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Abstract
Summary: A major challenge in understanding the spread of certain newly emerging viruses is the presence of asymptomatic cases. Their prev-
alence is hard to measure in the absence of testing tools, and yet the information is critical for tracking disease spread and shaping public health
policies. Here, we introduce a framework that combines classic compartmental models with travel networks and we use it to estimate asymp-
tomatic rates. Our platform, traSIR (“tracer”), is an augmented susceptible-infectious-recovered (SIR) model that incorporates multiple locations
and the flow of people between them; it has a compartment model for each location and estimates of commuting traffic between compart-
ments. TraSIR models both asymptomatic and symptomatic infections, as well as the dampening effect symptomatic infections have on traffic
between locations. We derive analytical formulae to express the asymptomatic rate as a function of other key model parameters. Next, we use
simulations to show that empirical data fitting yields excellent agreement with actual asymptomatic rates using only information about the num-
ber of symptomatic infections over time and compartments. Finally, we apply our model to COVID-19 data consisting of reported daily infections
in the New York metropolitan area and estimate asymptomatic rates of COVID-19 to be �34%, which is within the 30–40% interval derived from
widespread testing. Overall, our work demonstrates that traSIR is a powerful approach to express viral propagation dynamics over geographical
networks and estimate key parameters relevant to virus transmission.

Availability and implementation: No public repository.

Contact: chazelle@cs.princeton.edu

1 Introduction

At the outset of the COVID-19 pandemic, the prevalence of
asymptomatic cases among infections was estimated to lie
anywhere between 17% and 81% (Nogrady, 2020). Given the
importance of this parameter for early health policy decisions
(Nishiura et al., 2020), such a high level of uncertainty was a
major roadblock. With testing now widely available, this issue
has largely dissipated, with estimates of asymptomatic rates
between �30% and �40% (Ma et al., 2021; Shang et al.,
2022). To prevent such difficulties in future epidemics, it
would be highly beneficial to have computational tools for es-
timating the asymptomatic rate of infected individuals right at
the beginning of an epidemic.

Infectious disease spread is classically modeled using com-
partmental models. The population is assigned to distinct
compartments (e.g. the susceptible, infectious and recovered
compartments in the widely studied SIR model) (Kermack
and McKendrick, 1927), with rates at which individuals
move from one compartment to another. When applying
these compartment-based epidemiological models, it is impos-
sible to predict the true prevalence of a virus early on in a pan-
demic without widespread random testing: indeed, even a tiny

fraction of a population showing symptoms for the disease is
compatible with a widespread infection. To estimate via com-
putational modeling the fraction of infectious individuals that
are asymptomatic, or the asymptomatic rate q, requires addi-
tional information. Here, we show that considering informa-
tion about how a virus spreads in a spatial manner—not just
between compartments at a single location—can be leveraged
to estimate q. The intuition is that, while individuals travel be-
tween locations and this contributes to viral spread, individu-
als who feel sick (i.e. are symptomatic) tend to curb travel,
which in turn yields a distinguishing observable between
symptomatic and asymptomatic carriers.

In this article, we introduce traSIR (pronounced
“tracer”), a network traffic-based SIR model, which com-
bines the classic SIR compartmental model with network
modeling. In traSIR, we have a network where each node is
a location (e.g. a county or ZIP Code), each location is asso-
ciated with a compartmental model and edges in the net-
work represent frequent travel between the locations (e.g.
commuting). TraSIR additionally models asymptomatic and
symptomatic infections, together with a dampening effect
on viral spread for symptomatic infections. Our primary
contribution is to demonstrate the utility of traSIR in
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estimating the asymptomatic rate of an infectious disease
using only knowledge about symptomatic infections across
geographic locations, as well as information about typical
travel between locations.

We begin with theoretical results relating the asymptomatic
rate of infection to other key parameters of the model (e.g. in-
fection and recovery rates). Since these key parameters are not
known a priori and must be estimated from the data, we next
assess how well parameters of a traSIR model can be esti-
mated using only knowledge about symptomatic infections.
In particular, we simulate disease spread using traSIR, and
then perform empirical parameter estimation using the num-
ber of symptomatic infections over time across locations to es-
timate the asymptomatic rate q. Across a wide range of
parameters, we find excellent agreement between the actual
and estimated q values. Finally, we analyze the number of
reported COVID-19 infections across the New York metro-
politan area during the first wave, from March 1, 2020 to
September 17, 2020.

