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Abstract—We establish sufficient conditions for the quick
relaxation to kinetic equilibrium in the classic Vicsek-Cucker-
Smale model of bird flocking. The convergence time is polyno-
mial in the number of birds as long as the number of flocks
remains bounded. This new result relies on two key ingredients:
exploiting the convex geometry of embedded averaging systems;
and deriving new bounds on the s-energy of disconnected
agreement systems. We also apply our techniques to bound the
relaxation time of certain pattern-formation robotic systems
investigated by Sugihara and Suzuki.

I. INTRODUCTION
Introduced by Reynolds [11] in 1987, three heuristic rules

have been used widely to produce spectacular bird flocking
animations. The three flocking rules are (1) separation:
avoid collision (2) cohesion: stay grouped together, and (3)
alignment: align headings. Several models are constructed
based on these rules to understand flocking dynamics.

We study a variant of the classic Vicsek-Cucker-Smale
model [6], [14], a group of n birds are flying in the air while
interacting via a time-varying network [1], [5], [7], [8]. The
vertices of the network correspond to the n birds and any
two distinct birds are joined by an edge if their distance is
at most some fixed r ≤ 1. The flocking network Gt is thus
symmetric and loopless. Its connected components are the
flocks. Each bird i has a position xi(t) and a velocity vi(t),
both of them vectors in R3. Given the state of the system at
time t = 0, we have the recurrence: for any t ≥ 0,{

xi(t + 1) = xi(t) + vi(t + 1);
vi(t + 1) = vi(t) + ai

∑
j∈Ni (t)

(
vj(t) − vi(t)

)
,

(1)

where Ni(t) is the set of vertices adjacent to i at time t. At
each step, a bird adjusts its velocity by taking a weighted
average with its neighbors. The weights ai indicate the
amount of influence birds exercise on their neighbors. To
avoid negative weights, we require that 0 < ai ≤ 1/(|Ni(t)|+
1). We write ρ := mini ai ∈ (0,1/2].

Intuitively, by repeating the recurrence, each bird should
eventually converge to a fixed speed and direction. This is
supported by computer simulations and several convergence
results [7], [9], [10]. However, as was shown in [5], the model
above might be periodic and never stabilize. To remedy this,
we stipulate that, for two birds to be newly joined by an edge,
their velocities must differ by at least a minimum amount:
Formally, we require that, at any time t, (i, j) ∈ Gt \ Gt−1
if ‖xi(t) − xj(t)‖ ≤ r and ‖vi(t) − vj(t)‖ > εo, for small
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Fig. 1. A bird is influenced by its neighbors within distance r .

fixed positive εo. By space and time scale invariance, we
may assume1 that ‖xi(0)‖ ≤ 1 and ‖vi(0)‖ ≤

√
ρ/n for all

birds i. We state our main result:

Theorem 1.1. A group of n birds forming a maxi-
mum of m ≤ n flocks relax to within ε of a fixed
velocity vector in time O(n2/ρ) log(1/ε) + to, where
to = O

(
n2/ρ

)m+2 log(n/ρ).

The main novelty of this result is that the convergence
time is polynomial in the number of birds, as long as the
number of flocks is bounded by a constant. The proof of the
theorem relies on two key ingredients: new bounds on the s-
energy; and the specific convex geometry of flocking. In §II,
we establish new (upper and lower) bounds on the s-energy
of reversible agreement systems. While the connected case
has been well studied [3], [4], the disconnected case was
wide open. We prove a nearly tight upper bound on the s-
energy of such systems, which is a result of independent
interest. In §III, we explore the convex geometry of flocking
to bound the angle of attack between two newly joined birds
as a function of time. Together with our new bounds on the
s-energy, this geometric insight plays a crucial part in the
proof of Theorem 1.1.
In §IV, we investigate a distributed motion coordination

algorithm introduced by Sugihara and Suzuki [2], [13]. The
idea is to use a swarm of robots to produce a preset pattern,
in this case a polygon. We prove a polynomial bound on
the relaxation time of this process. We enhance the model
by allowing faulty communication and proving that the end
result is robust under stochastic errors. We also generalize
the geometry to 3D and arbitrary communication graphs.

