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abstract
Algorithms offer a rich, expressive language for modelers 
of biological and social systems. They lay the grounds for 
numerical simulations and, crucially, provide a powerful 
framework for their analysis. The new area of natural algo-
rithms may reprise in the life sciences the role differential 
equations have long played in the physical sciences. For this 
to happen, however, an “algorithmic calculus” is needed. 
We discuss what this program entails in the context of influ-
ence systems, a broad family of multiagent models arising 
in social dynamics.

1. intRoDuction
The gradual elevation of “computational thinking” within 
the sciences is enough to warm the heart of any computer sci-
entist. Yet the long-awaited dawning of a new age may need 
to wait a little longer if we cannot move beyond the world of 
simulation and build a theory of natural algorithms with real 
analytical heft. By “natural algorithms,” I mean the myriad 
of algorithmic processes evolved by nature over millions of 
years. Just as differential equations have given us the tools 
to explain much of the physical world, so will natural algo-
rithms help us model the living world and make sense of it. 
At least this is the hope and, for now, I believe, one of the 
most pressing challenges facing computer science.

1.1. science or engineering?
To draw a fine line between science and engineering is a fool’s 
errand. Unrepentant promiscuity makes a clean separation 
neither wise nor easy. Yet a few differences bear mentioning. 
If science is the study of the nature we have, then engineering 
is the study of the nature we want: the scientist will ask how 
the valley was formed; the engineer will ask how to cross it. 
Science is driven by curiosity and engineering by need: one 
is the stuff of discovery, the other of invention. The path of 
science therefore seems more narrow. We want our physical 
laws to be right and our mousetraps to be useful. But there 
are more ways to be useful than to be right. Engineering can 
“negotiate” with nature in ways science cannot. This freedom 
comes at a price, however. Any mousetrap is at the mercy of a 
better one. PageRank one day will go; the Second Law of ther-
modynamics never will. And so algorithms, like mousetraps, 
are human-designed tools: they are engineering artifacts.

Or are they? Perhaps search engines do not grow on trees, 
but leaves do, and a sophisticated algorithmic formalism, 
L-systems, is there to tell us how20. It is so spectacularly accu-
rate, in fact, that the untrained eye will struggle to pick out 
computer-generated trees from the real thing. The algorith-
mic modeling of bird flocking has been no less  successful. 

Some will grouch that evolution did not select the human eye 
for its capacity to spot fake trees and catch avian impostors. 
Ask a bird to assess your computer-animated flock, they will 
snicker, and watch it cackle with derision. Perhaps, but the 
oohs and ahhs from fans of CGI films everywhere suggest that 
these models are on to something. These are hardly isolated 
cases. Natural algorithms are quickly becoming the language of 
choice to model biological and social processes. And so algo-
rithms, broadly construed, are both science and engineering.

1.2. it is all about language
The triumph of 20th-century physics has been, by and large, 
the triumph of mathematics. A few equations scattered on 
a single page of paper explain most of what goes on in the 
physical world. This miracle speaks of the organizing princi-
ples of the universe: symmetry, invariance, and regularity—
precisely the stuff on which mathematics feasts. Alas, not all 
of science is this tidy. Biology = physics + history; but history 
is the great, unforgiving symmetry breaker. Instead of iden-
tical particles subject to the same forces, the life sciences 
feature autonomous agents, each one with its own idea of 
what laws to obey. It is a long way, scientifically speaking, 
from planets orbiting the sun in orderly fashion to unruly 
slime molds farming bacterial crops. Gone are the symme-
try, invariance, and clockwork regularity of astronomy: what 
we have is, well, sludge. But the sludge follows a logic that 
has its own language, the language of natural algorithms.

The point of departure with classical mathematics is 
indeed linguistic. While differential equations are the native 
idiom of electromagnetism, no one believes that cancer has 
its own “Maxwell’s equations.” Yet it may well have its own 
natural algorithm. The chain of causal links, some deter-
ministic, others stochastic, cannot be expressed solely in the 
language of differential equations. It is not just the diversity 
of factors at play (genetic, infectious, environmental, etc.); 
nor is it only their heterogeneous modes of interaction. It is 
also the need for a narrative of collective behavior that can 
be expressed at different levels of abstraction: first-princi-
ples; phenomenological; systems-level; and so on. The issue 
is not size alone: the 3-body problem may be intractable but, 
through the magic of universality, intricate phase transitions 
among 1030 particles can be predicted with high accuracy. 
The promise of agent-based natural algorithms is to deliver 
tractable abstractions for descriptively complex systems.

This paper is based on “Natural Algorithms,” which 
was published in the Proceedings of the 20th Annual 
 ACM-SIAM Symposium on Discrete Algorithms, 2009, and 
subsequent work.
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maximal independent sets in fly brain development1, and 
so on. Consensus, synchronization, and fault tolerance are 
concepts central to both biology and distributed comput-
ing15, 17. The trade of ideas promises to be flowing both ways. 
This article focuses on the outbound direction: how algo-
rithmic ideas can enrich our understanding of nature.

2. infLuence sYstems
A bad, fanciful script will make a good stage-setter. One fate-
ful morning, you stumble out of bed and into your kitchen 
only to discover, crawling on the floor, a swarm of insects 
milling around. Soon your dismay turns to curiosity, as you 
watch the critters engage in a peculiar choreography. Each 
insect seems to be choosing a set of neighbors (living or inert) 
and move either toward or away from them. From what you 
can tell, the ants pick the five closest termites; the termites 
select the nearest soil pellets; the ladybugs pick the two ants 
closest to the powdered sugar that is not in the vicinity of any 
termite; and so on. Each insect seems equipped with its own 
selection procedure to decide how to pick neighbors based 
on their species and the local environment. Once the selec-
tion is made, each agent invokes a second procedure, this 
time to move to a location determined entirely by the iden-
tities and positions of its neighbors. To model this type of 
multiagent dynamics, we have introduced influence systems6: 
the model is new, but only new to the extent that it unifies 
a wide variety of well-studied domain-dependent systems. 
Think of influence systems as a brand of networks that per-
petually rewire themselves endogenously.