The method behind traSIR seeks to combine topological
flow information with diagnostic data and behavioral varia-
tions. It makes use of a number of observable nonlinearities:
(i) in the absence of public health measures, a multiplicative
decrease in the symptomatic rate causes a forward time-shift
in the infection curve relative to its measurable baseline; (ii)
detection of carriers grow superlinearly in the number of
symptomatic cases; (iii) the number of newly symptomatic
cases is largely determined by the asymptomatic neighbors in
the network and (iv) asymptomatic carriers have a different
transmissibility rate (Li et al., 2020). Our platform, traSIR, is
the first of its kind to integrate county-level data with a com-
muter network on a large scale to recover critical epidemio-
logical characteristics directly from network dynamics, in
particular the asymptomatic rate.

1.1 Further background

Standard epidemiological models have previously been ex-
tended to account for disease spread across space, but the me-
dium has typically been assumed to be homogeneous (where
the population is treated as one large group, as opposed to
interacting subpopulations) (Brauer et al., 2008; Eletreby
et al., 2020), leading to a diffusive process. Typically, the
speed of a wave across the population grows in proportion to
the square root of the reproduction number and the diffusion
coefficient. Epidemics have also previously been studied in
random graphs and scale-free networks (Ajelli et al., 2010;
Barrat et al., 2008). Previous work has also considered the
correlation of viral spread with changing commuting patterns
as well as signals from social media or search engines
(Byambasuren, 2020; Li et al., 2020; Poletti et al., 2021;
Subramanian and Pascual, 2021; Sun et al., 2021; Zhan et al.,
2018); other approaches have integrated network effects into
compartmental models (Ameri and Cooper, 2019; Barabási,
2013; Ding et al., 2021; Dottori and Fabricius, 2015; Liu
et al., 2018). However, they lack any symmetry-breaking
mechanism for distinguishing between symptomatic and
asymptomatic carriers. This is precisely what traSIR offers.

Even agent-based modeling does not directly resolve this is-
sue. While agent-based modeling certainly provides enhanced
resolution and a distribution of outcomes (certain aspects of
which we leverage by decomposing our model to the county
level), agent-based modeling has not been able to properly es-
timate asymptomatic spread (Kerr et al., 2021). One

significant downside of agent-based modeling is that it is also
computationally expensive, even when leveraging vectorized
features to control spread mechanisms (Dabke and Arroyo,
2016).

1.2 Symmetry-breaking and asymptomatic spread

In order to properly estimate the asymptomatic rate, we need
to be able to distinguish between symptomatic and asymp-
tomatic spread. The model we present in this article allows us
to distinguish between these two types of spread via different
interaction patterns: we can have varying commuting and
travel patterns among asymptomatic and symptomatic
populations.

Our results show that under simple assumptions or static
parameters, we can still distinguish the spread within these
two populations. This implies that having some symmetry-
breaking is paramount and while we have ample room for re-
finement, mere existence of symmetry-breaking is sufficient
for estimating the asymptomatic rate accurately.

The asymptomatic rate can be estimated clinically
(Johansson et al., 2021; Martinelli et al., 2022; Sah et al.,
2021); while this is the most accurate approach, it requires
large-scale surveillance testing, which can be prohibitively
resource-intensive. In contrast, computational approaches
tend to add compartments to traditional SIR models, which is
also our strategy. In Li et al. (2021), they add multiple com-
partments; we add just one asymptomatic compartment,
which simplifies our model and increases computational trac-
tability. Our approach is most similar to Layton and Sadria
(2022), but we generalize to a larger geography and incorpo-
rate commuter data. For any modeling task, especially with a
novel infection, aggregating different modeling approaches
and data sources usually yields a strong consensus estimate;
therefore, we hope to add to the literature by providing a
modeling refinement and an additional estimate of the asymp-
tomatic rate of spread to the ensemble.