II. REVERSIBLE AGREEMENT SYSTEMS
Let Pt be the stochastic matrix of a time-reversible random

walk in an undirected n-vertex graph Gt . This means that

1These bounds are arbitrary and the choice of
√
ρ/n is made only to

simplify some calculations.

2021 61st IEEE Conference on Decision and Control (CDC)
December 6-9, 2022. Cancún, Mexico

978-1-6654-6761-2/22/$31.00 ©2022 IEEE 6472



Pt = Q−1Mt , where (i) Q = diag(q), for q = Mt1 � 1/ρ
and constant ρ ∈ (0,1/2]; and (ii) Mt is a symmetric matrix
with nonzero entries at least 1 and a positive diagonal. Given
x ∈ Rn, the infinite sequence of vectors (Pt · · · P0x)t≥0 forms
an orbit of a reversible averaging system (RAS). When all
the matrices are the same, Pt = P, the map x 7→ Px is the
dual map of the reversible Markov chain (y 7→ yP) and its
convergence time is given by the mixing time of the chain.
The novelty of the model lies in the presence of time-varying
matrices.
A. The s-Energy

Consider an infinite sequence of graphs (Gt )t≥0 with Pt

the stochastic matrix of its corresponding Markov chain.
Note that q is proportional to the stationary distribution
of the Markov chain induced by Pt . By reversibility, we
have qi(Pt )i j = qj(Pt )ji . Write 〈x, y〉q :=

∑
i qi xiyi and

‖x‖2q := 〈x, x〉q . We call ‖x− x̂ ‖2q the variance of the system,
where x̂ = ‖q‖−1

1 〈x,1〉q1 and x is shorthand for x(0).
Given x(0) ∈ Rn, we write x(t + 1) = Pt x(t) and

we interpret x(t) as an embedding of the graph Gt in R;
i.e., nodes in Gt correspond to points in the real line and
edges are intervals joining two end nodes. The union of
the embedded edges of Gt forms disjoint intervals, called
blocks. Let l1, . . . , lk be the lengths of these blocks and put
Es,t =

∑k
i=1 lsi , with s ∈ (0,1]. Following [4] , we define the

s-energy Es =
∑

t≥0 Es,t . We denote by Em,s the supremum
of Es over all systems of unit variance whose underlying
graphs Gt have at most m connected components.
B. An Upper Bound

We prove the following bound on the s-energy of reversible
agreement systems and then we show in §II-C why it is close
to optimal.

Theorem 2.1. Em,s ≤ (cn2/ρs)m, for any s ∈ (0,1]
and constant c > 0.

Proof. The convergence rate of the attracting dynamics
is captured by a variant of the Dirichlet form: Dt =∑

i maxj: (i, j)∈Gt

(
xi(t) − xj(t)

)2. We omit the index t below
for clarity.

Lemma 2.2. ‖Px‖2q ≤ ‖x‖
2
q − D/2 , for any x ∈ Rn.

Proof. Write δi j = xi − xj and µi =
∑

j pi j δi j . Fix i and pick
any k such that mik > 0. By Cauchy-Schwarz and mii ≥ 1
(because nonzero entries of M are at least 1), we have

δ2
ik =

(
(µi − δii) + (δik − µi)

)2

≤ 2(δii − µi)2 + 2(δik − µi)2

≤ 2
∑
j

mi j (δi j − µi)
2;

hence,

‖x‖2q − ‖Px‖2q =
∑
i

qi x2
i −

∑
i

qi

(
xi +

∑
j

pi jδji

)2

= −
∑
i

qi

(
2xi

∑
j

pi jδji + µ2
i

)

=
∑
i

qi

(∑
j

pi j δ2
i j − µ

2
i

)
=

∑
i, j

mi j (δi j − µi)
2 ≥

1
2

∑
i

max
j:mi j>0

δ2
i j,

with the last equality expressing the identity for the variance:
EX2 − (E X)2 = E[X − E X]2. �

Write G≤t as the union of all the edges in G0, . . . ,Gt , and
let tc be the maximum value of t such that G≤t has fewer
connected components than G≤t−1; if no such t , set tc = 1.

