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Abstract

Applying standard dimensionality reduction techniques, we show how to perform approximate range searching
in higher dimension while avoiding the curse of dimensionality. Givenn points in a unit ball inRd, an approximate
halfspace range query counts (or reports) the points in a query halfspace; the qualifier “approximate” indicates that
points within distanceε of the boundary of the halfspace might be misclassified. Allowing errors near the boundary
has a dramatic effect on the complexity of the problem. We give a solution withÕ(d/ε2) query time anddnO(ε−2)

storage. For an exact solution with comparable query time, one needs roughlyΩ(nd) storage. In other words, an
approximate answer to a range query lowers the storage requirement from exponential to polynomial. We generalize
our solution to polytope/ball range searching.

1 Introduction

A staple of computational geometry [1, 2], range searching is the problem of preprocessing a setP of n points inR
d

so that, given a regionR (the range) chosen from a predetermined class (eg, alld-dimensional boxes, simplices, or
halfspaces), the points ofP∩Rcan be counted or reported quickly. The case of halfspaces isnoteworthy because many
range searching problems with “algebraic” ranges can be reduced to it through linearization-via-lifting. The counting
version can be solved inO(logn) query time andO(nd/ logd n) storage, while the reporting case can be handled in
O(logn+k) query time andO(nbd/2cpolylog(n)) storage, wherek is the number of points to be reported [1]. In both
cases, the exponential dependency ond—the so-called curse of dimensionality—is a show-stopper for larged. Lower
bound work in a variety of highly reasonable models suggeststhat the curse of dimensionality is inevitable [4, 5].

Inspired by recent work on approximate nearest neighbor searching [9, 10, 8], we seek the mildest relaxation of
the problem that will break the curse of dimensionality. Without loss of generality we assume that all the points ofP
lie in a unit ball of`d

2. LetSh be a halfspace, withh denoting its bounding hyperplane. Givenε > 0, thefuzzy boundary
of Sh is the slab formed by all points within distanceε of h (Fig. 1). Approximate halfspace range searching refers to
counting (or reporting) the points ofP∩Sh, making allowance for errors regarding the points in the fuzzy boundary;
in other words, the output should be the size of a set whose symmetric difference withP∩Sh lies entirely in the fuzzy
boundary.

Approximate range searching is relevant in situations where the data is inherently imprecise and points near the
boundary cannot be classified as being inside or outside withany certainty. In the case of reporting, of course, one
can always move the boundary byε to ensure that the output containseverypoint of P∩Sh, which then allows us to
retrieve the right points by filtering out the outsiders.

Theorem 1.1. Approximate halfspace range searching can be solved with query timeÕ(d/ε2) and dnO(ε−2) storage.1

Any given query is answered correctly with arbitrarily highprobability.

Our algorithm beats the lower bound for the exact version of the problem. Indeed, it is known that in the arithmetic
model if onlydnO(ε−2) storage is available, then the query time must beΩ(n1−O(1/dε2)) [4]. Our algorithm generalizes
to ranges formed by polytopes bounded by a fixed number of hyperplanes and to (Euclidean) ball range searching.
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1The notationÕ( f ) stands forO( f polylog( f ·n)).
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We also propose an alternative algorithm for approximate halfspace range searching with a query time ofÕ((d/ε)2+
dn1/(1+ε)ε−2) and storageÕ(dnε−2 + n1+1/(1+ε))—and a slightly different definition of approximation. Again, the
query time is better than the solution for the exact problem,since by [4]Ω(n1−O(1)/d) query time is necessary when
we have close toO(n2) space.

Approximate range searching does not originate with this paper. Arya and Mount [3] gave an algorithm for the
problem that uses optimalO(dn) storage but provides a query time ofO(logn+ε−d), which is exponential ind. Their
algorithm is based on space partition techniques, which is very different from our dimension reduction approach.

