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Abstract

Alexander has proven the existence of a set of n points in the plane such that, given any
two-coloring of the points, there exists a halfplane within which one color outnumbers the
other by Q(n'/*). We strengthen this result by showing that the halfplane can be chosen
among n fixed ones. In other words, we build a point/halfplane set system of discrepancy
Q(n'/*), whose incidence matrix is n x n. By a result of Matousek, this lower bound is
tight.

The second result is an n x n variant of a classical lower bound of Roth on the dis-
crepancy of arithmetic progressions. Stated in dual form, our result asserts the existence
of a set system of discrepancy Q(n'/*), whose n x n incidence matrix (a; ;) is formed as
follows: each row (resp. column) corresponds to a line segment (resp. horizontal line) in
the plane, and a; ; = 1 if segment ¢ and line j intersect in an integer point. Matousek and
Spencer have shown the lower bound to be tight.

1 Introduction

Schmidt [8] has shown the existence of n points in the plane such that, given any two-coloring
of the points, there is always an axis-parallel box within which one color outnumbers the other
by Q(logn). It is natural to ask the question: can the box be chosen among a small set of
prespecified boxes? Given an incidence matrix A of a set system, we define the discrepancy
of A,

D(4) = { min||Azl|os : z € {-1,1} }.

Is there an n x n incidence matrix for boxes, A = (a; ), of discrepancy Q(logn), such that
a;; = 1 if the box associated with row 4 contains the point associated with column ;7 As
it happens, the answer is trivially affirmative. Here is why: the set of candidate boxes for
Schmidt’s bound can obviously be restricted to O(n*). So, by applying the bound for n’ =
O(n'/*) points, we can make the number of candidates equal to n. Next, we form an n x n
incidence matrix A by filling in n — n' columns of zeroes derived from the addition of n — n'
dummy points. The discrepancy of the resulting set system is Q(logn') = Q(logn). Of course,
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this trick does not work if the discrepancy is of the form n®, for some constant . By using a
more subtle argument, we prove the following:

Theorem 1.1 There exist n points and n halfplanes in R?, such that the n x n incidence
matriz A = (a;;) has discrepancy D(A) = Q(n'/*), where a;; = 1 if and only if the i-th
halfplane contains the j-th point.

Theorem 1.2 There exist n horizontal lines and n segments in R?, such that the n X n
incidence matriz A = (a; ;) has discrepancy D(A) = Q(n!/*), where each row (resp. column)
corresponds to a segment (resp. horizontal line), and a; j = 1 if and only if segment i and line
7 intersect in an integer point.

Both theorems are optimal. This follows from results by Matousek [6] and Matousek and
Spencer [7], respectively. It remains an open question whether the same bounds hold for m xn
matrices, where m is asymptotically smaller than n.

2 The Proof of Theorem 1.1

Let P be the set of n integer points in [1,/n]? (assume that n is a large square), and let = be
a vector in R™ whose i-th coordinate z; is associated with p; € P. Given a closed halfplane h
bounded above by a nonvertical line, we define f(h) = >_p;ch Ti- Let w be the motion-invariant
measure for lines, normalized so as to provide a probability measure for the lines crossing the
square [1,/n]2. Alexander [1] has proven that if z; + -+ + z, = 0, then

[ £ dwlh) = 21/ vm) sl

For completeness, we repeat (with only a few modifications) the argument we used in [4] to
discretize Alexander’s result and derive Lemma 2.1 below. We subdivide the space of lines
crossing [1,v/n]? into N + O(n?) regions within which f(h) remains invariant. By choosing n
and N large enough, say, N = 2", we can easily ensure that the w-area o of N of these regions
is exactly the same, ie, about 1/N, while the other O(n?) regions have smaller areas. Thus, the
error produced in computing [ f2(h) dw(h) by integrating f? only over the equal-area regions
is O(n?/N)sup f2. Because |f| cannot exceed

21|+ -+ |zn] <V l2ll2,

this error is bounded by O(n3|z||3/N). Let B be the N x n matrix whose rows are indexed
by the N equal-area regions & and are the characteristic vectors of the set of x;’s appearing
in (the unique form) f(h), for h € 6. We have
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1Bsl3 == [ 2w do) | = 06 2,

and because o = 1/N + O(n?/N?),
Bzl = N [ £200 dw(h) | = 0 13).

