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Abstract

Applying standard dimensionality reduction techniques, shiow how to perform approximate range searching
in higher dimension while avoiding the curse of dimensitggalGiven n points in a unit ball ink9, an approximate
halfspace range query counts (or reports) the points in syduafspace; the qualifier “approximate” indicates that
points within distance of the boundary of the halfspace might be misclassified. whtig errors near the boundary
has a dramatic effect on the complexity of the problem. We givsolution Witrﬁ(d/ez) query time ancir®€ )
storage. For an exact solution with comparable query time, eeds roughlyz(nd) storage. In other words, an
approximate answer to a range query lowers the storageresggmt from exponential to polynomial. We generalize
our solution to polytope/ball range searching.

1 Introduction

A staple of computational geometry [1, 2], range searchsrtheé problem of preprocessing a Bedf n points inRY

so that, given a regioR (the range) chosen from a predetermined class (egl-dimensional boxes, simplices, or
halfspaces), the points BN R can be counted or reported quickly. The case of halfspacesésvorthy because many
range searching problems with “algebraic” ranges can becesdito it through linearization-via-lifting. The courgin
version can be solved i®(logn) query time and(nd/log” n) storage, while the reporting case can be handled in
O(logn+ k) query time andD(nl%/2/polylog(n)) storage, wher& is the number of points to be reported [1]. In both
cases, the exponential dependencylesthe so-called curse of dimensionality—is a show-stoppelarged. Lower
bound work in a variety of highly reasonable models suggbsisthe curse of dimensionality is inevitable [4, 5].

Inspired by recent work on approximate nearest neighbackeey [9, 10, 8], we seek the mildest relaxation of
the problem that will break the curse of dimensionality. Miilit loss of generality we assume that all the point® of
lie in a unit ball ofég. LetS, be a halfspace, with denoting its bounding hyperplane. Giver 0, thefuzzy boundary
of §, is the slab formed by all points within distangef h (Fig. 1). Approximate halfspace range searching refers to
counting (or reporting) the points &N S,, making allowance for errors regarding the points in thejuzoundary;
in other words, the output should be the size of a set whosengjrit difference wittPN §, lies entirely in the fuzzy
boundary.

Approximate range searching is relevant in situations witlee data is inherently imprecise and points near the
boundary cannot be classified as being inside or outsideamighcertainty. In the case of reporting, of course, one
can always move the boundary byo ensure that the output contaiegerypoint of PN §,, which then allows us to
retrieve the right points by filtering out the outsiders.

Theorem 1.1. Approximate halfspace range searching can be solved W'nalwuneé(d/sz) and drPE™) storage!
Any given query is answered correctly with arbitrarily higtobability.

Our algorithm beats the lower bound for the exact versiohefitroblem. Indeed, it is known that in the arithmetic

model if onlydr®¢) storage is available, then the query time mus@igel~C(/d¢%)) [4]. Our algorithm generalizes
to ranges formed by polytopes bounded by a fixed number ofrplgrees and to (Euclidean) ball range searching.
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We also propose an alternative algorithm for approximalfspace range searching with a query timeﬁ()(d/s)2+
dnt/(1+&)g=2) and storage(dne 2+ nt1/(1+8))_and a slightly different definition of approximation. Agaithe
query time is better than the solution for the exact problsinge by [4]Q(n~©1/d) query time is necessary when
we have close t®(n?) space.

Approximate range searching does not originate with thfgepaArya and Mount [3] gave an algorithm for the
problem that uses optim@l(dn) storage but provides a query time®@flogn-+&~9), which is exponential inl. Their
algorithm is based on space partition techniques, whickiig different from our dimension reduction approach.

2 Approximate Halfspace Range Sear ching

In this section we show how to reduce approximate halfspaege searching to an approximate variant of ball range
searching in the Hamming cube. Initially, we make the “hosmogpus” assumption that the hyperplanes bounding the
query halfspaces pass through the origin and that all ofitbeints lie in the Euclidean ballx||> < 1. We relax the
homogeneous condition later by lifting to one dimensiorhkig

2.1 TheHomogeneous Case

Let v, be the unit vector normal o pointing insideS,. Any pointp; in §, outside the fuzzy boundary is at a distance
from h at leas€ (Fig. 1). It follows that the angle betwe&wp; andvy is less tharmt/2 — €. (We assume that< 11/2.)
Similarly, for a pointp, not in §, and outside the fuzzy boundary, the angle betw@pnandvy, is greater tham/2+ €.
This provides a separation criterion to distinguish betwg@ints we must include and those we must not.

query halfspaceSy

Figure 1: Approximate halfspace range searching.