2.1. Definition and examples
An influence system, is specified by two functions f and G: it is 
a discrete-time dynamical system,b x  f (x) in (Rd)n, where n 
is the number of agents, d is the dimension of the ambient 
space (d = 2 in the example above), and each “coordinate” xi 
of the state x = (x1, . . . , xn) ∈ (Rd)n is a d-tuple encoding the 
location of agent i in Rd. With any state x comes a directed 
“communication” graph, G (x), with one node per agent. Each 
coordinate function fi of the map f = ( f1, . . . , fn) takes as input 
the neighbors of agent i in G (x), together with their  locations, 
and outputs the new location fi(x) of agent i in Rd. The (action) 
function f and (communication) function G are evaluated by 
deterministic or randomized algorithms. An influence sys-
tem is called diffusive if f keeps each agent within the convex 
hull of its neighbors. Diffusive systems never escape to infin-
ity and always make consensus (x1 = . . . = xn) a fixed point. The 
system is said to be bidirectional if the communication graph 
always remains undirected.

While f and G can be arbitrary functions, the philosophy 
behind influence systems is to keep f simple so that emer-
gent phenomena can be attributed not so much to the power 
of individual agents, but to the flow of information across the 
communication network G (x). By distinguishing G from f, 
the model also separates the syntactic (who talks to whom?) 

1.3. What is complexity?
Such is the appeal of the word “complexity” that it comes in 
at least four distinct flavors.

•  Semantic: What is hard to understand. For 99.99% of 
mankind, complex means complicated.

•  Epistemological: What is hard to predict. An indepen-
dent notion altogether: complex chaotic systems can 
be simple to understand while complicated mecha-
nisms can be easy to predict.

•  Instrumental: What is hard to compute, the province of 
theoretical computer science.

•  Linguistic: What is hard to describe. Physics has low 
descriptive complexity—that is part of its magic.a By 
contrast, merely specifying a natural algorithm may 
require an arbitrarily large number of variables to 
model the diversity present in the system. To capture 
this type of complexity is a distinctive feature of natural 
algorithms.

1.4. beyond simulation
Decades of work in programming languages have produced 
an advanced theory of abstraction. Ongoing work on reactive 
systems is attempting to transfer some of this technology to 
biology9. Building on years of progress in automata theory, 
temporal logic, and process algebra, the goal has been to 
build a modeling framework for biological systems that 
integrate the concepts of concurrency, interaction, refine-
ment, encapsulation, modularity, stochasticity, causality, 
and so on. With the right specifications in place, the hope is 
that established programming language tools, such as type 
theory, model checking, abstract interpretation, and the pi-
calculus can aid in verifying temporal properties of biosys-
tems. The idea is to reach beyond numerical simulation to 
analyze the structure and interactions of biological systems.

Such an approach, however, can only be as powerful as 
the theory of natural algorithms behind it. To illustrate this 
point, consider classifying all possible sequences x, Px, P2x, 
P3x, and so on, where x is a vector and P is a fixed stochas-
tic matrix. Simulation, machine learning, and verification 
techniques can help, but no genuine understanding of the 
process can be achieved without Perron–Frobenius theory. 
Likewise, natural algorithms need not only computers but 
also a theory. The novelty of the theory will be its reliance on 
algorithmic proofs—more on this below.

1.5. algorithms from nature
If living processes are powered by the “software” of nature, 
then natural selection is the ultimate code optimizer. With 
time and numbers on their side—billions of years and 1030 
living specimens—bacteria have had ample opportunity to 
perfect their natural algorithm. No wonder computer sci-
entists are turning to biology for algorithmic insight: neu-
ral nets and DNA computing, of course, but also ant colony 
optimization3, shortest path algorithms in slime molds2; 

a Descriptive complexity is an established subfield of theoretical computer 
science and logic. Our usage is a little different, but not different enough to 
warrant a change of terminology.

b A dynamical system generates an orbit by starting at a point x and iterating 
the function f to produce f (x), f 2(x), and so on. The goal is to understand the 
geometry of these orbits. We write the phase space Rdn as (Rd)n to emphasize 
that the action is on the n agents embedded in d-space.
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from the semantic (who does what?). It is no surprise then to 
see recursive graph algorithms play a central role and pro-
vide a dynamic version of renormalization, a technique used 
in quantum mechanics and statistical physics.

•  Bounded-confidence systems: In this popular model of 
social dynamics10, d = 1 and xi is a real number denoting 
the “opinion” of agent i. That agent is linked to j if and 
only if |xi − xj| ≤ 1. The action function f instructs each 
agent to move to the mass center of their neighbors. 
This is the prototypical example of a bidirectional dif-
fusive influence system.

•  Sync: An instance of Kuramoto synchronization, this 
diffusive influence system links each of n fireflies to the 
other fireflies whose flashes it can spot. Every critter has 
its own flashing oscillator, which becomes coupled with 
those of its neighbors. The function f specifies how the 
fireflies adjust their flashings in reaction to the graph-
induced couplings3, 23. The model has been applied to 
Huygens’s pendulum clocks as well as to circadian neu-
rons, chirping crickets, microwave oscillators, yeast cell 
suspensions, and pacemaker cells in the heart25.

