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1.1 Introduction

For divide-and-conquer purposes, it is often desirable to organize a set S of n numbers into
a sorted list, or perhaps to partition it into two equal-sized groups with no element in one
group exceeding any element in the other one. More generally, we might wish to break up
S into k groups of size roughly n/k, with again a total ordering among the distinct groups.
In the first case we sort; in the second one we compute the median; in the third one we
compute quantiles. This is all well known and classical. Is it possible to generalize these
ideas to higher dimension? Surprisingly the answer is yes. A geometric construction, known
as an ε-cutting, provides a space partitioning technique that extends the classical notion of
selection to any finite dimension. It is a powerful, versatile data structure with countless
applications in computational geometry.

Let H be a set n hyperplanes in Rd. Our goal is to divide up Rd into simplices, none
of which is cut by too many of the n hyperplanes. By necessity, of course, some of the
simplices need to be unbounded. We choose a parameter ε > 0 to specify the coarseness
of the subdivision. A set C of closed full-dimensional simplices is called an ε-cutting for
H (Fig. 1.1) if:

(i) the union of the simplices is Rd, and their interiors are mutually disjoint;

(ii) the interior of any simplex is intersected by at most εn hyperplanes of H.

Historically, the idea of using sparsely intersected simplices for divide and conquer goes
back to Clarkson [10] and Haussler and Welzl [15], among others. The definition of an ε-
cutting given above is essentially due to Matoušek [18]. Efficient but suboptimal construc-
tions were given by Agarwal [1, 2] for the two-dimensional case and Matoušek [17, 18, 21]
for arbitrary dimension. The optimal ε-cutting construction cited in the theorem below,
due to Chazelle [4], is a simplification of an earlier design by Chazelle and Friedman [7].

THEOREM 1.1 Given a set H of n hyperplanes in Rd, for any 0 < ε < 1, there exists
an ε-cutting for H of size O(ε−d), which is optimal. The cutting, together with the list
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FIGURE 1.1: A two-dimensional cutting.

of hyperplanes intersecting the interior of each simplex, can be found deterministically in
O(nε1−d) time.

1.2 The Cutting Construction

This section explains the main ideas behind the proof of Theorem 1.1. We begin with a
quick overview of geometric sampling theory. For a comprehensive treatment of the subject,
see [6, 23].

1.2.1 Geometric Sampling

A set system is a pair Σ = (X,R), where X is a set and R is a collection of subsets of X .
In our applications, X ⊂ Rd and each R ∈ R is of the form X ∩ f(K), where K is a fixed
region of Rd and f is any member of a fixed group F of transformations. For example, we
might consider n points in the plane, together with the subsets lying inside any triangle
congruent to a fixed triangle.

Given Y ⊆ X , we define the set system “induced by Y ” to be (Y,R|Y ), with R|Y =
{ Y ∩ R |R ∈ R}. The VC-dimension (named for Vapnik and Chervonenkis [28]) of Σ is
defined as the maximum size of any Y such that R|Y = 2Y . For example, the VC-dimension
of the infinite geometric set system formed by points in the plane and halfplanes is 3. The
shatter function πR(m) of the set system Σ = (X,R) is the maximum number of subsets
in the set system (Y,R|Y ) induced by any Y ⊆ X of size m. If πR(m) is bounded by cmd,
for some constants c, d > 0, then the set system is said to have a shatter function exponent
of at most d. It was shown in [26, 27, 28] that, if the shatter function exponent is O(1),
then so is the VC-dimension. Conversely, if the VC-dimension is d ≥ 1 then, for any m ≥ d,
πR(m) < (em/d)d.