Lemma 2.3. If G≤tc is connected,
∑

t≤tc Dt ≥ ρn−2‖x− x̂ ‖2q .

Proof. Let Gt0 denote the graph over n vertices with no edges.
We define t1, . . . , tc as the sequence of times t at which the
addition of Gt reduces the number of connected components
in G≤t−1. At any time tk (k > 0), the drop dk in the number
of components can be achieved by dk edges from Gtk . Let
Fk denote such a set of edges: we can always order Fk so
that every edge in the sequence contains at least one vertex
not encountered yet. This shows that the sum of the squared
lengths of the edges in Fk does not exceed Dtk . We note that
F := F1 ∪ · · · ∪ Fc forms a collection of n − 1 edges from
(the connected graph) G≤tc and F spans all n vertices.
Consider the intervals formed by the edges in Fk at time

tk , for all k ∈ [c]. The union of these intervals covers the
smallest interval [a, b] enclosing all the vertices at time 0
(and hence at all times). To see why, pick any z such that
a < z < b and denote by L and R the vertices on both
sides of z at time 0. Neither set is empty and, by convexity,
both of them remain on their respective side of z until an
edge of some Gt joins L to R. When that happens (which it
must since G≤tc is connected), the joining edge(s) reduce(s)
the number of components of G≤t−1 by at least one, so F
must grab at least one of them, which proves our claim. Let
l1, . . . , ln−1 denote the lengths of the edges of F (at the time of
their insertion). By Cauchy-Schwarz,

∑
t≤tc Dt ≥

∑n−1
i=1 l2

i ≥

(b − a)2/(n − 1). The lemma follows from the inequalities
‖x − x̂ ‖2q ≤ ‖q‖1(b − a)2 ≤ (n/ρ)(b − a)2. �

Assume that G≤tc is connected. By Lemma 2.3 and the
telescoping use of Lemma 2.2,

‖x‖2q − ‖x(tc + 1)‖2q ≥
1
2

tc∑
t=0

Dt ≥
ρ

2n2 ‖x − x̂ ‖2q . (2)

Let U(n,m) be the maximum s-energy of an RAS with at
most n vertices and m connected components at any time,
subject to the initial condition ‖x − x̂ ‖2q ≤ 1. By shifting the
system if need be, we can always assume that x̂ = 0. By (2),
‖x(t)‖2q shrinks by at least a factor of α := 1− ρ/2n2 by time
tc + 1. A simple scaling argument shows that the s-energy
expanded after tc is at most αs/2U(n,m). While t < tc (or
if G≤tc is not connected), the system can be decoupled into
two RAS, each one with fewer than m components.2 Since

2Note that each subsystem satisfies the required inequalities about the Q
and M entries; also, shifting each subsystem so that x̂ = 0 cannot increase
‖x ‖2q , so its value remains at most 1.
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‖x‖2q ≤ 1, the diameter at any time is at most 2; therefore
U(n,m) ≤ αs/2U(n,m) + 2U(n,m − 1) + m2s . It follows that