•  Swarming: The agents may be fish or birds, with states 
encoding positions and velocities (for rigid 3D animal 
models, d = 9). The communication graph links every 
agent to some of its nearest neighbors. The function f 
instructs each agent to align its velocity with those of its 
neighbors, to move toward their center of gravity, and 
to fly away from its perilously close neighbors21, 24.

•  Chemotaxis: Some organisms can sense food gradients 
and direct their motion accordingly. In the case of bac-
terial chemotaxis, the stimuli are so weak that the 
organisms are reduced to performing a random walk 
with a drift toward higher food concentrations. 
Influence systems can model these processes with the 
use of both motile and inert agents.c Chemotaxis is 
usually treated as an asocial process (single agents 
interacting only with the environment). It has been 
observed, however, that schooling behavior can facili-
tate gradient climbing for fish, a case where living in 
groups enhances foraging ability19.

Other examples of influence systems include the Ising 
model, neural nets, Bayesian social learning, protein–protein 
interaction networks, population dynamics, and so on.

2.2. how expressive are influence systems?
If agent i is viewed as a computing device, then the d-tuple 
xi is its memory. The system is Markovian in that all facts 
about the past with bearing on the future are encoded in x. 
The communication graph allows the function f  to be local if 
so desired. The procedure G itself might be local even when 
appearance suggests otherwise: for example, to identify 

your nearest neighbor in a crowd entails only local com-
putation, although, mathematically, the function requires 
knowledge about everyone. The ability to encode different 
action/communication rules for each agent is what drives 
up the descriptive complexity of the system. In return, one 
can produce great behavioral richness even in the presence 
of severe computational restrictions.

(i) Learning, competition, hierarchy: Agents can imple-
ment game-theoretic strategies in competitive envi-
ronments (e.g., pursuit-evasion games) and learn to 
cooperate in groups (e.g., quorum sensing). They can 
self-improve, elect leaders, and stratify into domi-
nance hierarchies.

(ii) Coarse-graining: Flocks are clusters of birds that 
maintain a certain amount of communicative cohe-
sion over a period of time. We can view them as 
“super-agents” and seek the rules governing interac-
tion among them. Iterating in this fashion can set the 
stage for dynamic renormalization in a time- 
changing analog of the renormalization group of sta-
tistical mechanics (see Section 6).

(iii) Asynchrony and uncertainty: In the presence of 
delayed or asynchronous communication, agents 
can use their memory to implement a clock for the 
purpose of time stamping. Influence systems can 
also model uncertainty by limiting agents’ access to 
approximations of their neighbors’ states.

A few words about our agent-based approach. Consider 
the diffusion of pollen particles suspended in water. 
A Eulerian approach to this process seeks a differential 
equation for the concentration c (x, t) of particles at any 
point x and time t. There are no agents, just density func-
tions evolving over time18. An alternative approach, called 
Lagrangian, would track the movement of all the individual 
particles and water molecules by appealing to Newton’s 
laws. Given the sheer number of agents, this line of attack 
crashes against a wall of intractability. One way around it 
is to pick a single imaginary self-propelled agent and have 
it jiggle about randomly in a Brownian motion. This agent 
models a typical pollen particle—typical in the “ergodic” 
sense that its time evolution mimics the space distribution 
of countless particles caught on film in a snapshot. Scaling 
plays a key role: our pollen particles indeed can be observed 
only on a timescale far larger than the molecular bumps 
causing the jiggling. Luckily, Brownian motion is scale-free, 
meaning that it can be observed at any scale. As we shall see 
in Section 6, the ability to express a dynamical process at dif-
ferent scales is an important feature of influence systems.

The strength of the Eulerian approach is its privileged 
access to an advanced theory of calculus. Its weakness lies 
in two commitments: global behavior is implied by infini-
tesimal changes; and every point is subject to identical laws. 
While largely true in physics, these assumptions break 
down in the living world, where diversity, heterogeneity, and 
autonomy prevail. Alas, the Lagrangian answer, agent-based 
modeling, itself suffers from a serious handicap: the lack of 
a theory of natural algorithms.

c Some living systems (e.g., ants and termites) exchange information by stig-
mergy: instead of communicating directly with signals, they leave traces such 
as pheromones in the environment, which others then use as cues to coor-
dinate their collective work. Although lacking autonomy, inert components 
can still be modeled as agents in an influence system.
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2.3. What could go wrong?
There are two arguments against the feasibility of a domain-
independent theory of natural algorithms. One is an intrin-
sic lack of structure. But the same can be said of graphs, a 
subject whose ties to algebra, geometry, and topology have 
met with resounding success, including the emergence of 
universality. A more serious objection is that, before we can 
analyze a natural algorithm, we must be able to specify it. 
The bottom-up, reductionist approach, which consists of 
specifying the functionality and communicability of each 
agent by hand (as is commonly done in swarming models), 
might not always work. Sometimes, only a top-down, phe-
nomenological approach will get us started on the right 
track. We have seen this before: the laws of thermodynamics 
were not derived as abstractions of Newton’s laws—though 
that is what they are—but as rules governing observable 
macrostates (P, V, T, and all that). Likewise, a good flock-
ing model might want to toss aside anthropomorphic rules 
(“stay aligned,” “don’t stray,” etc.) and choose optimized 
statistical rules inferred experimentally. The specs of the 
natural algorithm would then be derived algorithmically. 
This is why we have placed virtually no restriction on the 
communication function G in our present analysis of diffu-
sive influence systems.

2.4. outline
We open the discussion in Section 3 with the total s-energy, a 
key analytical device used throughout. We turn to bird flock-
ing in Section 4, which constitutes the archetypical nondif-
fusive influence system. We take on the diffusive case in 
Section 5, with the notion of algorithmic calculus discussed 
in Section 6.d General diffusive influence systems are Turing-
complete, yet the mildest perturbation creates periodic 
behavior. This is disconcerting. Influence systems model 
how people change opinions over time as a result of human 
interaction and knowledge acquisition. Instead of ascend-
ing their way toward enlightenment, however, people are 
doomed to recycle the same opinions in perpetuity—there 
is a deep philosophical insight there, somewhere.