We now introduce two fundamental notions: ε-nets and ε-approximations. For any 0 <
ε < 1, a set N ⊆ X is called an ε-net for a finite set system (X,R) if N ∩ R 6= ∅ for any
R ∈ R with |R|/|X | > ε. A finer (but more costly) sampling mechanism is provided by an
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ε-approximation for (X,R), which is a set A ⊆ X such that, given any R ∈ R,
∣
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Some simple structural facts about nets and approximations:

LEMMA 1.1 If X1, X2 are disjoint subsets of X of the same size, and A1, A2 are same-size
ε-approximations for the subsystems induced by X1, X2 (respectively), then A1 ∪ A2 is an
ε-approximation for the subsystem induced by X1 ∪ X2.

LEMMA 1.2 If A is an ε-approximation for (X,R), then any ε′-approximation (resp.
-net) for (A,R|A) is also an (ε + ε′)-approximation (resp. -net) for (X,R).

In the absence of any restrictive assumption on the set system, it is natural to expect the
sample size to depend on both the desired accuracy and the size of the set system itself.

THEOREM 1.2 Given a set system (X,R), where |X | = n and |R| = m, for any 1/n ≤
ε < 1, it is possible to find, in time O(nm), an ε-net for (X,R) of size O(ε−1 log m) and
an ε-approximation for (X,R) of size O(ε−2 log m).

If we assume bounded VC-dimension, everything changes. In fact the key result in ge-
ometric sampling theory is that, for any given level of accuracy, the sample size need not
depend on the size of the set system.

In practice, geometric set systems often are “accessible” via an oracle function that takes
any Y ⊆ X as input and returns the list of sets in R|Y (each set represented explicitly). We
assume that the time to do that is O(|Y |d+1), which is linear in the maximum possible size
of the oracle’s output, where d is the shatter function exponent. For example, in the case
of points and disks in the plane, we have d = 3, and so this assumes that, given n points,
we can enumerate all subsets enclosed by a disk in time O(n4). To do this, enumerate all
k-tuples of points (k ≤ 3) and, for each tuple, find which points lie inside the smallest disk
enclosing the k points. The main result below is stated in terms of the shatter function
exponent d, but the same results hold if d denotes the VC-dimension.

THEOREM 1.3 Given a set system (X,R) of shatter function exponent d, for any ε ≤
1/2, an ε-approximation for (X,R) of size O(dε−2 log dε−1) and an ε-net for (X,R) of size
O(dε−1 log dε−1) can be computed in time O(d)3d(ε−2 log dε−1)d|X |.

Vapnik and Chervonenkis [28] described a probabilistic construction of ε-approximations
in bounded VC-dimension. The deterministic construction stated above is due to Chazelle
and Matoušek [8], and builds on earlier work [7, 17, 18, 21]. Haussler and Welzl [15] proved
the upper bound on the size of ε-nets. The running time for computing an ε-net was
improved to O(d)3d(ε−1 log dε−1)d|X | by Brönnimann, Chazelle, and Matoušek [3], using
the concept of a sensitive ε-approximation. Komlós, Pach, and Woeginger [16] showed that,
for any fixed d, the bound of O(ε−1 log ε−1) for ε-nets is optimal in the worst case (see
also [25]). The situation is different with ε-approximations: if d > 1 is the VC dimension,
then there exists an ε-approximation for (X,R) of size O(ε−2+2/(d+1)) [22, 24].
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An important application of ε-approximations is for estimating how many vertices in an
arrangement of hyperplanes in Rd lie within a given convex region. Let Σ = (H,R) be
the set system formed by a set H of hyperplanes in Rd, where each R ∈ R is the subset
of H intersected by an arbitrary line segment. Let σ be a convex body (not necessarily
full-dimensional). In the arrangement formed by H within the affine span of σ, let V (H,σ)
be the set of vertices that lie inside σ. The following was proven in [3, 4].

THEOREM 1.4 Given a set H of hyperplanes in Rd in general position, let A be an
ε-approximation for Σ = (H,R). Given any convex body σ of dimension k ≤ d,
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1.2.2 Optimal Cuttings

For convenience of exposition, we may assume that the set H of n hyperplanes in Rd is in
general position. Let A(H) denote the arrangement formed by H. Obviously, no simplex
of an ε-cutting can enclose more than O(εn)d vertices. Since A(H) itself has exactly

(

n
d

)

vertices, we should expect to need at least on the order of ε−d simplices. But this is precisely
the upper bound claimed in Theorem 1.1, which therefore is asymptotically tight.