U(n,m) ≤
2

1 − αs/2

(
U(n,m − 1) + m

)
; (3)

hence U(n,m) = O(n2/ρs)m , and Theorem 2.1 follows. �

C. A Lower Bound
We begin with the case m = 1. The path graph G over n

vertices has an edge (i, i+1) for all i < n. The Laplacian L is
diag(u) − A, where A is the adjacency matrix of G and u is
the degree vector (1,2, . . . ,2,1). We consider the RAS formed
by the matrix Pt = P = I − ρL. By well-known spectral
results on graphs [12], Pt has a full set of n orthogonal
eigenvectors vk , where vk(i) = cos (i−1/2)kπ

n for i ∈ [n],
with its associated eigenvectors λk = 1 − 2ρ

(
1 − cos kπ

n

)
,

for 0 ≤ k < n. We require ρ < 1/4 to ensure that
P is positive semidefinite. We initialize the system with
x = (1,0, . . . ,0) and observe that the agents always keep
their initial rank order, so the diameter ∆t at time t is equal
to (1,0, . . . ,0,−1)Pt−1x. We verify that ‖v1‖

2 = n/2. By the
spectral identity P j =

∑
k<n λ

j
k
vkv

T
k
/‖vk ‖

2, we find that, for
t > 1 and n > 1,

∆t =

n−1∑
k=0

λt−1
k vk(1)

vk(1) − vk(n)
‖vk ‖2

=
∑

odd k

2λt−1
k

‖vk ‖2

(
cos

kπ
2n

)2

≥
2λt−1

1
‖v1‖2

(
cos

π

2n

)2
≥

2
n
λt−1

1 .

The s-energy is equal to
∑

t ∆
s
t ≥ (2/n)s/(1−λs1) ≥ bn2−s/ρs,

for constant b > 0.
For the general case, we denote by F(n,m) the s-energy

of the system with initial diameter equal to 1. We showed
that F(n,1) ≥ bn2−s/ρs. We now describe the steps of the
dynamics for m > 1. To simplify the notation, we assume
that ν := n/m is an integer.3 For i ∈ [m], let Ci be the path
linking vertices [(i − 1)ν + 1, iν].

1) At time t = 1, the vertices of C1 are placed at position
0 while all the others are stationed at 1. The paths
C1 and C2 are linked together into a single path so the
system has m−1 components. Vertices ν and ν+1 move
to positions ρ and 1 − ρ respectively while the others
do not move at all. The s-energy expended during that
step is equal to 1.

2) The system now consists of the m paths Ci . We apply
the case m = 1 to C1 and C2 in parallel, which expends
s-energy equal to 2ρsF(ν,1). All other vertices stay
in place. The transformation keeps the mass center
invariant, so the vertices of C1 and C2 end up at
positions ρ/ν and 1 − ρ/ν, respectively.4

3This can be relaxed with a simple padding argument we may omit.
4To keep the time finite, we can always force completion in a single

step once the agents are sufficiently close to each other and use a limiting
argument.

3) We move the vertices in Ci for i ≥ 2 by applying the
same construction recursively for fewer than m compo-
nents. The vertices of C1 stay in place. The s-energy
used in the process is equal to

(
ρ/ν

)sF(n − ν,m − 1)
and the vertices of C2, . . . ,Cm end up at clustered at
position 1 − ρ

n−ν .
4) We apply the construction recursively to the n vertices,

which uses up a quantity of s-energy equal to
(
1− ρ

ν −
ρ

n−ν

)sF(n,m).
Putting all the energetic contributions together, we find that,
for constants b′, c > 0,

F(n,m) ≥ 1 +
2bν2−s

sρ1−s +
( ρ
ν

)s
F(n − ν,m − 1)

+

(
1 −

2ρ
ν

)s
F(n,m)

≥
b′

sρ1−s

( n
m

)1−s
F(n − ν,m − 1)

≥

(
c

sρ1−s

)m ( n
m

) (1−s)m+1
.

Theorem 2.4. There exist reversible agreement systems
with initial diameter equal to 1 whose s-energy is at
least

(
c/sρ1−s )m(n/m)(1−s)m+1, for constant c > 0. The

number of vertices is n and the number of connected
components is bounded by m; furthermore, all positive
entries in the stochastic matrices are at least ρ.

Our lower bound constructions assume a unit diameter at
time 0. Since Em,s is defined for unit variance systems, we
must scale the bound appropriately to compare the lower
bound with Theorem 2.1. We have q = 1/ρ, so the variance
is at most n/ρ and we scale the lower bound by (ρ/n)s/2.