2 Approximate Halfspace Range Searching

In this section we show how to reduce approximate halfspace range searching to an approximate variant of ball range
searching in the Hamming cube. Initially, we make the “homogeneous” assumption that the hyperplanes bounding the
query halfspaces pass through the origin and that all of then points lie in the Euclidean ball‖x‖2 ≤ 1. We relax the
homogeneous condition later by lifting to one dimension higher.

2.1 The Homogeneous Case

Let vh be the unit vector normal toh pointing insideSh. Any point p1 in Sh outside the fuzzy boundary is at a distance
from h at leastε (Fig. 1). It follows that the angle betweenOp1 andvh is less thanπ/2− ε. (We assume thatε < π/2.)
Similarly, for a pointp2 not inSh and outside the fuzzy boundary, the angle betweenOp2 andvh is greater thanπ/2+ε.
This provides a separation criterion to distinguish between points we must include and those we must not.
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Figure 1: Approximate halfspace range searching.

Let Sd−1 denote the unit (d − 1)-sphere inRd and letsign(t) be 1 if t ≥ 0 and−1 otherwise. Letx andy be
two vectors inR

d and let 0≤ θx,y ≤ π be the angle between them. We useEx,y to denote the event:sign(x · u) =
sign(y ·u). If u is uniformly distributed overSd−1, then it is well known that Prob[Ex,y ] = 1− θx,y/π. It follows that
Prob[EOp1,vh ] > 1/2+ ε/π and Prob[EOp2,vh ] < 1/2− ε/π.

Following Kleinberg’s approach [9] to nearest neighbor searching, we invoke VC-dimension theory [5, 11] to show
the existence of a small number of unit vectors that can be used to distinguish betweenp1 and p2. Let Wx,y denote
the subset ofSd−1 for which Ex,y happens. LetR be the collection ofWx,y, for all x,y ∈ R

d. We consider the range
space(Sd−1,R ). Each rangeWx,y is a Boolean combination of four halfspaces; therefore the exponent of its (primal)
shatter function is 2d+2. A finite subsetA of Sd−1 is said to be aγ-approximation for the range space(Sd−1,R ) if, for
all R∈ R , ||R∩A|/|A|−µ(R)| ≤ γ. Hereµ(R) is the measure ofR in the spaceSd−1. It follows from VC dimension
theory [5] that the range space(Sd−1,R ) admits of an(ε/(2π))-approximationAof sizeO(dε−2 log(dε−1)). Moreover,
a randomly chosen setA of that size is good with high probability.

Thus,|Wvh,Op1 ∩A|/|A| ≥ µ(Wvh,Op1)−ε/(2π) > 1/2+ε/(2π). Similarly, |Wvh,Op2 ∩A|/|A| < 1/2−ε/(2π). For
any vectorx let x̂∈ {+1,−1}|A| be defined as follows: thei-th coordinate of̂x is sign(x·ui), whereui is thei-th vector in
A according to a fixed ordering. Recall that|Wx,y ∩A| is the number of vectorsu ∈ A such thatsign(x·u) = sign(y·u).
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So|Wx,y∩A| = |A|−dH(x̂, ŷ) wheredH(·, ·) is the Hamming distance. We thus havedH(v̂h,Ôp1) < (1/2−ε/(2π))|A|
anddH(v̂h,Ôp2) > (1/2+ ε/(2π))|A|.

It immediately follows that approximate halfspace range searching (under the homogeneous condition) reduces
to approximate ball range searching in the Hamming cube: Preprocessn points in{+1,−1}|A| so that, given anŷvh,
the points in the Hamming ball centered atv̂h with radius|A|/2 can be approximately counted (or reported) quickly.
The term “approximately” means that all points within distance(1/2− ε/(2π))|A| must be included while all points
further than(1/2+ ε/(2π))|A| must be excluded.