Our starting point is an ε-net N for H, where the underlying set system (X,R) is formed
by a set X of hyperplanes and the collection R of subsets obtained by intersecting X with
all possible open d-simplices. Its VC-dimension is bounded, and so by Theorem 1.3 an ε-net
N of size O(ε−1 log ε−1) can be found in nε−O(1) time.

We need to use a systematic way to triangulate the arrangement formed by the ε-net. We
build a canonical triangulation of A(N) by induction on the dimension d (Fig. 1.2). The
case d = 1 is trivial, so we assume that d > 1.

1. Rank the vertices of A(N) by the lexicographic order of their coordinate se-
quences.

2. By induction, form a canonical triangulation of the (d − 1)-dimensional arrange-
ment made by each hyperplane with respect to the n − 1 others.

3. For each cell (ie, full-dimensional face) σ of A(N), lift toward its lowest-ranked
vertex v each k-simplex (k = 0, . . . , d−2) on the triangulated boundary of σ that
does not lie in a (d − 1)-face of A(N) that is incident to v.

It is not hard to see that the combinatorial complexity (ie, number of all faces of all
dimensions) of the canonical triangulation of A(N) is asymptotically the same as that of
A(N), which is O(ε−1 log ε−1)d. Therefore, the closures of its cells constitute an ε-cutting
for H of size O(ε−1 log ε−1)d, which is good but not perfect. For optimality we must remove
the log factor.

Assume that we have at our disposal an optimal method for building an ε0-cutting of size
O(ε−d

0 ), for some suitably small constant ε0. To bootstrap this into an optimal ε-cutting
construction for any ε, we might proceed as follows: Beginning with a constant-size cutting,
we progressively refine it by producing several generations of finer and finer cuttings, C1, C2,
etc, where Ck is an εk

0-cutting for H of size O(ε−dk). Specifically, assume that we have
recursively computed the cutting Ck for H. For each σ ∈ Ck, we have the incidence list Hσ

of the hyperplanes intersecting the interior of σ. To compute the next-generation cutting
Ck+1, consider refining each σ in turn as follows:

1. Construct an ε0-cutting for Hσ, using the algorithm whose existence is assumed.
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FIGURE 1.2: A canonical triangulation.

2. Retain only those simplices that intersect σ and clip them outside of σ.

3. In case the clipping produces nonsimplicial cells within σ, retriangulate them
“canonically” (Fig. 1.3).

FIGURE 1.3: Clip and retriangulate.

Let Ck+1 denote the collection of new simplices. A simplex of Ck+1 in σ is cut (in its
interior) by at most ε0|Hσ| hyperplanes of Hσ, and hence of H. By induction, this produces
at most nεk+1

0 cuts; therefore, Ck+1 is an εk+1
0 -cutting. The only problem is that Ck+1

might be a little too big. The reason is that excess in size builds up from generation to
generation. We circumvent this difficulty by using a global parameter that is independent
of the construction; namely, the total number of vertices.

Note that we may assume that |Hσ| > nεk+1
0 , since σ would otherwise already satisfy

the requirement of the next generation. We distinguish between full and sparse simplices.
Given a set X of hyperplanes and a d-dimensional (closed) simplex σ, let v(X,σ) be the
number of vertices of A(X) in the interior of σ.

• The simplex σ ∈ Ck is full if v(H,σ) ≥ c0|Hσ|d, where c0 = ε2
0. If so, we compute

an ε0-net for Hσ, and triangulate the portion of the net’s arrangement within σ
to form an ε0-cutting of size O(ε−1

0 log ε−1
0 )d. Its simplices form the elements of
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Ck+1 that lie within σ.