Let -1 denote the unitd — 1)-sphere inRY and letsign(t) be 1 ift > 0 and—1 otherwise. Lei andy be
two vectors inRY and let 0< Bxy < Tt be the angle between them. We uBg, to denote the evensign(x- u) =
sign(y-u). If uis uniformly distributed ove&'1, then it is well known that PrdlEy ] = 1 — 8,/ It follows that
Prold Eop, v, ] > 1/2+¢/mand ProbZEop, v, | < 1/2—¢/TL

Following Kleinberg’s approach [9] to nearest neighborskig, we invoke VC-dimension theory [5, 11] to show
the existence of a small number of unit vectors that can be tesdistinguish betweep; andp,. Let 1y denote
the subset 08" for which Exy happens. LeR be the collection ofit}y, for all x,y € RY. We consider the range
spaceg S 1, R). Each rangeit y is a Boolean combination of four halfspaces; therefore #pmeent of its (primal)
shatter function is@+ 2. A finite subsef of -1 is said to be g-approximation for the range spa(® 1, ) if, for
allRe %, ||[RNA|/|A| — u(R)| <y. Herep(R) is the measure drin the spaces™ 1. It follows from VC dimension
theory [5] that the range spat®' 1, R ) admits of ar(¢/(2m))-approximatiorA of sizeO(ds~?log(de~1)). Moreover,
a randomly chosen sétof that size is good with high probability.

Thus,| Wy, op, NA|/|Al > W( Wy, 0p,) —€/(2T) > 1/2+¢/(2m). Similarly, | T, 0p, NA|/|A| < 1/2—¢/(2m). For
any vectoxletg e {41, -1}/ be defined as follows: theth coordinate oKis sign(x- u;), whereu; is thei-th vector in
Aaccording to a fixed ordering. Recall thati y N A| is the number of vectorse A such thasign(x- u) = sign(y- u).



So|WyyNA| = |A| —du(X,Y) wheredy (-, -) is the Hamming distance. We thus haipf(\ﬁ,,(fﬁl) <(1/2—¢/(2m))|A|
andd (Vh, Opz) > (1/2-+¢/(2m))|A).

It immediately follows that approximate halfspace rangarcleing (under the homogeneous condition) reduces
to approximate ball range searching in the Hamming cuBeeprocess points in{+1, —1}/* so that, given anyj,
the points in the Hamming ball centeredvatwith radius|A|/2 can be approximately counted (or reported) quickly.
The term “approximately” means that all points within dista(1/2 — &/(2m))|A| must be included while all points
further than(1/2+ ¢/(2m))|A| must be excluded.

2.2 TheGeneral Case

To remove the homogeneous condition, we lift the problemift 1. First of all, we may assume that the input point
set lies in the Euclidean bdk||> < 1. Now, map each poirg = (py,...,pd) to p’' = (p1....,Pd. 1) € R4, Note that

the new point set ilR%*? lies in the Euclidean bal|x||2 < v/2. Given a query halfspaceyxy + - -- + qaXd > 0d- 1,

first we compute the distance frobito its bounding hyperplane. If it exceeds 1, then all of th@ints are on one
side of the hyperplane and we return the exact answer (ditioen). Otherwise,qurl < ¥ig%. We map the query

to a new halfspace ilR4*: quxq + --- + qgXd — 0a+1%d+1 > 0. Note that the new query passes through the origin.
Moreover, it is straightforward to verify that: (i) all pdifalfspace incidence relations are preserved by the map;
and (i) point-hyperplane distances are preserved to wihfactor ofy/2 because of the upper bound «ml. The
problem is now reduced to the homogeneous case after fureddaling ot.

3 Approximate Ball Range Searching in the Hamming Cube

We give two solutions for approximate ball range searchintipék-dimensional Hamming cubiegX, wherek = |A| =
O(de~2log(de~1)). Recall that the problem is to preprocess aSef n points so that, given ang € H¥, we can
quickly count (or report) approximately the points®vithin distancek/2 tog.