2.2 The General Case

To remove the homogeneous condition, we lift the problem into R
d+1. First of all, we may assume that the input point

set lies in the Euclidean ball‖x‖2 ≤ 1. Now, map each pointp = (p1, . . . , pd) to p′ = (p1, . . . , pd,1) ∈ R
d+1. Note that

the new point set inRd+1 lies in the Euclidean ball‖x‖2 ≤
√

2. Given a query halfspace:q1x1 + · · ·+ qdxd ≥ qd+1,
first we compute the distance fromO to its bounding hyperplane. If it exceeds 1, then all of then points are on one
side of the hyperplane and we return the exact answer (either0 or n). Otherwise,q2

d+1 ≤ ∑i q
2
i . We map the query

to a new halfspace inRd+1: q1x1 + · · · + qdxd − qd+1xd+1 ≥ 0. Note that the new query passes through the origin.
Moreover, it is straightforward to verify that: (i) all point-halfspace incidence relations are preserved by the map;
and (ii) point-hyperplane distances are preserved to within a factor of

√
2 because of the upper bound onq2

d+1. The
problem is now reduced to the homogeneous case after suitable rescaling ofε.

3 Approximate Ball Range Searching in the Hamming Cube

We give two solutions for approximate ball range searching in thek-dimensional Hamming cubeHk, wherek = |A| =
O(dε−2 log(dε−1)). Recall that the problem is to preprocess a setS of n points so that, given anyq ∈ Hk, we can
quickly count (or report) approximately the points ofSwithin distancek/2 to q.

3.1 A High-Storage Solution

We adapt to the problem at hand Kushilevitz et al.’s solutionto approximate nearest neighbor searching in the Ham-
ming cube [10]. Fix two parametersmandt to be determined later. The search structureS consists ofmsubstructures
T1, . . . ,Tm, all of them constructed in the same way but independently ofone another. Fixi ∈ {1, . . . ,m}. The sub-
structureTi is built by pickingt coordinates ofHk at random (out ofk). Project each pointx ∈ Hk onto the subspace
spanned by theset coordinates. The resulting vectorti(x) ∈ {0,1}t is called thetraceof x. EachTi consists of a table
of 2t entries, one for each trace. Each entry stores a number (for range counting) or a pointer to a list of points (for
range reporting), to be specified below. The intuition is that, as long ast is large enough, sayt = Θ(ε−2 logn), by a
discrete analogue of Johnson and Lindenstrauss’s theorem [7], the random projections preserve inter-point distances
in appropriate range within a relative error ofε.

We say that a substructureTi fails at queryq ∈ Hk if there existsp ∈ Ssuch that either of the following holds:

• dH(p,q) < (1/2− ε/(2π))k butdH(t(p),t(q)) > (1/2− ε/(3π))t;

• dH(p,q) > (1/2+ ε/(2π))k butdH(t(p),t(q)) < (1/2+ ε/(3π))t.

Lemma 3.1. The probability thatTi fails at q is at most ne−Ω(ε2t).

Let 0< c< 1 be a constant to be specified later. We say that the structureS fails atq if more thancmsub-structures
Ti fail at q.

Lemma 3.2. For anyγ > 0 if we set m= (k+ logγ−1)/c, then for some t= O(ε−2 ln(2en/c)), S fails nowhere with
probability at least1− γ.
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The proofs of Lemma 3.1 and Lemma 3.2 follow from standard applications of the Chernoff bounds and can be
found in [10]. We don’t repeat them here. Lemma 3.2 implies that, with high probability, for any queryq ∈ Hk

and anyp ∈ S, there are at least(1− c)m substructuresTi that provide the following guarantees: (i) ifdH(p,q) <
(1/2−ε/(2π))k thendH(t(p),t(q)) ≤ (1/2−ε/(3π))t; (ii) if dH(p,q) > (1/2+ε/(2π))k thendH(t(p),t(q)) ≥ (1/2+
ε/(3π))t. In the preprocessing stage, for each entryti(x) in the table associated withTi , we store the number of points
p ∈ Ssuch thatdH(ti(x),ti(p)) ≤ (1/2− ε/(3π))t (for range reporting, we store a pointer to a list of such points). To
answer a queryq, we pick one substructureTi ∈ S uniformly at random. We computeti(q) and use it to index the table
of Ti . We output the answer stored at that entry. By Lemma 3.2, withprobability at least 1− c, the substructureTi