3. the -eneRGY
This section builds the tools needed for the bidirectional 
case and can be read separately from the rest. Let (Pt)t≥ 0 be 
an infinite sequence of n-by-n stochastic matrices; stochas-
tic means that the entries are nonnegative and the rows sum 
up to 1. Leaving aside influence systems for a moment, we 
make no assumption about the sequence, not even that it 
is produced endogenously. We ask a simple question about 
matrix sequences: under what conditions does P<t : = Pt –1 . . . P0 
converge as t → ∞? Certainly not if

The problem here is lack of self-confidence: the two agents 
in the system do not trust themselves and follow their 

neighbors blindly. So let us assume that the diagonal entries 
of Pt are positive. Alas, this still does not do the trick: the 
matrices

grant the agents self-confidence, yet composing them in 
alternation exchanges the vectors (0, 1, 1/4) and (0, 1, 3/4) 
endlessly. The oscillation is caused by the lack of bidi-
rectionality: for example, the recurring link from agent 3 
to agent 1 is never reciprocated. The fix is to require the 
graphs to be undirected or, equivalently, the matrices 
to be type-symmetric,e which instills mutual confidence 
among the agents. With both self-confidence and bidirec-
tionality in place, the sequence P<t always converges12, 14, 16. 
(Interestingly, this is not true of forward products P0 . . . Pt 
in general.) With nothing keeping (Pt )t ≥  0 from “stalling” 
by featuring arbitrarily long repeats of the identity matrix, 
bounding the convergence rate is obviously impossible. Yet 
an analytical device, the total s-energy5, allows us to do just 
that for bidirectional diffusive influence systems. The trick 
is to show that they cannot stall too long without dying off.

3.1. Preliminaries
Fix a small r > 0 and let (Pt )t ≥ 0 be a sequence of stochastic 
matrices such that r ≤ (Pt )ii ≤ 1 − r and (Pt )ij > 0 ⇒ (Pt)ji > 0. 
Let Gt be the (undirected) graph whose edges are the positive 
entries in Pt. With x(t + 1) = Pt x(t) and x(0) = x ∈ [0, 1]n, the 
total s-energy is defined as

 (1)

We use the s-energy in much the same way one uses 
Chernoff’s inequalities to bound the tails of product distri-
butions. Being a generalized Dirichlet series, the s-energy 
can be inverted and constitutes a lossless encoding of the 
edge lengths. Why this unusual choice? Because, as with 
the most famous Dirichlet series of all, the Riemann zeta 
function Σn–s, the system’s underlying structure is multi-
plicative: indeed, just as n is a product of primes, xi(t) − 
xj(t) is a product of the form vT Pt−1 . . . P0 x. Let En(s) denote 
the maximum value of E(s) over all x ∈ [0, 1] n. One should 
expect the function En(s) to encode all sorts of symmetries. 
This is visible in the case n = 2 by observing that it can be 
continued meromorphically in the whole complex plane 
(Figure 1).

The sequence formed by (Pt )t ≥ 0 is called reversible if Gt is 
connected and there is a probability distribution (p1, . . . , pn) 
such that pi(Pt )ij = pj(Pt )ji for any t; see detailed definition 
in Chazelle5. This gives us a way to weight the agents so 
that their mass center never moves. The notion general-
izes the concept of reversible Markov chains, with which 
it shares some of the benefits, including faster conver-
gence to equilibrium.

d Unless noted otherwise, the results discussed are from Chazelle5 for 
 Section 3; Chazelle4 for Section 4; Chazelle6 for sections 5 and 6.

e The zero-entries of a type-symmetric matrix and its transpose occur at the 
same locations.
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3.2. bounds
The s-energy measures the total length of all the edges for s = 1 
and counts their number for s = 0; the latter is usually infi-
nite, so it is sensible to ask how big En(s) can be for 0 < s ≤ 
1. On the lower bound front, we have En(1) = W(1/r) n/2 and 
En(s) = s1−n(1/ r)W(n), for any n large enough, s ≤ s0, and any fixed 
positive s0 < 1. Of course, the s-energy is useful mostly for its 
upper bounds5:

 
(2)

For reversible sequences and any 0 < s ≤ 1.

 (3)

where . This is essentially 
optimal. Fix an arbitrarily small e > 0. A step t is called trivial 
if |xi(t) − xj(t)| < e for each (i, j) ∈ Gt. The maximum number Ce 
of nontrivial steps is bounded by e−s En(s); hence,

 (4)

which is optimal if e is not too small. Convergence in the 
reversible case is polynomial: if e < r/n, then x(t) − pTx2 ≤ e, 
for t = O(r−1 n2|log e|). This bound is optimal. In particular, 
we can specialize it to the case of random walks in undi-
rected graphs and retrieve the usual mixing times.

We briefly mention two examples of diffusive influence 
systems for which the s-energy readily yields bounds on 
the convergence time5. HK systems track opinion polariza-
tion in a population10: in the bounded-confidence version 
(mentioned earlier), the agents consist of n points in Rd. At 
each step, each agent moves to the mass center of the agents 
within distance 1 (Figure 2).

Truth-seeking systems assume a “cognitive division of 
labor”11. We fix one agent, the truth, and keep the n − 1 oth-
ers mobile. A “truth seeker” is a mobile agent that is joined 
to the truth in every Gt. All the other mobile agents are “igno-
rant,” meaning that they never join to the truth through an 
edge, although they might indirectly communicate with it 

along a path. Any two mobile agents are joined in Gt whenever 
their distance is less than 1.