2 Methods
2.1 The model

We show how to embed the classic SIR epidemiological model
(Kermack and McKendrick, 1927) within a geographic net-
work with known travel rates. The network G ¼ ðV;EÞ is a
directed graph joining N nodes (typically, counties), whose
edges are annotated with the corresponding mean traffic
rates of commuters. The edge set E includes all the pairs ði; jÞ
such that residents of county i commute to work in county j.
We assume the availability of an N-by-N stochastic
“commute” matrix M, such that Mij indicates the probability
that someone commutes from county i to county j on a typical
workday.

On day t, we denote the number of susceptible and recov-
ered individuals in county i by siðtÞ and riðtÞ, respectively.
Among the fiðtÞ carriers of the virus in the county, we distin-
guish between the ciðtÞ of them who show symptoms and the
aiðtÞ ¼ fiðtÞ � ciðtÞ who do not. The population size in county
i is denoted by ni ¼ fiðtÞ þ siðtÞ þ riðtÞ and is assumed fixed
over the period under investigation. For convenience, we may
write the right-hand side as

P
x2ff ;s;rg xiðtÞ.

The commute matrix M is blind to the health status of
commuters. Symptomatic people tend to travel less, however,
and this change has great effect on contagion. To capture
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this phenomenon, we introduce the decommute rate d 2 ½0; 1� as
a measure of the propensity of people feeling sick to stay home:

Mc ¼ ð1� dÞMþ dI: (1)

where I represents the identity matrix. Note that, if d ¼ 0, be-
ing symptomatic has no bearing on commuting. The matrix
Mc is a symmetry-breaking device which allows to distinguish
between sick virus carriers and the rest. This difference creates
observable nonlinearities in the viral dynamics that we can ex-
ploit to estimate the asymptomatic rate q. While our model
could allow Mx to be a function of time, we simply require
Mc to be different from the other transition matrices in order
to get the benefit of symmetry-breaking. Therefore, we let all
of them be static and set Ms ¼Ma ¼Mr ¼M. In the results
reported here, we set d to 8=9.

2.1.1 The chronology of infection

Instead of stating the model all at once, we introduce it one
piece at a time, following its natural chronology. We fix a
county i and trace the changes in the main state variables s, c,
a, r, f, n. We use specific times for illustrative purposes only.

• Step 1: At 8 am on day t, all commuters are ready to go to
work. We have fiðtÞ ¼ ciðtÞ þ aiðtÞ and

P
x2fs;c;a;rg xiðtÞ ¼

niðtÞ ¼ ni.
• Step 2: At 9 am, commuters are at work. This changes the

local population into a transient one, which we denote
with a “hat.” By definition of the commute matrix,
x̂iðtÞ ¼

P
j Mx

jixjðtÞ for x ¼ s; c; a; r, with f̂ iðtÞ ¼P
x2fc;ag x̂jðtÞ and n̂iðtÞ ¼

P
x2fs;f ;rg x̂jðtÞ. The transient

population at county i will now get to mix all day at work
and spread the infection among itself.

• Step 3: At 5 pm, commuters go home. The new population
at county i is denoted with a “bar.” It consists of the same
ni people present at 8 am, but with a different health status
distribution. Take the set of infected individuals: it
includes the fiðtÞ carriers from 8 am plus the newly
infected. The latter consist of the subset of the siðtÞ suscep-
tible individuals who caught the virus by commuting to
county j and got exposed to a carrier in the transient pop-
ulation of j. Note that this includes the case j ¼ i of non-
commuters who were exposed to infected visitors. The
chance of anyone getting sick in this fashion is
ujðtÞ :¼ bf̂ jðtÞ=n̂jðtÞ, where 0 < b < 1 measures the
transmission rate: it is the average number of contacts per
person per day times the probability of transmission in a
contact between an infected person and a susceptible one.
(The model can easily accommodate a time-varying rate b.
The reason for keeping it fixed is to decouple the baseline
socialization rate from its pandemic-induced variations
via the commute matrices.)