3.1 A High-Storage Solution

We adapt to the problem at hand Kushilevitz et al.’s solut@mapproximate nearest neighbor searching in the Ham-
ming cube [10]. Fix two parametensandt to be determined later. The search structtimnsists ofm substructures
Ti,...,Im, all of them constructed in the same way but independentynefanother. Fix € {1,...,m}. The sub-
structured; is built by pickingt coordinates oHK at random (out ok). Project each point € HX onto the subspace
spanned by thedecoordinates. The resulting vectpix) € {0,1}! is called thetrace of x. Each7; consists of a table
of 2! entries, one for each trace. Each entry stores a numberafigercounting) or a pointer to a list of points (for
range reporting), to be specified below. The intuition ig,taa long ag is large enough, say= ©(¢2logn), by a
discrete analogue of Johnson and Lindenstrauss’s thedfigithgé random projections preserve inter-point distances
in appropriate range within a relative erroreof

We say that a substructugfails at queryg € HX if there existsp € Ssuch that either of the following holds:

e dn(p,q) < (1/2—¢/(2m)kbutdy (t(p).t(a)) > (1/2—¢/(3M)t;
e du(p,a) > (1/2+¢/(2m)kbutdu (t(p),t(a)) < (1/2+¢/(3m)t.
Lemma 3.1. The probability that7 fails at q is at most ne?(t.

Let0< c< 1 be a constant to be specified later. We say that the strugfaiks atq if more thancmsub-structures
T fail atq.

Lemma 3.2. For anyy > 0 if we set m= (k+logy1)/c, then for some = O(e~2In(2en/c)), S fails nowhere with
probability at leastl — .



The proofs of Lemma 3.1 and Lemma 3.2 follow from standardieaions of the Chernoff bounds and can be
found in [10]. We don't repeat them here. Lemma 3.2 implieat,thvith high probability, for any querg € HX
and anyp € S, there are at leagtl — c)m substructure®; that provide the following guarantees: (i)dfi(p,q) <
(1/2—¢/(2m)kthendy (t(p), t(q)) < (1/2—¢/(3m)t; (i) if dhi (P, ) > (1/2+¢/(2m) kthendy (t(p), t(q)) > (1/2+
€/(3m)t. In the preprocessing stage, for each entpy) in the table associated with, we store the number of points
p € Ssuch thady (t(x),t(p)) < (1/2—¢/(3m))t (for range reporting, we store a pointer to a list of such {®inTo
answer a querg, we pick one substructurg € S uniformly at random. We computgq) and use it to index the table
of 7;. We output the answer stored at that entry. By Lemma 3.2, prithvability at least * c, the substructuré;
does not fail at}, and so we get a correct answer for approximate ball rangeeagudt is easy to see that the storage
requirement i€)(nd+ m2') in terms of the number of bit(nd) for the set of input points;m2! logn for m2! table
entries each storing an answer (a number between @)diod some querieantlogk for m substructures each defined
byt (random) coordinates out &f For reporting, the last term aboverigin. The query time is essentially the time
needed to computg(q) (plus the output size for reporting). There areoordinates to be computed and each takes
time O(d) by doing an inner product between the query and a vector fhar(ef (2m))-approximation in section 2.1.
So the query time i©(dt). In view of Lemma 3.2 and the reduction shown in the last eacthis proves Theorem 1.1.

We claim that the above algorithm, after some suitable maatifin, also works when each query is the intersection
of a set of halfspaces. For a halfsp&hewe useS, to denote its fuzzy boundary. We uSe = $,\S; to denote the
part of S, outside the fuzzy boundary. Similarly, we u§e = $,\S;, to denote the part d, (the complement o%;)
outside the fuzzy boundary. Given a $¢tof | halfspaces with common intersectiqh we defineQ™ = Ng cx §;
andQt = Us,en S'. We require that all points i~ must be included while all points i@ must be excluded. The
region bounded byQ*" anddQ is the query’s fuzzy boundary. Unlike the convention in [BE width of the fuzzy
boundary here is not related to the size of the query rangéoltie diameter of the point set. Using the reduction
in the previous section, this problem is reduced to the fahg multiple-ball approximate range searching in the
Hamming cube: Preprocess a seingfoints inHK so that, given anyy,...,q all in HX, we can quickly count (or
report) approximately the points within distanc& to eachg; (1 < j <I). The term “approximately” means that
all points within distancél/2 — &/ (2m))k to everyq; must be included, while all points further th&ty2+€/(2m))k
from at least ong; must be excluded.

Itis straightforward to modify the algorithm in this sectito incorporate such multiple-ball queries. For example,
we combind traces(ti(a1),...,ti(q)) of Z together to form a single vector in dimensiibnWe also modify eachy
so that its table has'2entries, one for each possiliktuple of traces. For each entfyy(qs),....t(q)) in the table,
we store the number of pointssuch thaiy (ti(q;j),ti(p)) < (1/2—¢/(3m))t holds for eacty;. Answering a query
is the same as before: We pick one substructineniformly at random. We computg(q1),...,ti(q)) and use it
to index the table off;. We output the answer stored at that entry. The definitionislammas in this section only
need to be changed slightly for the analysis to work. In paldir, the values ahandt in Lemma 3.2 are changed to
(Ik+logy1)/c andO(e~2In (2enl/c)) respectively. As long as the number of halfspacissconstant, the time and
space bounds of Theorem 1.1 remain the same.