does not fail atq, and so we get a correct answer for approximate ball range queries. It is easy to see that the storage
requirement isÕ(nd+m2t) in terms of the number of bits:O(nd) for the set ofn input points;m2t logn for m2t table
entries each storing an answer (a number between 0 andn) for some queries;mt logk for msubstructures each defined
by t (random) coordinates out ofk. For reporting, the last term above ism2tn. The query time is essentially the time
needed to computeti(q) (plus the output size for reporting). There aret coordinates to be computed and each takes
time O(d) by doing an inner product between the query and a vector from the(ε/(2π))-approximation in section 2.1.
So the query time isO(dt). In view of Lemma 3.2 and the reduction shown in the last section, this proves Theorem 1.1.

We claim that the above algorithm, after some suitable modification, also works when each query is the intersection
of a set of halfspaces. For a halfspaceSh, we useSε

h to denote its fuzzy boundary. We useS−
h = Sh\Sε

h to denote the
part ofSh outside the fuzzy boundary. Similarly, we useS+

h = Sh\Sε
h to denote the part ofSh (the complement ofSh)

outside the fuzzy boundary. Given a setH of l halfspaces with common intersectionQ, we defineQ− =
T

Sh∈H S−
h

andQ+ =
S

Sh∈H S+
h . We require that all points inQ− must be included while all points inQ+ must be excluded. The

region bounded by∂Q+ and∂Q− is the query’s fuzzy boundary. Unlike the convention in [3],the width of the fuzzy
boundary here is not related to the size of the query range butto the diameter of the point set. Using the reduction
in the previous section, this problem is reduced to the following multiple-ball approximate range searching in the
Hamming cube: Preprocess a set ofn points inHk so that, given anyq1, . . . ,ql all in Hk, we can quickly count (or
report) approximately the points within distancek/2 to eachq j (1 ≤ j ≤ l ). The term “approximately” means that
all points within distance(1/2− ε/(2π))k to everyq j must be included, while all points further than(1/2+ ε/(2π))k
from at least oneq j must be excluded.

It is straightforward to modify the algorithm in this section to incorporate such multiple-ball queries. For example,
we combinel traces(ti(q1), . . . ,ti(ql )) of Ti together to form a single vector in dimensionlt . We also modify eachTi

so that its table has 2lt entries, one for each possiblel -tuple of traces. For each entry(ti(q1), . . . ,ti(ql )) in the table,
we store the number of pointsp such thatdH(ti(q j),ti(p)) ≤ (1/2− ε/(3π))t holds for eachq j . Answering a query
is the same as before: We pick one substructureTi uniformly at random. We compute(ti(q1), . . . ,ti(ql )) and use it
to index the table ofTi. We output the answer stored at that entry. The definitions and lemmas in this section only
need to be changed slightly for the analysis to work. In particular, the values ofm andt in Lemma 3.2 are changed to
(lk + logγ−1)/c andO(ε−2 ln(2enl/c)) respectively. As long as the number of halfspacesl is constant, the time and
space bounds of Theorem 1.1 remain the same.

3.2 A Low-Storage Solution

The storage achieved in the previous section is polynomial in n but with an exponent ofO(ε−2). We propose another
solution that uses roughly quadratic space and still provides sublinear query time. For this purpose, however, we need
to relax the meaning of approximation further. IfNr(q) denotes the number of points ofSin the Hamming ball centered
at q of radiusr, then we output a numberN such that(1− α)N(1−O(ε))k/2(q) ≤ N ≤ (1+ α)N(1+O(ε))k/2(q), for any
fixed α > 0. In section 3.6 of [6], it is shown that computing such a number N can be reduced to the(1+ ε)-PLEB
problem (stands for “Point Location in Equal Balls”) with a multiplicative overhead ofα−3 log2n in both query time
and storage. The(1+ ε)-PLEB problem is defined as follows [6, 8]: given a setP of n points in the Hamming cube
Hk and a fixedr ≤ k, preprocessP such that, given any queryq ∈ Hk,

• if there exists a pointp ∈ P such thatdH(p,q) ≤ r, then answer “yes” and return a pointp′ ∈ P such that
dH(p′,q) ≤ (1+ ε)r.