The number of newly infected residents of county i is
the sum, over all j, of the number of commuters from
county i who went to county j and got infected there: there-
fore, it is equal to siðtÞwiðtÞ, where wiðtÞ :¼

P
j MijujðtÞ <

1 denotes the worktime infectivity rate: it is the probability
that a commuter from i catches the virus at work.

We have f iðtÞ ¼ fiðtÞ þ siðtÞwiðtÞ. Since a fraction q of
these new infections are asymptomatic, we have

siðtÞ ¼ siðtÞð1� wiðtÞÞ
ciðtÞ ¼ ciðtÞ þ ð1� qÞsiðtÞwiðtÞ
aiðtÞ ¼ aiðtÞ þ qsiðtÞwiðtÞ:

8<
: (2)

• Step 4: At 8 am on day t þ 1, further mixing will have oc-
curred in county i since the previous evening. A fraction c
of the infected people will have recovered by then. Writing

uiðtÞ ¼ bsiðtÞ
ciðtÞ þ aiðtÞ

ni

� �
;

we have

siðt þ 1Þ ¼ siðtÞ � uiðtÞ
ciðt þ 1Þ ¼ ð1� cÞciðtÞ þ ð1� qÞuiðtÞ
aiðt þ 1Þ ¼ ð1� cÞaiðtÞ þ quiðtÞ
riðt þ 1Þ ¼ riðtÞ þ cciðtÞ þ caðtÞ:

8>><
>>: (3)

We note that traSIR involves two rounds of mixing: the
first one in the daytime accounts for intercounty infection
(via commuting); the second one (nighttime) models intra-
county infection (within each county). For simplicity, we
model recovery in the latter only. (For this reason, our
value of c might differ from the standard one by a factor
of 2.)

2.1.2 traSIR in vector form

We can give a compact description of the model. Let xðtÞ de-
note the row vector with N coordinates xiðtÞ, for
x 2 fs; c; a; r; ng. We define the row vectors

x̂ðtÞ ¼ xðtÞMxðtÞ; for x 2 fs; c; a; rg
f̂ ðtÞ ¼

P
x2fc;ag x̂ðtÞ ; n̂ðtÞ ¼

P
x2fs;f ;rg x̂ðtÞ

uðtÞ ¼ bf̂ ðtÞ � n̂ðtÞ ; wt ¼ uðtÞMsðtÞT :

8><
>: (4)

Using the symbols � and � to refer to component-wise vec-
tor multiplication and division, respectively, we have

sðtÞ ¼ sðtÞ � sðtÞ � wðtÞ
cðtÞ ¼ cðtÞ þ ð1� qÞsðtÞ � wðtÞ
aðtÞ ¼ aðtÞ þ qsðtÞ � wðtÞ:

8<
: (5)

For uðtÞ :¼ bsðtÞ � ðcðtÞ þ aðtÞÞ � ðn1; . . . ;nNÞ,

sðt þ 1Þ ¼ sðtÞ � uðtÞ
cðt þ 1Þ ¼ ð1� cÞcðtÞ þ ð1� qÞuðtÞ
aðt þ 1Þ ¼ ð1� cÞaðtÞ þ quðtÞ
rðt þ 1Þ ¼ rðtÞ þ ccðtÞ þ caðtÞ:

8>><
>>: (6)

2.2 Parameter estimation

Given a commute network and daily symptomatic infections
across each node in the network, we develop an approach for
estimating the asymptomatic rate q. The estimation algorithm
can be viewed as a two-player game in which participants
take turns updating their current estimates of ðb; cÞ and q, re-
spectively. Recall that b; c measure the infection and recovery
rate, respectively. We assume that all counties have the same
value of b and c. The updating is driven by grid search (and
gradient descent) with respect to a normalized mean-square
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loss function, which is computed for a node k across all time
points as follows:

Lðc; ĉÞ ¼
XT

t¼1

cðtÞ
jjcjj1

� ĉðtÞ
jjĉjj1

 !2

; (7)

where c is the vector in ½0; 1�T whose coordinate cðtÞ denotes
the recorded rate of symptomatic cases in the population in
some given county k at time t. We write c ¼ ck when disam-
biguation is needed.

