
Symp. Theory Comput. (1999), to appear.

[3] Ben-Or, M. Lower bounds for algebraic computation trees, Proc. 15th Annu. ACM Symp.
Theory Comput. (1983), 80–86.

[4] Björner, A., Lovász, L., Yao, A.C. Linear decision trees: Volume estimates and topological

bounds, Proc. 24th Annu. ACM Symp. Theory Comput. (1992), 170–177.

[5] Chakrabarti, A., Chazelle, B., Gum, B., Lvov, A. A good neighbor is hard to find, Proc.
31st Annu. ACM Symp. Theory Comput. (1999), to appear.

[6] Chazelle, B. The Discrepancy Method: Randomness and Complexity, Cambridge Univer-
sity Press, to appear.

[7] Fredman, M.L. A lower bound on the complexity of orthogonal range queries, J. ACM, 28
(1981), 696–705.

[8] Grigoriev, D., Karpinksi, M., Meyer auf der Heide, F., Smolensky, R. A lower bound for

randomized algebraic decision trees, Computational Complexity, 6 (1997), 357–375.

[9] Grigoriev, D., Karpinksi, M., Vorobjov, N. Improved lower bound on testing membership to

a polyhedron by algebraic decision trees, Proc. 36th Annu. IEEE Symp. Foundat. Comput.
Sci. (1995), 258–265.

[10] Hoeffding, W. Probability inequalities for sums of bounded random variables, J. Amer.
Stat. Assoc., 58 (1963), 13–30.

[11] Karlsson, R.G. Algorithms in a restricted universe, Tech Report CS-84-50, Univ. Waterloo,
Waterloo, ON, 1984.

[12] Karlsson, R.G., Munro, J.I. Proximity on a grid, Proc. 2nd Symp. Theoret. Aspects of
Comput. Sci., LNCS Springer, vol.182 (1985), 187–196.

[13] Karlsson, R.G., Overmars, M.H. Scanline algorithms on a grid, BIT, 28 (1988), 227–241.

[14] Kushilevitz, E., Nisan, N. Communication Complexity, Cambridge University Press, 1997

[15] Miltersen, P.B. Lower bounds for union-split-find related problems on random access ma-

chines, Proc. 26th Annu. ACM Symp. Theory Comput. (1994), 625–634.

[16] Müller, H. Rasterized point location, Proc. Workshop on Graph-Theoretic Concepts in
Comput. Sci., Trauner Verlag, Linz (1985), 281–293.

[17] Overmars, M.H. Computational geometry on a grid: an overview, ed. R. A. Earnshaw,
Theoretical Foundations of Computer Graphics and CAD, NATO ASI, vol.F40, Springer-
Verlag (1988), 167–184.

[18] Yao, A.C. Should tables be sorted?, J. ACM, 28 (1981), 615–628.

[19] Yao, A.C. On the complexity of maintaining partial sums, SIAM J. Comput. 14 (1985),
277–288.

[20] Yao, A.C. Decision tree complexity and Betti numbers, Proc. 26th Annu. ACM Symp.
Theory Comput. (1994), 615–624.

11