3.3. Why the -energy?
Let convP denote the convex hull of the points formed by 
the rows of the matrix P. We have the “Russian doll” nesting 
structure (Figure 3):

The literature on stochastic matrices features a variety of 
coefficients of ergodicity to help us measure how quickly the 
Russian dolls deflate: eigenvalues, joint spectral radius, 
width, diameter, volume, and so on22. This is how the con-
vergence of products of stochastic matrices, which includes 
the whole subject of Markov chain mixing, is established. By 
seeking progress at each step, however, these methods can-
not cope with stalling. The total s-energy gets around this by 
factoring time out (as a Fourier transform would with a time 
series) and producing a global deflation measure integrated 
over the whole time horizon.

The s-energy is controlled by a single parameter s, which 
we can adjust at will to get the most out of the inequality  
Ce ≤ e−s E(s), typically choosing s so that (dE/ds)|s = E ln e. We 
sketch the proof of (2), beginning with the case s < 1. The 
argument relies on an importance device: the flow tracker. 
Think of it as breadth-first search in a dynamic graph. A little 
imagery will help. Pick agent 1 and dip it in water, keeping all 
the other agents dry. Whenever an edge of Gt links a dry agent 
to a wet one, the dry one gets wet. As soon as all the agents 
become wet (if ever), dry them all except agent 1; repeat.

Flow tracker (5)

[1] t0 ← 0.
[2] Repeat forever:

[2.1] Wt0
 ← {1}.

[2.2] For t = t0, t0 + 1, . . . , ∞:
Wt+1 ← Wt ∪ { i | ∃ (i, j) ∈ Gt &  j ∈ Wt }.

[2.3] If |W∞| = n then t0 ← min{t > t0 : |Wt| = n} else stop.

Let Wt denote the set of wet agents at time t, which always 
includes agent 1. The assignments of t0 in step [2.3] divide 
the timeline into epochs, time intervals during which either 
all agents become wet or, failing that, the flow tracker 
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figure 1. the analytic continuation of |e2(s)|. figure 2. Randomly placed agents evolve to form shapes of 
dimension 2, then 1, and finally 0.
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comes to a halt (breaking out of the repeat loop at “stop”). 
Take the first epoch: it is itself divided into subintervals by 
the  coupling times t1 < . . . < tl at which the set of wet agents 
grows: Wtk  Wtk+1. If Wt denotes the length of the small-
est interval enclosing Wt, it can be shown by induction that 
Wtk+1 ≤ 1 –ρk. It then follows that E1(s) = 0 and, for n ≥ 2,

En (s) ≤ 2nEn – 1 (s) + (1–ρn)s En(s) + n3,

which implies (2) for s < 1.
The case s = 1 features a fundamental concept in the study 

of natural algorithms, that of an algorithmic proof. Think of 
the agents as car drivers: the 1-energy can then be shown to mea-
sure the total mileage. Fill the gas tank of each car with an 
initial amount determined by some formula (whose details 
are immaterial for our purposes). Since we do not know 
ahead of time how much gas any given car will need, we set 
up a gas trading mechanism: a refueling tanker hovers over 
the cars, ready to provide (or take) gas to (or from) any car 
that needs it. The needs come in two ways: first, a car needs 
gas to move; second, the trading mechanism specifies how 
much gas any car must have at any time, so any excess supply 
must be handed over to the refueling tanker. Any car in need 
of gas (for driving or simply complying with the rules) is free 
to help itself from the fuel tanker. The trick is to show that 
the system can run forever without the fuel tanker ever run-
ning out of gas and being unable to meet the drivers’ needs.

Dynamicists might think of this as a kind of distrib-
uted Lyapunov function. This would be missing the point. 
Algorithmic proofs of the type found in the amortized 
analysis of algorithms—often expressed, as above, via the 
trading rules of a virtual economy—are meant to cope with 
the sort of descriptive complexity typically absent from low-
dimensional dynamics. The benefits come from the richer 
analytical language of algorithmic proofs: indeed, it is all 
about language!

4. biRD fLocKinG
We briefly discuss a classic instance of a nondiffusive 
influence system, bird flocking, and report the results 
from Chazelle4. The alignment model we use8, 13, 24 is a 

trimmed-down version of Reynolds’s original model21. In 
this influence system, d = 6 and each bird i is specified by 
its position zi and velocity vi. The undirected communica-
tion graph G (x) joins any two birds within a certain fixed dis-
tance of each other (Figure 4). The birds in any connected 
component form a flock. Reordering the coordinates of the 
6n-dimensional state vector x as (z, v), we specify the dynam-
ics as

where Q(x) is the n-by-n “velocity” stochastic matrix of a 
(lazy) random walk on the graph G (x) and ⊗ is the Kronecker 
product that distributes the action along each coordinate 
axis. The matrix P is 2n-by-2n, so each entry is multiplied not 
by a single coordinate in x but by a 3-tuple; in other words, 
P(x) acts not on R2n but on (R3)2n. Although the velocities can 
be inferred from the positions, they need to be included in 
the phase space to keep the system Markovian.

The system always converges in the following sense: after 
an initial period when the behavior can be fairly arbitrary, 
the birds aggregate in flocks which, from that point on, can 
only merge together. If we wait long enough, the flocks will 
eventually stabilize. The communication graph will remain 
forever fixed and the flocks will each move at a constant 
speed and never meet again. The fragmentation period is 
at most exponential in the bit length of the input. The con-
vergence of birds’ velocities requires the use of the total 
s-energy and various geometric considerations. One of them 
is to show that some virtual bird must necessarily fly almost 
along a straight line after a while. This addresses the issue of 
whether all birds can keep flying in spirals.