The normalization makes the loss invariant under scaling.
This is a necessary feature given the noise in the data. Of high-
est concern is the corruption of the official figures caused by
the inclusion of reported asymptomatic cases via testing and
the exclusion of symptomatic patients who do not seek a diag-
nosis. We assume that the signal-to-noise ratio remains con-
stant over time; hence, that the time series c is available up to
an unknown scaling factor. The normalization factors out
that uncertainty.

The vector ĉ ¼ ĉðb; c;qÞ is the traSIR-predicted counterpart
to the factual vector c; the matrix M and the decommute rate,
defined in (1), are fixed. We assume that the infection is
seeded at county i0. With q expected to exert a relatively mi-
nor influence on the transmission/recovery parameters at the
seeded node, it is natural to base the estimate of ðb; cÞ on the
time series ci0 .Within Algorithm 1, we set jmax ¼ 3 (conver-
gence is quick). The grid search is over a discrete space of size
103 for q and 104 for ðb; cÞ. The number of gradient descent
steps is kmax ¼ 103; the gradient descent threshold is smin ¼
10�12 and the learning rate is e ¼ 10�4=NT. Note that the
output ðb�; c�;q�Þ will be referred to as the estimated parame-
ters ðb̂; ĉ; q̂Þ in the text.

2.3 Actual data

For the commute network and population data, we rely on
the most recent (pre-COVID) American Community Survey
from the U.S. Census Bureau (American Community Survey
[ACS], 2015a,b). The nodes in the network represent the

counties; the edges are directed and weighted in proportion to
the number of residents who live in the source county and
work in the destination county. We clean up the data by re-
moving all the edges associated with fewer than 10 000 com-
muters. From the resulting graph, we extract the largest
weakly connected component, which in this case corresponds
to the New York Metropolitan Area. It consists of 44 coun-
ties: a visualization of which can be seen in Figure 1. For the
infection data, we use the New York Times COVID-19
tracker and focus on the 200 days between March 1, 2020
and September 17, 2020 (Connell, 2022; The COVID
Tracking Project at The Atlantic, 2022; The New York
Times, 2022) (https://www.census.gov/data/tables/2015/
demo/metro-micro/commuting-flows-2015.html and https://
www.census.gov/programs-surveys/acs/technical-documenta
tion/table-and-geography-changes/2015/5-year.html).

2.4 Simulated data

We generate 481 low-discrepancy values of b, c and q, where
0:2 � b; q � 0:8;0:01 � c � 0:7, using Sobol sequences
from the SciPy package (https://docs.scipy.org/doc/scipy/refer
ence/generated/scipy.stats.qmc.Sobol.html). For each of the
481 combinations of parameters, we run traSIR with the cor-
responding parameters for 150 timesteps on the New York
Metropolitan area population and network data, assuming
that there is a single infected individual in New York County
(Manhattan). We further corrupt the resulting symptomatic
population sizes by a fixed scalar that is unknown to the
algorithm.

For validation, we run Algorithm 1 on the corrupted simu-
lation to produce the estimated parameters ðb̂; ĉ; q̂Þ. We eval-
uate the accuracy and tabulate the residuals between the
estimation and actual parameters ðb; c;qÞ.

3 Results

The main contribution of this article is to demonstrate empiri-
cally that a network-based epidemiological model can un-
cover key parameters of a contagious disease. We provided an
intuitive explanation for why this might be possible as long as
a symmetry-breaking mechanism is in place for distinguishing
among different types of virus carriers. Before we discuss the

Figure 1. New York City metropolitan area: Each state is colored

differently, with, at the center, Manhattan in black. The node size

corresponds to the population in that county. The nodes are positioned

according to the geographic center of each county

Algorithm 1

procedure ESTIMATE(c)

q�  0:5

for ‘ ¼ 1; 2; . . . ; jmax do

. use grid search to optimize ðb�; c�Þ via normalized

mean-square loss function at initial county i0

ðb�; c�Þ  argminðb;cÞLðci0 ; ĉ i0 ðb; c; q�ÞÞ

. use grid search to optimize q� via normalized mean-

square loss function across all counties

q�  argminq
PN

i¼1 Lðci ; ĉ i ðb�; c�; qÞÞ

. gradient descent on q�

gðxÞ :¼
PN

i¼1 Lðci ; ĉ i ðb�; c�; xÞÞ
k  0; s 1
while s > smin & k < kmax do

s eðdg=dxÞðq�Þ
q�  maxf0; q� � sg
k  k þ 1

return ðb�; c�; q�Þ
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empirical evidence and validate our approach, we provide a
succinct mathematical foundation for our claim.