Lemma 2.1 [4]
det BB = Q(N/\/ﬁ)n_l.



Proof: Let py > --- > p, > 0 be the eigenvalues of BT B and let {v;} be an orthonormal
eigenbasis, with p; corresponding to v;. Let ({1,...,&,) be the coordinates of z in the basis
{v;}. The solution space of the system of equations, z1+---+z, =0and {; =0 (j <n—1), is
of dimension at least 1. It lies in the (£,_1, &, )-plane, so it intersects the cylinder £2_; +¢£2 = 1.
For any point = of the intersection,

n
||B$||% = Z,szf = ,Uln—lfz,1 +Mnfz < pp—1.
=1

This implies that for the unit vector z,

fin-1 > N/fQ(h) dw(h) — O(n’||z||3) > Q(N/vn) — O(n?),

and hence,
fin—1 > QUN/V/n). (1)

We need a lower bound on the smallest eigenvalue. With N being large enough, we can
always assume that, for each point p;, there exist two lines (adding them on, if necessary, and
updating N accordingly), each represented by a distinct row of B, that pass right above and
below p;. The contribution of these two rows to ||Bz||3 is of the form ®2 + (® + z;)2?, which
is always at least 22/2. It follows that |Bz||3 > 3||z||3, and hence, y, > 1/2. The lemma
follows from (1) and the fact that det BT B is the product of the eigenvalues. O

By the Binet-Cauchy formula,’

. . . 2
T _ Ju J2 .-+ Jn
det B' B = 'Z' detB( Ly n)
1< 1<+ <jn<N
Therefore, there exists an n X n submatrix A of B such that
. . . 2
2 _ Ju J2 --- Jn
(det A)* = ‘detB( 1 9 n)
-1
N n\n; N \n—1
> det BTB=Q(1)"(—) (—=
> () s onr(2) ()

> (cn)™?,

for some fixed ¢ > 0. Lovasz et al. [5] define the hereditary discrepancy, D¥(A4), of the
incidence matrix A to be the maximum value of D(A’) over all matrices A’ formed by subsets
of the columns of A. They prove that

DH(A) = Q(| det A|Y/™).

In our case, this implies that
DH(A) = Q(n'/*).

Let A’ be the (or any) submatrix of A that achieves the hereditary discrepancy, and let M be
the matrix derived from A by zeroing out the columns not in the submatrix A’. By introducing
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artificial points if necessary, we can make M the incidence matrix of a point/halfplane set
system, whose discrepancy is thus Q(nl/ 4). This completes the proof of Theorem 1.1. O

For reference it might be useful to make a general lemma out of the technique we just
used.

Lemma 2.2 If B is an N X n incidence matriz of a set system, then there erists an n X n
matriz A formed by n rows of B, such that

DHE(A) > ¢/ % (det BT B) e

for some constant ¢ > 0.

3 The Proof of Theorem 1.2

Let B be the N x n incidence matrix of the following set system: each set is an arithmetic
progression modulo m, of length k and difference at most 6k, where k¥ = |1/n/6]; note that
N = O(ny/n). By adapting an argument of Roth [9], Beck and S6s [3] have shown that the
matrix BT B has all its eigenvalues in Q(n). This implies that

det BT B = Q(n)".
By Lemma 2.2, we derive the existence of an n X n submatrix A, such that
DH(A) = Q(n'/*).

This result can be interpreted in terms of arithmetic progressions, but it is perhaps better
grasped in dual space. Since arithmetic progressions are considered modulo n, a row of A
might consist of two distinct progressions. By doubling the number of rows if necessary we
can make them into regular arithmetic progressions. Let n denote the new number of rows.
Ifb,a+0,...,ka+ b is the progression associated with row ¢, let us now associate with that
row the segment on line Y = aX + b running from X =0 to X = k. Column j is associated
with line Y = j. The lower bound on the hereditary discrepancy implies that the restriction
of the set system to a certain subset of lines has discrepancy Q(n'/*). By zeroing out the
leftover columns and adding dummy column lines, we thus create an n x n incidence matrix
of discrepancy Q(n'/*), where element a;; is 1 if and only if segment ¢ and line j intersect in
an integer point. This proves Theorem 1.2. O
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