III. THE CONVERGENCE RATE OF FLOCKING
We rewrite the map of the velocity dynamics (1) in matrix

form, v(t + 1) = Ptv(t), for t ≥ 0, where v(t) is an n-by-3
matrix with each row indicating a velocity vector. We have
Pt = Q−1Mt , where: Q = diag(q); qi = 1/ai; (Mt )i j =

1/ai − |Ni(t)| if i = j and 1 else. Note that q̄ := ‖q‖−1
1 q

is the joint stationary distribution and q = Mt1 ≤ 1/ρ,
where ρ := mini ai ∈ (0,1/2]. This shows that each one of
the three coordinates provides its own reversible agreement
system Sj ( j = 1,2,3). The only difference between the
systems is their initial states. Recall that the s-energy of any
such system is defined as

∑
t Es,t , where Es,t =

∑
i li(t)s and

li(t) is the length of the i-th block at time t. Let m be the
maximum number of flocks and Nm,α the number of times t
at which some block length li(t) from at least one of Sj

( j = 1,2,3) exceeds α. For 0 < α < 1, we have Nm,α ≤

infs∈(0,1] 3α−sEm,s . Our assumption that ‖vi(0)‖2 ≤ ρ/n for
all birds i implies that the three systems have variance at
most one. By Theorem 2.1, for some (other) constant c > 0,
setting s = 1/log(1/α) yields

Nm,α ≤

(
cn2

ρ
log

1
α

)m
. (4)
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A. Single-Flock Dynamics
Between two consecutive switches (ie, edge changes), the

flocking networks consists of fixed non-interacting flocks.
We can analyze them separately. Without loss of generality,
assume that Gt is a connected, time-invariant graph. We
focus on system S1 for convenience. It consists of a single
block at each timestep, so the s-energy is of the form

∑
t ∆

s
t ,

where ∆t is the diameter of the system at time t ≥ 0. The
diameter can never grow, so by the same argument leading
to (4), we know that ∆t ≤ α for any t ≥ infs∈(0,1] α−sE1,s .
It follows that ∆t ≤ e−aρt/n

2 , for constant a > 0. Recall that
x(t) and v(t) are n-by-3 matrices; denote their first column
by y(t) and w(t), respectively. Write y(0) = y, w(0) = w,
and Pt = P. The vector w(t) = Ptw tends to (q̄Tw)1. Since
its coordinates lie in an interval of width ∆t , it follows that
w(t) = (q̄Tw)1+ ζ(t), where ‖ζ(t)‖∞ ≤ ∆t ≤ e−aρt/n

2 . Thus,
for some γ,ηt ∈ Rn,

y(t) = y +

t∑
k=1

w(k) = y + t(q̄Tw)1 +
t∑

k=1
ζ(k) = βt + γ + ηt,

where β = (q̄Tw)1, γ = y+
∑∞

k=1 ζ(k), and ‖ηt ‖∞ ≤ e−bρt/n
2 ,

for constant b > 0. The same holds true for the other two
coordinates, so the birds in the flock fly parallel to a straight
line with a deviation from their asymptotic line vanishing
exponentially fast. If so desired, it is straightforward to lock
the flocks by stipulating that no two birds can lose an
edge between them unless their velocities exceed a small
threshold θ; because of the exponential convergence rate,
choosing θ small enough ensures that two birds i and j
adjacent in a flock may exceed distance r by only a tiny
amount.

B. Flock Fusion
To bound the relaxation time, we begin with an intriguing

geometric fact: Far enough into the future, two birds can
only come close to each other if their velocities are nearly
identical. In other words, encounters at large angles of attack
cannot occur over a long time horizon. We begin with a
technical lemma: A stationary observer positioned at the
initial location of a bird sees that bird move less and less
over time; this is because the bird flies increasingly in the
direction of the line of sight.