3.1 Theoretical analysis

We fix the county i and the time t and we drop all mention of
t when it is understood from the context. By Equations (2)
and (3),

fiðt þ 1Þ ¼ ð1� cþ bsi=niÞf i

¼ ð1� cþ bsið1� wiÞ=niÞðfi þ siwiÞ
¼ ð1� cþ bsi=niÞfi

þð1� cþ bðsi � fiÞ=niÞsiwi � ðb=niÞðsiwiÞ
2;

(8)

where

wi ¼
X

j

Ms
ijujðtÞ

¼ b
X

j

Mij

f̂ j

n̂j

¼ b
X

j

Mij

P
kðfk � dckÞMkj þ dcjP
kðnk � dckÞMkj þ dcj

:

Recall that f̂ iðtÞ denotes the number of infected individuals
in the transient population at county i at the end of the morn-
ing commute. Let f 0i ¼

P
k fkMki be the number it would have

been if we had d ¼ 0 and hence Mc ¼M; we derive n0i ¼P
k nkMki from n̂iðtÞ likewise. We have

f̂ jðtÞ ¼
P

kðfk � dckÞMkj þ dcj ¼ f 0j � dð1� qÞgj

n̂jðtÞ ¼
P

kðnk � dckÞMkj þ dcj ¼ n0j � dð1� qÞgj;

(
(9)

where gj ¼ f 0j � fj. This allows us to rewrite wi as

wi ¼ b
X

j

Mij

f 0j � dð1� qÞgj

n0j � dð1� qÞgj

 !
: (10)

The worktime infectivity rate wi plays a key role in
traSIR. If M ¼ I, then wi ¼ bfi=ni is the usual infectivity rate
in the classic SIR model. Take the case of an arbitrary matrix
M and set d ¼ 0. Denote by EjðiÞ the expectation operator
indexed by i and defined by Mij, for j ¼ 1; . . . ;N. Likewise,
we introduce the expectation operator EkðjÞ, indexed by j
and defined by nkMkj=

P
l nlMlj, for k ¼ 1; . . . ;N. It follows

that

wjd¼0
i ¼ b

X
j

Mij

X
k

nkMkjP
l nlMlj

 !
fk

nk

¼ bEjEkðjÞ
fk

nk
:

(11)

We conclude that, when decommuting is withheld (d ¼ 0),
wi is an average of infection ratios fk=nk over counties adja-
cent to i or adjacent to the latter. This two-degree of separa-
tion corresponds to individuals from distinct counties meeting
at work in a third county. The same idea holds for d > 0, but
with corrective terms that we discuss below.

In epidemiology, an important characteristic of an infection
is the basic reproduction number R0, which measures the

average number of cases generated by an infected individual
(Anderson and May, 1991). At the outset of the pandemic,
we can use fiðt þ 1Þ=fiðtÞ as a proxy for the reproduction
number R0 associated with county i. In a classical SIR
model, R0 has the form b=c, but in TraSIR, it follows from (8)
that

R0 ¼ 1� cþ bsi

ni
þ 1� cþ bðsi � fiÞ=ni

fi

� �
siwi

� b
fini
ðsiwiÞ

2:
(12)

Together, Equations (10) and (12) form a system SðqÞ ¼ 0,
which in theory allows us to recover the asymptomatic rate q
from b, c and R0. It is noteworthy that this requires decom-
muting. The system S cannot be solved for q in closed form.
Using traSIR for estimation can thus be viewed as a numerical
solver for S.