• A simplex σ that is not full is sparse. If so, we find a subset Ho
σ of Hσ that

satisfies two conditions:

(i) The canonically triangulated portion of A(Ho
σ) that lies inside σ

consists of a set Co
σ of at most 1

2ε−d
0 full-dimensional (closed) sim-

plices.

(ii) Each simplex of Co
σ is intersected in its interior by at most ε0|Hσ|

hyperplanes of H.

The elements of Ck+1 within σ are precisely the simplices of Co
σ.

LEMMA 1.3 Ck+1 is an εk+1
0 -cutting of size O(ε

−d(k+1)
0 ).

Next, we explain how to enforce conditions (i) and (ii) for sparse simplices. To be able to
distinguish between full and sparse simplices, we use a c0/2-approximation Aσ for Hσ of con-
stant size, which we can build in O(|Hσ |) time (Theorem 1.3). It follows from Theorem 1.4
that

∣

∣

∣

∣

v(H,σ)

|Hσ|d
−

v(Aσ, σ)|

|Aσ|d

∣

∣

∣

∣

≤
c0

2
; (1.1)

therefore, we can estimate v(H,σ) in constant time with an error of at most c0

2 |Hσ|d, which
for our purposes here is inconsequential.

How do we go about refining σ and how costly is it? If σ is a full simplex, then by
Theorem 1.3, we can compute the required ε0-net in O(|Hσ|) time. Within the same
amount of time, we can also find the new set of simplices in σ, together with all of their
incidence lists.

The refinement of a sparse simplex σ is a little more involved. We begin with a ran-
domized construction, from which we then remove all the randomness. We compute Ho

σ by
choosing a random sample from Aσ of size c1ε

−1
0 log ε−1

0 , for some constant c1 large enough
(independent of ε0). It can be shown that, with probability at least 2/3, the sample forms
an (ε0/2)-net for Aσ. By Lemma 1.2, Ho

σ is a (c0/2+ε0/2)-net for Hσ; therefore, we ensure
that (ii) holds with probability at least 2/3. A slightly more complex analysis shows that
(i) also holds with probability at least 2/3; therefore (i,ii) are both true with probability at
least 1/3. We derandomize the construction in a trivial manner by trying out all possible
samples, which takes constant time; therefore, the running time for refining σ is O(|Hσ |).

Putting everything together, we see that refining any simplex takes time proportional to
the total size of the incidence lists produced. By Lemma 1.3, the time needed for building

generation k + 1 is O(nε
−(d−1)(k+1)
0 ). The construction goes on until we reach the first

generation such that εk
0 ≤ ε. This establishes Theorem 1.1.

From the proof above it is not difficult to derive a rough estimate on the constant factor
in the O(ε−d) bound on the size of an ε-cutting. A thorough investigation into the smallest
possible constant was undertaken by Har-Peled [14] for the two-dimensional case.

1.3 Applications

Cuttings have numerous uses in computational geometry. We mention just a handful: point
location, Hopcroft’s problem, convex hulls, Voronoi diagrams, and range searching. In many
cases, cuttings allow us to derandomize existing probabilistic solutions, ie, to remove any
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need for random bits and thus produce deterministic algorithms. Many other applications
are described in the survey [2].

1.3.1 Point Location

How do we preprocess n hyperplanes in Rd, so that, given a query point q, we can quickly
find the face of the arrangement formed by the hyperplanes that contains the point? For
an answer, simply set ε = 1/n in Theorem 1.1, and use the nesting structure of C1, C2, etc,
to locate q in Ck. Note that this can be done in constant time once we know the location
in Ck−1.

THEOREM 1.5 Point location among n hyperplanes can be done in O(log n) query time,
using O(nd) preprocessing.

Observe that if we only wish to determine whether the point q lies on one of the hyper-
planes, it is possible to cut down the storage requirement a little. To do that, we use an
ε-cutting for ε = (log n)/n. The cells associated with the bottom of the hierarchy are each
cut by O(log n) hyperplanes, which we can therefore check one by one. This reduces the
storage to O(nd/(log n)d−1).