Lemma 3.1. For constant c and any t > 1,

vi(t) − 1
t

(
xi(t) − xi(0)

)

 ≤ (
cn2/ρ

)m+2
(log t)/t, for any i.

Proof. For notational convenience, we set i = 1 and we
denote by yj(t) (resp. wj(t)) the first coordinate of xj(t)
(resp. vj(t)). The line-of-sight direction of bird 1 is given by
1
t

(
x1(t) − x1(0)

)
. Along the first coordinate axis, this gives

u :=
1
t
(
y1(t) − y1(0)

)
=

1
t

t∑
k=1

w1(k). (5)

Consider the difference δ := u − w1(t). We can define the
corresponding quantity for each of the other two directions
and assume that δ has the largest absolute value among the

three of them. By symmetry, we can also assume that δ ≥ 0;
therefore 

v1(t) − 1

t

(
x1(t) − x1(0)

)

 ≤ √3 δ. (6)

The proof of the lemma rests on showing that, if δ is too
large, some bird l must be at a distance greater than 1 from
bird 1 at time 0, which has been ruled out. To identify the
far-away bird l, we start with l = 1 at time t, and we trace
the evolution of its flock backwards in time, always trying
to move away from bird 1, if necessary by switching bird l
with a neighbor. This is possible because of two properties,
at least one of which holds at any time k: (i) bird l flies
nearly straight in the time interval [k, k + 1]; or (ii) bird l
is adjacent to a bird l ′ whose velocity points in a favorable
direction. In the latter case, we switch focus from l to l ′.

The s-energy plays the key role in putting numbers behind
these properties. For this reason, we define µl(k) as the
length of the block of S1 containing wl(k) with respect to
the flocking network Gk . Note that µl(k) is the length of an
interval that contains the numbers wj(k) for all the birds j
in the flock of bird l at time k. We define the sequence of
velocities w̄(k) = wl(k), for k = t, t − 1, . . . ,1 and l = l(k).
Fix some small α (0 < α ≤ εo).

[1] w̄(t) ← w1(t) and l ← 1
[2] for k = t − 1, . . . ,1
[3] if µl(k) > α then

l ← argmin
{
wj (k) | j ∈ Nl(k)

}
[4] w̄(k) ← wl(k)

Perhaps the best way to understand the algorithm is first
to imagine that the conditional in step [3] never holds: In
that case, l = 1 throughout and we are simply tracing
the backward evolution of bird 1. Step [3] aims to catch
the instances where the reverse trajectory inches excessively
toward the initial position of bird 1. When that happens,
|wl(k + 1) − wl(k)| is large, hence so is µl(k), and step
[3] kicks in. We exploit the fact that wl(k + 1) is a convex
combination of

{
wj(k) | j ∈ Nl(k)

}
to update the current bird

l to a “better” one. Using summation by parts, we find that
t∑

k=1
w̄(k) = tw̄(t) −

t−1∑
k=1

k
(
w̄(k + 1) − w̄(k)

)
. (7)

Let R be the set of times k that pass the test in step [3] and
S the set of switches (ie, network changes). An edge creation
entails a block of length εo/

√
3 or more in at least one of Sj

( j = 1,2,3). The steps witnessing edge deletions outnumber
those seeing edge creations by at most a factor of

(n
2
)
. Let I

be the time interval between two consecutive switches. Each
flock remains invariant during I; thus |R ∩ I | ≤ N1,α; hence

|S | ≤ n2Nm,εo/
√

3 and |R| ≤ (N1,α + 1)|S |. (8)

Because of the single-flock invariance, the diameter of S1
during I can never increase; therefore J = I \ R consists of a
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single time interval. If k ∈ J, then |w̄(k+1)−w̄(k)| = |wl(k+
1) − wl(k)| ≤ µl(k) ≤ α and, by Theorem 2.1,

∑
k∈J |w̄(k +

1) − w̄(k)| ≤
∑

k∈J E1,k ≤ α E1,1 = O(αn2/ρ); hence∑
k∈{1,...,t−1}\R

��w̄(k + 1) − w̄(k)
�� = O(αn2 |S |/ρ). (9)