• if dH(p,q) > (1+ ε)r for any p ∈ P then answer “no”.
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It is shown in [8] that(1+ ε)-PLEB in the Hamming cubeHk can be solved with query timeO(kn1/(1+ε)) and
storage(kn+n1+1/(1+ε)). Therefore approximate ball range searching can be solved with query timeÕ(dn1/(1+ε)ε−2)
and storageÕ(dnε−2 + n1+1/(1+ε)), following the above reduction andk = O(dε−2 log(dε−1)). This leads to an al-
gorithm for approximate halfspace range searching with query time Õ(d2ε−2 +dn1/(1+ε)ε−2) and storagẽO(dnε−2 +
n1+1/(1+ε)), as claimed in the introduction.

4 Approximate Ball Range Searching in Euclidean Space

Another problem we can solve is approximate ball range searching in Euclidean space. Given a ballB(q, r) in R
d

with centerq and radiusr, approximate ball range searching includes all points inside the smaller ballB(q, r − sε)
while excluding all points outside the larger ballB(q, r + sε), for some parameters = s(r). Points in the annulus
B(q, r + sε)\B(q, r − sε) may be misclassified. In the Hamming cube, the technique described in previous section
solves approximate ball range searching fors= Θ(r). On the other hand, in such a solution the width of the annulus
(the fuzzy region) grows withr. Whenr is large, it might be too big to provide an estimation of the true answer. We
give another solution in whichs is bounded even whenr is large. Moreover, it works in Euclidean space.

Givenn points inR
d in the unit ball‖x‖2 ≤ 1 and a query ballB(q, r), we first compute the distance fromq =

(q1, . . . ,qd) to the origin. If this distance is greater thanr +1, then the query ball contains no points. So from now on
we assume that‖q‖2 ≤ r +1, or,

d

∑
1

q2
i ≤ (r +1)2 (1)

The query ball is given by the following equation:

d

∑
1

2qixi −
d

∑
1

x2
i + r2 −

d

∑
1

q2
i ≥ 0

By a standard lifting map, it is mapped to a halfspaceSq,r in R
d+1:

2q1x1 + · · ·+2qdxd −xd+1+(r2 −
d

∑
1

q2
i ) ≥ 0

A point p = (p1, . . . , pd) in R
d is mapped top′ = (p1, . . . , pd,∑i p2

i ) in R
d+1. Note that the new point set lies in

the Euclidean ball‖x‖2 ≤
√

2. Moreover, it is easy to check thatp ∈ B(q, r) if and only if p′ ∈ Sq,r . It remains to show
that if p is outside the annulusB(q, r + sε)\B(q, r − sε) then p′ is outside a fuzzy boundary ofSq,r with width Θ(ε).
Givenp ∈ B(q, r −sε) we have:

r2 −∑
i
(qi − pi)

2 ≥ 2rsε−s2ε2 ≥ rsε (2)

The distance fromp′ to the boundary ofSq,r is:

r2 − ∑i(qi − pi)
2

√
1+4∑i q

2
i

≥ rsε√
1+4(r +1)2

≥ 1√
5

· rsε
r +1

Note that the first inequality above follows from Equations 1and 2. Using similar arguments, we can show that, for
p /∈ B(q, r + sε), the distance fromp′ to the boundary ofSq,r is at least(2rsε)/(

√
5(r + 1)). Settings = (r + 1)/r

keepsp′ outside a fuzzy boundary of widthΘ(ε) and hence properly classified by the algorithm for halfspace. In
this solutions = O(1) whenr = Ω(1), and so the fuzzy region does not grow withr. The time and space bounds
are essentially the same as those for approximate halfspacerange searching; in particular, the bounds of Theorem 1.1
apply to approximate ball range searching as well.
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