What is a virtual bird? Imagine the presence of one baton 
in the system. At any given time, a single bird holds the baton 
and may pass it on to any of its neighbors in the communi-
cation graph (Figure 5). Whoever holds the baton is the vir-
tual bird at that instant (virtual because its identity keeps 
changing). Is there a baton-passing protocol that will keep 
the virtual bird flying in (almost) a straight line? (A question 
whose answer can only be an algorithmic proof.) This is key 
to determining whether two flocks flying away from each 

total s-energy

SP0

P1P0

P2P1P0

figure 3. the deflating matrix polytope. figure 4. the bird at the center of the circle is influenced by its two 
neighbors in it.
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other can be brought together by other flocks. The design 
of a protocol involves the geometric analysis of the flight net 
(Figure 6), which is the unfolding of all neighboring relations 
in four-dimensional spacetime. This is a tree-like geometric 
object in R4 with local convexity properties, which encodes 
the exponentially large number of influences among birds. 
The position of each bird can be expressed by a path integral 
in that space. Examining these integrals (actually sums) and 
the geometry that produces them allows us to answer the 
question above4.

While flocks cease to fragment reasonably rapidly (thus 
ensuring quick physical convergence), it might take very long 
for them to stop merging. How long? A tower-of-twos of height 
logarithmic in the number of birds. Surprisingly, this result 
is tight! To prove that, we regard the set of birds as forming a 
computer and we ask a “busy-beaver” type of question: What is 
the smallest nonzero angle between any two stationary veloci-
ties? The term “stationary” refers to the fact that each flock is 
a coupled oscillator with constant stationary velocity (the low-
est mode of its spectrum). These velocity vectors form angles 
between them. How small can they get short of 0? (Zero angles 
correspond to flocks flying in parallel.) To answer this question 
requires looking at the flocks of birds as a circuit whose gates, 
enacting flock merges, produce a redistribution of the energy 
among the modes called a spectral shift. It is remarkable that 
the busy-beaver function of this exotic computing device can 

be pinned down almost exactly: the logarithmic height of the 
tower-of-twos is known up to a factor of 4.

5. DiffusiVe infLuence sYstems
We set f (x) = (P(x) ⊗ Id) x ∈ (Rd)n, where P(x) is a stochas-
tic matrix whose positive entries correspond to the edges 
of G (x) and are rationals assumed larger than some arbi-
trarily small r > 0. We grant the agents a measure of self-
confidence by adding a self-loop to each node of G (x). 
Agent i computes the i-th row of P(x) by means of its own 
algebraic decision tree; that is, on the basis of the signs of 
a finite number of dn-variate polynomials evaluated at the 
coordinates of x. This high level of generality allows G (x) to 
be specified by any first-order sentence over the reals.f Note 
how the descriptive complexity resides in the communica-
tion algorithm G, which can be arbitrarily expressive: the 
action f is confined to diffusion (with different weights for 
each agent if so desired).

By taking tensor powers (no details needed here), we can 
linearize the system and reduce the dimension to d = 1, so 
 f (x) = P(x)x, where P(x) = Pc, for any x ∈ c, and c is an atom (open 
n-cell) of an arrangement of hyperplanes in Rn, called the 
switching partition SP (Figure 7). We assume self- confidence 
but not mutual confidence, that is, positive diagonal entries 
but not necessarily bidirectionality.

In spite of having no positive Lyapunov exponents, dif-
fusive systems can be chaotic and even Turing-complete. 
Perturbations wipe out their computational power, how-
ever, by making them attracted to periodic orbits. Such sys-
tems, in other words, are clocks in disguise.g This dichotomy 
requires a subtle bifurcation analysis, which we sketch in 
the next section.

Theorem 1:6 Given any initial state, the orbit of a diffusive 
influence system is attracted exponentially fast to a limit 
cycle almost surely under an arbitrarily small perturbation. 
The period and preperiod are bounded by a polynomial in the 
reciprocal of the failure probability. In the bidirectional case, 
the system is attracted to a fixed point in time nO(n)|log e|, where n 
is the number of agents and e is the distance to the fixed point.

The number of limit cycles is infinite, but if we mea-
sure distinctness the right way (i.e., by factoring out folia-
tions), there are actually only a finite number of them.h The 
critical region of parameter space is where chaos, strange 
attractors, and Turing completeness reside. It is still very 
mysterious.i This does not mean that it is difficult to iden-
tify at least some of the critical points. Here is a simple 

figure 5. the virtual bird can hold on to the baton or pass it to any 
neighbor.

figure 6. the flight net and path integrals in R4.

f This is the language of geometry and algebra over the reals with statements 
specified by any number of quantifiers and polynomial (in)equalities. It was 
shown to be decidable by Tarski and amenable to quantifier elimination and 
algebraic cell decomposition by Collins7.
g To perturb the system means randomly perturbing the switching partition 
and making exceptions for infinitesimal and indefinitely disappearing edges. 
The conditions are easy to enforce and, in one form or another, required. 
Note that we do not perturb the matrices or the initial states.
h A limit cycle is an attracting periodic orbit, for example, {−1, 1} where x(t) 
= (−1)t + 2−t x(t−1) and x(0) ∈ R.
i I only know that the critical region has measure zero and looks like a 
 Cantor set.
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example of a chaotic diffusive influence system with n = 4 
and d = 1: the first two agents stay on opposite sides of the 
origin; at any time, the one further from the origin moves 
to their midpoint, that is,

Agent 3 is fixed at x3 = 1. Agent 4 moves midway toward agent 1 
if the latter is moving and midway toward agent 3 if agent 2 
is the one moving. To see why the system has positive topo-
logical entropy (the usual sign of chaos), it suffices to con-
sider the infinite bit string s0s1s2 . . . , where st = 0/1 depends 
on whether agent 1 or 2 is moving at time t. If agent 2 is ini-
tialized at x2 = 1 and agent 1 anywhere in (−1, 0), the string 
matches the binary expansion of 1/(1 − x1); in other words, 
predicting the t-th step requires knowing the initial place-
ment of agent 1 with an error exponentially small in t.