Let l ′ be the value of l in the final assignment w̄l(1) ← wl(1)
in step [4]. Since w̄(k+1) ≥ w̄(k) for k ∈ R and w̄(t) = w1(t),
it follows from (7, 9) and r ≤ 1 that

yl′(0) − y1(0) ≥
(
y1(t) − y1(0)

)
+

(
yl′(0) − y1(t)

)
≥ tu −

t∑
k=1

w̄(k) − r |R|

≥ tδ +
t−1∑
k=1

k
(
w̄(k + 1) − w̄(k)

)
− |R|

≥ tδ −O(tαn2 |S |/ρ) − |R|.

(10)

We set α = εo/t. Noting that yl′(0) − y1(0) ≤ 1, the lemma
follows from (4, 6, 8) and

δ ≤ n2(m+2)
(

b
ρ

)m+1 (
log

1
εo

)m log(t/εo)
t

.

for constant b > 0. �

C. Stabilization
By Lemma 3.1, for a large enough constant c = c(εo),

after time t > to :=
(
cn2/ρ

)m+2 log(n/ρ), no bird’s velocity
differs from its line-of-sight vector ui = 1

t

(
xi(t) − xi(0)

)
by

a vector longer than εo/3. Suppose that birds i and j are
within distance r of each other. By the triangular inequality,
‖ui − u j ‖ ≤

1
t ‖xi(t) − xj(t)‖ + 1

t ‖xi(0) − xj(0)‖ ≤ (1 + r)/t;
therefore,

‖vi(t) − vj(t)‖ ≤ ‖vi(t) − ui ‖ + ‖ui − u j ‖ + ‖vj(t) − u j ‖ ≤ εo .

This implies that each flock is time-invariant past time to. The
birds within each flock align their velocities exponentially
fast. In view of §III-A, this proves Theorem 1.1. �

IV. DISTRIBUTED MOTION COORDINATION
In [13] Sugihara and Suzuki introduced an interesting

model of pattern formation in a swarm of robots. In their
model, the robots can communicate anonymously and adjust
their positions accordingly. Assume that their goal is to align
themselves along a line segment ab. Two robots position
themselves manually at the endpoints of the segment while
the others attempt to reach ab by linking with their right/left
neighbors and averaging their positions iteratively. This setup
creates a polygonal line u1 = a,u2, . . . ,un−1,un = b, where
ui is the position (xi, yi) of robot i. The polygonal line
converges to ab in the limit. We use the s-energy bounds
to evaluate the convergence time of the robots. We actually
prove a stronger result by generalizing the model in two
ways: (i) we consider the case of an arbitrary communication
network of robots in 3D, with a subset of vertices pinned to
a fixed plane; (ii) the network suffers from stochastic edge

failures. Our model trivially reduces to Sugihara and Suzuki’s
by projection. Allowing stochastic failures to their motion
coordination model is novel.

Let G be a connected (undirected) graph with n vertices
labeled in [n]; and let the communication weights a1, . . . ,an
be n positive reals such that ai < 1/(di + 1), where di is the
degree of vertex i. We define d = max di and ρ = min ai .
For any t ≥ 0, we define Gt by deleting each edge of G with
probability 1− p. We define a (random) stochastic matrix Pt

for Gt as follows:

1) Initialize Pt = 0;
2) If (i, j) is an edge of Gt , we set (Pt )i j = ai

and (Pt )ji = aj .
3) (Pt )ii = 1 −

∑
j(j,i)(Pt )i j , for all i.

Note that every positive entry of Pt is at least ρ. We embed G
in R3 and pin a subset R of r vertices to a fixed plane. We fix
the scale by assuming that the embedding lies in the unit cube
[0,1]3. Without loss of generality, we choose the plane X = 0.
To ensure the immobility of the r vertices, we can set ai = 0
for each i ∈ R. Equivalently, we use symmetrization [3] by
attaching to R a copy of G and initializing the embedding of
the two copies as mirror-image reflections about X = 0; note
that the resulting graph has ν = 2n−r vertices. The sequence
(Pt )t≥0 is defined by picking a random Gt (as defined above)
at each step iid.