1.3.2 Hopcroft’s problem

Given n points and n lines in R2, is there any incidence between points and lines? This is
Hopcroft’s problem. It is self-dual; therefore dualizing it won’t help. A classical arrangement
of n lines due to Erdős has the property that its n highest-degree vertices are each incident to
Ω(n1/3) edges. By picking these n lines as input to Hopcroft’s problem and positioning the
n points in the near vicinity of these high-degree vertices, we get a sense (not a proof) that
to solve the problem should require checking each point against the Ω(n1/3) lines incident
to their nearby vertex. This leads to an Ω(n4/3) running time, which under some realistic
(though restrictive) conditions, can be made into a rigorous lower bound [13]. At the very
least this line of reasoning suggests that to beat Ω(n4/3) is unlikely to be easy. This bound
has almost been achieved by an algorithm of Matoušek [20] with, at its heart, a highly
intricate and subtle use of cuttings.

THEOREM 1.6 To decide whether n points and n lines in the plane are free of any
incidence can be done in n4/3 2O(log∗ n) time.

1.3.3 Convex Hulls and Voronoi Diagrams

Cuttings play a key role in computing convex hulls in higher dimension. Given n points in
Rd, their convex hull is a bounded convex polytope with O(nbd/2c) vertices. Of course, it
may have much fewer of them: eg, d + 1, if n − d − 1 points lie strictly inside the convex
hull of the d + 1 others. It is notoriously difficult to design output-sensitive algorithms, the
term designating algorithms whose running time is a function of both input and output
sizes. In the “worst case” approach our goal is a simpler one: to design an optimal convex
hull agorithm that runs in O(n log n + nbd/2c) time. (The extra term n log n is unavoidable
because sorting is easily embedded as a convex hull problem.)

Computing the convex hull of n points is equivalent by duality to computing the intersec-
tion of n halfspaces. A naive approach to this problem is to insert each halfspace one after
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the other while maintaining the intersection of previously inserted halfspaces incrementally.
This can be done without difficulty if we maintain a canonical triangulation of the current
intersection polyhedron and update a bipartite graph indicating which hyperplane intersects
which cell of the triangulation. A surprising fact, first proven by Clarkson and Shor [11], is
that if the halfspaces are inserted in random order, then the expected running time of the
algorithm can be made optimal. By using an elaborate mix of ε-nets, ε-approximations,
and ε-cuttings, Chazelle [5] showed how to compute the intersection deterministically in
optimal time; his algorithm was subsequently simplified by Brönnimann, Chazelle, and
Matoušek [3]; a complete description is also given in the book [6]. This implies the two
theorems below.

THEOREM 1.7 The polyhedron formed by the intersection of n halfspaces in Rd can be
computed in O(n log n + nbd/2c) time.

Not only does this result give us an optimal deterministic solution for convex hulls, but
it also solves the Voronoi diagram problem. Indeed, recall [12, 29] that a Voronoi diagram
of n points in Rd can be “read off” from the facial structure of the convex hull of a lift of
the n points into Rd+1.

THEOREM 1.8 The convex hull of a set of n points in Rd can be computed determinis-
tically in O(n log n + nbd/2c) time. By duality, the Voronoi diagram (or Delaunay triangu-
lation) of a set of n points in Ed can be computed deterministically in O(n log n + ndd/2e)
time.

1.3.4 Range Searching

Simplex range searching refers to the problem of preprocessing a set P of n points in Rd so
that, given a query (closed) simplex σ, the size of P ∩ σ can be quickly evaluated. Variants
of the problem include reporting the points of P ∩σ explicitly or, assuming that each point p
has a weight w(p) ∈ R, computing

∑

{ w(p) | p ∈ P ∩σ }. The most powerful data structure
for solving simplex range searching, the simplicial partition, vividly illustrates the power of
ε-cuttings. A collection {(Pi, Ri)} is called a simplicial partition if

• the collection {Pi} forms a partition of P ; and

• each Ri is a relatively open simplex that contains Pi.