3.2 A Low-Storage Solution

The storage achieved in the previous section is polynomiakiut with an exponent ab(¢~2). We propose another
solution that uses roughly quadratic space and still pes/gliblinear query time. For this purpose, however, we need
to relax the meaning of approximation furtherNif(q) denotes the number of points®in the Hamming ball centered
atq of radiusr, then we output a numbé# such that(1 — a)N1_o(e)k/2(a) <N < (1+0)Ni1yo(e)K/2(d), for any
fixeda > 0. In section 3.6 of [6], it is shown that computing such a nenmi¥ can be reduced to th@d + €)-PLEB
problem (stands for “Point Location in Equal Balls”) with aitiplicative overhead ofi—3log?n in both query time
and storage. Thél + €)-PLEB problem is defined as follows [6, 8]: given a §edf n points in the Hamming cube

Hk and a fixed < k, preproces® such that, given any quegye HX,

e if there exists a poinp € P such thatdy(p,q) < r, then answer “yes” and return a poipt € P such that
du(p,0) < (1+¢)r.

e if dy(p,q) > (14 ¢)r for any p € P then answer “no”.



It is shown in [8] that(1+ €)-PLEB in the Hamming cub&l* can be solved with query tim@(kn'/(1+8)) and
storage(kn-+ n'+1/(1+€)) Therefore approximate ball range searching can be solitadwery timeQ(dnl/ (1+&)g-2)
and storag®(dne 2+ n1t1/(18)) following the above reduction arid= O(de2log(de1)). This leads to an al-
gorithm for approximate halfspace range searching withytime O(d2e~2 + dnt/(1+€)g~2) and storag®(dne 2+
nlt1/(148)) 'as claimed in the introduction.

4 Approximate Ball Range Searching in Euclidean Space

Another problem we can solve is approximate ball range séaydn Euclidean space. Given a bai(g,r) in RY
with centerg and radiug, approximate ball range searching includes all pointddmshe smaller balB(q,r — st)
while excluding all points outside the larger b8{q,r + s¢), for some parametes= s(r). Points in the annulus
B(q,r +s¢)\B(g,r — sc) may be misclassified. In the Hamming cube, the techniqueritbestin previous section
solves approximate ball range searchingder ©(r). On the other hand, in such a solution the width of the annulus
(the fuzzy region) grows with. Whenr is large, it might be too big to provide an estimation of thestanswer. We
give another solution in whichis bounded even whanis large. Moreover, it works in Euclidean space.

Givenn points inRY in the unit ball||x|| < 1 and a query balB(g,r), we first compute the distance frogn=
(01,-..,0q) to the origin. If this distance is greater thas 1, then the query ball contains no points. So from now on
we assume thdfg|j> <r+1, or,

d
Zq? < (r41)7? (N

The query ball is given by the following equation:

d d d
ZZQiXi_ZXiZ‘FrZ—ZQiZ > 0

By a standard lifting map, it is mapped to a halfsp&gein RI+L:

d
ZQ1X1+"'+ZQdXd—Xd+1+(r2_qu) > 0

A point p= (py,..., pg) in RY is mapped tqy' = (p,...,Pa, 3i p?) in R4+1. Note that the new point set lies in
the Euclidean ballx||> < v/2. Moreover, it is easy to check that B(q,r) if and only if p’ € ;. It remains to show
that if p is outside the annuluB(q,r +s€)\B(q,r — s¢) thenp’ is outside a fuzzy boundary &, with width ©(g).
Givenp € B(q,r — s¢) we have:

rZ—Z(qi—pi)2 > 2rse—s%€? > rse 2)

The distance fronp’ to the boundary o%;; is:
r2—vi(g— pi)? rse 1 rse

fiay @ VITAT+1? v 1+

Note that the first inequality above follows from Equationarid 2. Using similar arguments, we can show that, for
p ¢ B(q,r + ), the distance fronp’ to the boundary of;; is at least(2rse)/(v/5(r +1)). Settings= (r +1)/r
keepsp’ outside a fuzzy boundary of widt®(€) and hence properly classified by the algorithm for halfspdne
this solutions = O(1) whenr = Q(1), and so the fuzzy region does not grow with The time and space bounds
are essentially the same as those for approximate halfspage searching; in particular, the bounds of Theorem 1.1
apply to approximate ball range searching as well.
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