5.1. energy vs. entropy
As in the Ising model, the system mediates a clash 
between two opposing “forces”: one, caused by the map’s 
discontinuities, is “entropic” and leads to chaos; the other 
one, related to the Lyapunov exponents, is energetic and 
pulls the system toward an attracting set within which the 
dynamics is periodic. The goal is to show that, outside a 
vanishingly small “critical” region in parameter space, 
entropy always loses. What does it mean? If, unlike in 
Figure 7, the iterated image of any ball b never intersected 
the SP hyperplanes, it would merrily bounce around until 
eventually periodicity kicked in. In the figure, f 3(b) does 
not oblige and splits into two smaller bodies. Both will 
bounce around until possibly splitting again and so on. 
If this branching process gets out of control, chaos will 
ensue. To squelch this entropic process and induce peri-
odicity, we have the stochasticity of the matrices on our 
side: it causes the ball b to shrink and dissipate energy. 
Unlike the classical Ising model, however, the system has 
a single phase outside the critical region.

Entropy against energy: which one will win? For entropy 
to lose out, the ball b must avoid splitting up too frequently. 
This can be expressed by an (infinite) system of linear 
inequalities. Feasibility hinges on a type of matrix rigidity 
question: in this case, given a certain matrix, how many rows 

must be removed before we can express the first column as 
a linear combination of the others? Periodicity requires that 
this number be high. The matrix in question is extracted 
from the system’s stochastic matrices and the SP equations, 
hence is highly structured.

Our sketchy explanation skipped over the main source 
of difficulty. The ball b in fact does not shrink in all direc-
tions. Take (1, . . . , 1)T: it is a principal right-eigenvector 
for the eigenvalue 1, so we would not see much contrac-
tion in that direction. Worse, the noncontracting princi-
pal eigenspace can have arbitrarily high dimension dt. To 
prove that the critical region has measure zero requires 
a firm analytical grip on dt. At time t, the dimension dt is 
equal to the number of essential communicating classes in 
the Markov chain P( f t(x) ). To keep track of dt, a number 
that can change constantly, we extend the flow tracker to 
dynamic directed graphs.

6. an aLGoRithmic caLcuLus
As the system evolves, we are in a position to isolate certain 
subsystems and treat them recursively. If, during a certain 
time interval, the communication network consists of two 
dynamic subgraphs A, B with no directed edges from B to A, 
then we can break down the system during that period into 
B and C, where C consists of A together with the contraction 
of B into a single vertex. This recursive treatment (“dynamic 
renormalization”) can only be accomplished algorithmi-
cally since we do not know the structure of the recursive 
systems ahead of time—what with edges coming and going 
all the time. (Observe the difference with the Ising model, 
where the particles sit on a lattice and the coarse-graining 
can be structured prior to action.) We mention another dif-
ference, this time with classical algorithms. The decision 
tree of influence systems (called the coding tree) is infinite, 
so any perturbation has rippling effects that translate into 
infinitely many conditions; this explains the need to deal 
with infinite series such as the total s-energy or infinite sets 
of algebraic conditions as in the matrix rigidity problem 
mentioned earlier.

By scale invariance and convexity, we may confine the 
phase space to [0, 1]n. Let Md denote the union of all the SP 
hyperplanes shifted by a small d. It is useful to classify the 
initial states by how long it takes their orbits to hit Md , if 
ever. With f 0 = in and min 0/ = ∞, we define the label l(x) of 
x ∈ [0, 1]n as the minimum integer t such that f t (x) ∈ Md. The 
point x is said to vanish at time l(x) if its label is finite. The 
points that do not vanish before time t form the set St: we 
have S0 = [0, 1]n; and, for t > 0,

Each of St’s connected components is specified by a set of 
strict linear inequalities in Rn, so St is a union of disjoint 
open n-cells, whose number we denote by #St. Each cell of St + 1 
lies within a cell of St. The limit set S∞, = ∩ t ≥ 0 St collects the 
points that never vanish. We say that the system is nesting 
at t if St = St + 1. The minimum value of t (or ∞) is called the 
nesting time v of the system. Labels cannot be skipped: if k 

f

f
f

f3(b)

c

f2(b)f(b)

b

figure 7. the atom c of the SP maps via f to a cell intersecting 
two atoms.
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is a label, then so is k − 1. It follows that the nesting time 
v is the minimum t such that, for each cell c of St, f t (c) lies 
within an atom. If c is a cell of Sv, then f (c) intersects at 
most one cell of Sv and Sv = S∞. Any nonvanishing orbit is 
eventually periodic and the sum of its period and prepe-
riod is bounded by #Sv.

We define the directed graph F with one node per cell c 
of Sv and an edge from (c, c′), where c′ is the unique cell of 
Sv, if it exists, that intersects f (c). The edge (c, c′) is labeled 
by the linear map f|c defined by the matrix Pa, where a is the 
unique atom a ⊇ c. The graph defines a sofic shift (i.e., a 
regular language) of the functional kind, meaning that 
each node has exactly one outgoing edge, possibly a self-
loop, so any infinite path leads to a cycle. Periodicity fol-
lows immediately. The trajectory of a point x is the string 
s(x) = c0c1 . . . of atoms that its orbit visits: f t (x) ∈ ct for all 0 
≤ t < l(x). It is infinite if and only if x does not vanish, so all 
infinite trajectories are eventually periodic.