The simplices Ri can be of any dimension and, in fact, need not even be disjoint; furthermore
the Pi’s need not be equal to P ∩ Ri. A hyperplane is said to cut Ri if it intersects, but
does not contain, Ri. The cutting number of the simplicial partition refers to the maximum
number of Ri’s that can be cut by a single hyperplane. Matoušek [19] designed an optimal
construction, which happens to be crucially based on ε-cuttings.

LEMMA 1.4 Given a set P of n points in Rd (d > 1), for any integer 1 < r ≤ n/2, there
exists a simplicial partition of cutting number O(r1−1/d) such that n/r ≤ |Pi| < 2n/r for
each (Pi, Ri) in the partition.

To understand the usefulness of simplicial partitions for range searching, one needs to
learn about partition trees. A partition tree for P is a tree T whose root is associated with
the point set P . The set P is partitioned into subsets P1, . . . , Pm, with each Pi associated
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with a distinct child vi of the root. To each vi corresponds a convex open set Ri, called the
region of vi, that contains Pi. The regions Ri are not necessarily disjoint. If |Pi| > 1, the
subtree rooted at vi is defined recursively with respect to Pi.

Armed with a partition tree, it is a simple matter to handle range search queries. In
preprocessing, at each node we store the sum of the weights of the points associated with
the corresponding region. To answer a query σ, we visit all the children vi of the root and
check whether σ intersects the region Ri of vi: (i) if the answer is yes, but σ does not
completely enclose the region Ri of vi, then we visit vi and recurse; (ii) if the answer is yes,
but σ completely encloses Ri, we add to our current weight count the sum of the weights
within Pi, which happens to be stored at vi; (iii) if the answer is no, then we do not recurse
at vi.

It is straightforward to see that Lemma 1.4 can be used to construct partition trees.
It remains for us to choose the branching factor. If we choose a large enough constant
r, we end up with a partition tree that lets us answer simplex range search queries in
O(n1−1/d+ε) time for any fixed ε > 0, using only O(n) storage. A more complex argument
by Matoušek [19] removes the ε term from the exponent.

With superlinear storage, various space-time tradeoffs can be achieved. For example, as
shown by Chazelle, Sharir, and Welzl [9], simplex range searching with respect to n points
in Rd can be done in O(n1+ε/m1/d) query time, using a data structure of size m, for any
n ≤ m ≤ nd. Matoušek [20] slightly improved the query time to O(n(log m/n)d+1/m1/d), for
m/n large enough. These bounds are essentially optimal under highly general computational
models [6].
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[8] Chazelle, B., Matoušek, J. On linear-time deterministic algorithms for optimization
problems in fixed dimension, J. Algorithms 21 (1996), 579–597.

[9] Chazelle, B., Sharir, M., Welzl, E. Quasi-optimal upper bounds for simplex range
searching and new zone theorems, Algorithmica 8 (1992), 407–429.



1-10

[10] Clarkson, K.L. New applications of random sampling in computational geometry,

Disc. Comput. Geom. 2 (1987), 195–222.

[11] Clarkson, K.L., Shor, P.W. Applications of random sampling in computational ge-
ometry, II, Disc. Comput. Geom. 4 (1989), 387–421.

[12] Edelsbrunner, H. Algorithms in Combinatorial Geometry, Springer, 1987.

[13] Erickson, J. New lower bounds for Hopcroft’s problem, Disc. Comput. Geom. 16

(1996), 389–418.

[14] Har-Peled, S. Constructing planar cuttings in theory and practice, SIAM J. Com-
put. 29 (2000), 2016–2039.

[15] Haussler, D., Welzl, E. ε-nets and simplex range queries, Disc. Comput. Geom. 2

(1987), 127–151.

[16] Komlós, J., Pach, J., Woeginger, G. Almost tight bounds for ε-nets, Disc. Comput.
Geom. 7 (1992), 163–173.
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[19] Matoušek, J. Efficient partition trees, Disc. Comput. Geom. 8 (1992), 315–334.
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