The vertices of R are embedded in the plane X = 0 at time
0, where, by symmetry, they reside permanently. To prove the
convergence of the ν points to the plane, it suffices to focus
on the dynamics along the X-axis. Given x(0) ∈ [−1,1]ν , we
have x(t + 1) = Pt x(t). This gives us a reversible agreement
system. Using the notation from §II and Lemma 2.2, we have
q = (1/a1, . . . ,1/aν). Since G is connected, there is a path
π connecting the leftmost to the rightmost vertex along the
X-axis. By the Cauchy-Schwarz inequality,

EDt ≥ E
ν∑
i=1

max
j:(i, j)∈Gt

δ2
i j ≥

ν∑
i=1

∑
j:(i, j)∈G

pδ2
i j/di

≥
p

dν

( ∑
(i, j)∈π

|δi j |
)2
≥

ρp
dν2 ‖x‖

2
q

where δi j = δi j(t) = xi(t) − xj(t). It follows from Lemma 2.2
that, for c := ρp/(2dν2),

E ‖Px‖2q ≤ ‖x‖
2
q −

1
2
EDt ≤ (1 − c)‖x‖2q .

By Markov’s inequality,

Pr
[
‖Px‖2q ≥

(
1 −

c
3

)
‖x‖2q

]
≤

E ‖Px‖2q
(1 − c/3)‖x‖2q

≤ 1 −
c
2
.

Let l1, . . . , lk be the lengths of the blocks formed by the edges
of Gt embedded along the X-axis.5 In a slight variant, we
define the s-energy Es =

∑
t≥0 Es,t , where Es,t = maxk

i=1 lsi .
We denote by Ws the maximum expected s-energy, where
the maximum is taken over all initial positions with variance

5Recall that the blocks are the intervals formed by the union of the
embedded edges of Gt .
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‖x‖2q ≤ ν/ρ (see §II-A for definitions). Since the vertices
are embedded in [−1,1] with symmetry about the origin,
this applies to the case at hand. By Cauchy-Schwarz, we see
that the diameter is at most

√
2 ‖x‖q ≤

√
2ν/ρ. By scaling

invariance, we have the following recurrence relation:

Ws ≤

(
2ν
ρ

)s/2
+

c
2

(
1 −

c
3

)s/2
Ws +

(
1 −

c
2

)
Ws

≤
2s+1νs/2

cρs/2
(
1 − (1 − c/3)s/2

)
= O

(
νs/2

sc2ρs/2

)
= O

(
dn2

ρp

)2
(n/ρ)s/2

s
.

Let Nα be the number of times t at which some block
length li(t) exceeds α. For 0 < α < 1, we have E Nα ≤
infs∈(0,1] α−sWs . Setting s = 1/log(n/ρα2) yields

E Nα = O
(

dn2

ρp

)2

log
n
ρα

.

Let Kα be the number of times t at which there exists an
edge (i, j) ∈ Gt whose length |δi j(t)| exceeds α; obviously,
Kα ≤ Nα. Let Tα be the last time at which the diameter of
the system exceeds α. For each t ≤ Tα, being a connected
graph, G must include an edge (i, j) whose length |δi j(t)|
exceeds α/ν. That edge belongs to Gt with probability p;
therefore EKα/ν ≥ pETα; hence ETα ≤ 1

pE Nα/ν .

Theorem 4.1. The robots align themselves within dis-
tance ε < 1 of a fixed plane in expected time
O

(
d2n4/p3ρ2) log(n/ρε), where d is the maximum de-

gree of the underlying communication network, n is the
number of robots, 1−p is the probability of edge failure,
and ρ is the smallest communication weight.
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