3.2 Simulations

We demonstrate that Algorithm 1 can accurately recover the
infection rate b, recovery rate c and asymptomatic rate q in
simulated infections across a wide range of parameters, using
just knowledge about the network and the numbers of symp-
tomatic infected individuals. For each of simulations resulting
from many combinations of parameters (see Methods), we
will use the number of symptomatic individuals for each
county over time. In practice, the actual number of symptom-
atic individuals is larger than the number reported, we multi-
ply each of the resulting symptomatic population sizes by a
fixed scalar (unknown to the algorithm), and then run
Algorithm 1 to produce the estimated parameters ðb̂; ĉ; q̂Þ.

We find excellent agreement between the actual parameters
b, c and q and their estimates ðb̂; ĉ; q̂Þ (Fig. 2). Figure 2 shows
a scatter plot of an estimated parameter against the corre-
sponding synthetic parameter for the New York area. The
Pearson correlation coefficient is 0.9996 between b and its
predicted value. For c and q, it is 0.9983 and 0.9915, respec-
tively. The absolute residual across all starting parameters has
mean 0.023 and standard deviation 0.017. The absolute re-
sidual mean and standard deviation for b are 0.0032 and
0.00246; for c are 0.0065 and 0.0064 and for q are 0.0158
and 0.0163.

3.3 Applications to COVID-19 data

Having validated our estimation technique on simulated data,
we now apply Algorithm 1 to daily infection numbers from
the New York Metropolitan area (see Methods), and estimate
the asymptomatic rate q, a parameter of critical importance
to health policymakers. We find:

b ¼ 0:320 ; c ¼ 0:046 ; q ¼ 0:345 :

Using these parameters, we also compared the traSIR-
simulated symptomatic infection count with the real reported
infection count across the New York metropolitan area
(Fig. 3), and find good agreement.

4 Discussion

We have shown via theoretical analysis and simulation that
a network-augmented compartmental model can effectively
estimate the asymptomatic rate of viral infections using only
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data about symptomatic infections. The theoretical estima-
tion is derived through (10) and (12). For simulation, we
have applied this approach to actual COVID-19 data and
derived an estimate of the asymptomatic rate that matches
well with the latest estimates obtained via extensive random
testing.

While our results are based on the different interaction pat-
terns among asymptomatic and symptomatic populations, it
is also possible to distinguish between these two types of
spread in two more ways:

1) Distinct infection rates: we can impose dissimilar trans-
missibility rates in the two types of spread.

2) Differentiated seeding: we can account for several types
of spread starting in various locations, perhaps based on
local policy or other environmental factors.

Taken together, these factors are a broad set of levers that
can influence the emergent behavior of our model, thus poten-
tially enhancing the accuracy of our traSIR model.

Our estimates for b and c are sharper than for q. This is no
surprise. Both the transmission rate and the recovery rate
have direct influence on the local shape of the infection time
series: the first one has a large effect on the ascent phase of
the contagion while the other one’s impact can be felt most
acutely in the descent phase. The impact of the asymptomatic
rate q is more global and subtle. It can be felt in the speed of
the traveling waves and generally operates on longer time
scales. TraSIR is able to leverage such information. Credit for
our success must also go to sheer luck: An asymptomatic rate
of �30% is almost ideally sized for estimation. As we ob-
served earlier, a rate close to 100% would make the task
hopelessly difficult. This leaves open the possibility that other
nonlinearities in the system can be exploited to boost accuracy
when needed. While fast-changing health policy measures and
medical breakthroughs (e.g. vaccination) can present traSIR
with major challenges, they also create new windows of op-
portunity for novel estimation mechanisms. We hope that this
work will plant the seeds for exciting new research on the
messy, difficult, but fascinating subject of uncovering hidden
epidemiological parameters.
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Figure 2. Each plot compares the actual and predicted value of a parameter for many different combinations of the two others. As expected, the

estimation of q degrades as the actual value gets large. Ultimately, if no one feels sick, behavior does not change and the method cannot pick up q

Figure 3. The blue ragged line is the scaled version of the reported daily

case count across the New York City metro area, summed across the 44

counties considered here. The orange smooth line is the simulated daily

symptomatic case count given our estimated parameters. The scaling

factor is chosen to display both lines in a similar magnitude
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