6.1. the coding tree
This infinite rooted tree T encodes into one geometric object 
the set of all orbits. (It is the natural-algorithm equivalent of 
the decision tree of classical algorithms.) It is embedded in 
[0, 1]n × N, with the last dimension representing time. The 
atoms are redefined as the n-dimensional cells in [0, 1]n\Md. 
Each child v of the root is associated with an atom Uv. The 
phase tube (Uv, Vv) of each child v is the “time cylinder” whose 
cross sections at times 0 and 1 are Uv and Vv = f (Uv), respec-
tively. The tree is built recursively by subdividing Vv into the 
cells c formed by its intersection with the atoms, and attaching  
a new child w for each c: we set Vw = f (c) and Uw = Uv ∩ f −tv (c), 
where tv is the depth of v (Figure 8). We denote by Pw the 
matrix of the map’s restriction to c. The phase tube (UV,VV) 
consists of all the cylinders whose cross sections at t = 0, . . . , tv are, 
respectively, Uv, f (Uv), . . . , f tv(Uv) = Vv. Intuitively, T divides up 
the atoms into maximal regions over which the iterated map 
is linear.

Let ww′w″ . . . denote the upward, tw-node path from w 
to the root (but excluding the root). Using the notation 
P≤ w = PwPw′Pw″ . . . , we have the identities Vw = P≤ w Uw and 
Sk = ∪w {Uw|tw = k}. Labeling each node w by the unique atom 
that contains the cell c above allows us to interpret any path 
as a word of atom labels and define the language L(T ) of all 
such words. The coding tree is the system’s Rosetta stone, 
from which everything of interest can be read. To do that, we 
need to define a few parameters:

•  The nesting time v = v(T ) is the minimum depth at which 
any node has at most one nonvanishing child. A node v 
is shallow if tv ≤ v.

•  The word-entropy h(T  ) captures the growth rate of the 
language L(T  ): it is defined as the logarithm of the 
number of shallow nodes; #Sv ≤ 2h(T ).

•  The period p(T ) is the maximum (prime) period of any 
word in L(T ).

6.2. the arborator
We assemble the coding tree by glueing together smaller 
coding trees defined recursively. We entrust this task to the 

arborator, a recursive algorithm expressed in a language 
for “lego-like” assembly. The arborator needs two (infi-
nite) sets of parameters to do its job, the coupling times and 
the renormalization scales. To produce these numbers, we 
use an extension of the flow tracker (Section 3) to directed 
graphs. The arborator relies on a few primitives that we 
briefly sketch. The direct sum and direct product are tensor-
like operations that we use to assemble the coding tree from 
smaller pieces (Figure 9). We can also compile a dictionary 
to keep track of the tree’s parameters (nesting time, word-
entropy, etc.) as we build it up one piece at a time.

Direct sum. The coding tree T = T1 ⊕ T2 models two inde-
pendent systems of size n1 and n2. The phase space of the 
direct sum is of dimension n = n1 + n2. A path w0, w1, . . . of T 
is a pairing of paths in the constituent trees: the node wt is 
of the form (ut, vt), where ut (respectively, vt) is a node of T1 
(respectively, T2) at depth t. The direct sum is commutative 
and associative; furthermore, Uw = Uu × Uv, Vw = Vu × Vv, and 
Pw = Pu ⊕ Pv.

Direct product. Consider two systems S1 and S2, governed 
by different dynamics yet evolving in the same phase space 
[0, 1]n. Given an arbitrary region L ⊂ [0, 1]n, define the hybrid 
system S with the dynamics of S2 over L and S1 elsewhere. 
Suppose we had complete knowledge of the coding tree Ti of 
each Si (i = 1, 2). Could we then combine them in some ways 
in cut-and-paste style to assemble the coding tree T of S? The 
direct product T1 ⊗ T2 provides the answer. The operation is 

figure 8. a phase tube (UW,VW) of length two.
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figure 9. the two tensor operations.
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associative but not commutative. It begins by marking cer-
tain nodes of T1 as absorbed and pruning the subtrees below. 
This operation is called absorption by analogy with the 
absorbing states of a Markov chain: any orbit reaching an 
absorbed leaf comes to a halt, broken only after we reattach 
a copy of T2 at that leaf. The copy must be properly cropped.

6.3. Dynamic renormalization
Direct sums model independent subsystems through par-
allel composition. Direct products model sequential com-
position. What are the benefits? In pursuit of some form 
of contractivity, the generalized flow tracker classifies the 
communication graphs by their connectivity properties 
and breaks up orbits into sequential segments accordingly 
(Figure 10). It partitions the set of stochastic matrices into 
classes and decomposes the coding tree T into maximal 
subtrees consisting of nodes v with matrices Pv from the 
same class. The power of this “renormalization” procedure 
is that it can be repeated recursively. We classify the com-
munication graphs by their block-directionality type: G (x) is 
of type m → n − m if the agents can be partitioned into A, 
B (|A| = m) so that no B-agent ever links to an A-agent; if in 
addition, no A-agent links to any B-agent, G (x) is of type m 
→ n − m. If we define the renormalization scale wk = |Wtk+1| 
− n + m for k = 1, . . . , l − 1 (where Wt denotes the set of wet 
nodes), any path of the coding tree can be expressed as

The subscripts indicate the lengths of the (underlined) 
renormalized subsystems. Varying the shift d may change 
the coding tree, so we extend all the previous definitions to 
the global coding tree T D with phase space [0, 1]n × D, for a 
tiny interval D centered at the origin. We have all the ele-
ments in place for the algorithmic proof of Theorem 1 to 
proceed: see Chazelle6 for details.
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