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The Bottom-Left Bin-Packing Heuristic: An
Efficient Implementation

BERNARD CHAZELLE

Abstract—We study implementations of the bottom-left heuristic
for two-dimensional bin-packing. To pack N rectangles into an infinite
vertical strip of fixed width, the strategy considered here places each
rectangle in turn as low as possible in the strip in a left-justified posi-
tion. For reasons of simplicity and good performance, the bottom-left
heuristic has long been a favorite in practical applications; however,
the best implementations found so far require a number of steps O(N3).
In this paper, we present an implementation of the bottom-left heuristic
which requires linear space and quadratic time. The algorithm is fairly
practical, and we believe that even for relatively small values of N, it
gives the most efficient implementation of the heuristic, to date. It
proceeds by first determining all the possible locations where the next
rectangle can fit, then selecting the lowest of them. It is optimal among
all the algorithms based on this exhaustive strategy, and its generality
makes it adaptable to different packing heuristics.

Index Terms—Bin packing, bottom-left heuristic, computational
geometry, geometric pattern matching, operations research, operating
systems, scheduling.

I. INTRODUCTION

ANY problems from operations research or in oper-
ating systems involve finding efficient packings of
rectangles into a given rectangular area [6]. For this problem
known as two-dimensional packing, Baker, Coffman, and
Rivest [2] gave a combinatorial model where a rectangular bin
R with an open top is to be packed with N rectangles Ry - - -,
Rx, so as to minimize the total bin height. In addition to the
requirement that distinct rectangles should not overlap, this
model considers only orthogonal and oriented packings. An
orthogonal packing has all the edges parallel to the bottom or
vertical edges of the bin R, and it is oriented if rectangles
cannot be rotated at all. More precisely, the rectangles are
given by a list L = {(xy, y1),- -+, (xn, Yn)}, where R; has width
x; and height y,. So, in order to have an oriented packing, we
must ensure that the edges of length x; are parallel to the
bottom edge of R.

Since the problem of finding an optimal packing is VP-hard,
various approximation methods have been proposed [1]-[4].
In this paper we turn our attention to the bottom-left (BL)
heuristic. The strategy chosen consists of placing a rectangle
into its lowest possible location, and left-justifying it. We then
iterate on this process for each rectangle in turn with the order
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given by L. It has been shown in [2] that although poorly or-
dered lists L can lead to arbitrarily bad packings relative to an
optimal packing, simply ordering L by decreasing widths
gudrantees a total bin height at most three times the optimal
height. In practice, experience has shown that the BL strategy
tends to perform fairly well, and its utter simplicity makes it
particularly attractive in many applications areas. Unfortu-
nately, its conceptual simplicity does not carry over to the
implementation level, and only naive O(~N4) or at best O(N?3)
algorithms had as yet been discovered.

We should mention that although shelf-heuristics offer
better worst-case performance than the BL-heuristic [3], the
latter can be an interesting alternative when the former do not
fare well, since it produces packings of a totally different
type.

We propose here an optimal scheme for reporting all the
possible locations where the next rectangle can be placed. This
method requires linear time for each rectangle, and it can be
specialized to implement various packing heuristics. In par-
ticular we will give a precise description of an implementation
of the BL heuristic based on this method, which has an O(V)-
space, O(N?)-time complexity. The class of heuristics to
which this method applies corresponds to the packing proce-
dures which preserve bottom-left stability. We say that a
rectangle is packed in a bottom-left stable (BL-stable) position
if it cannot move downwards or slide to the left. Note that the
BL heuristic satisfies this condition. The paper is organized
as follows: after an initial, intuitive presentation of the algo-
rithm, we describe the supporting data structure, then we show
in detail how to find all the possible locations for a new rec-
tangle to be packed. Next we explain how to update the data
structure, once the rectangle has been placed in the bin. Fi-
nally, we analyze the space and time requirements of the al-
gorithm, and prove that it is indeed optimal among all the al-
gorithms preserving bottom-left stability.

II. THE DESCRIPTION OF THE BL ALGORITHM

Throughout this section we will consider only packing
heuristics which preserve bottom-left stability. At any stage
of the heuristic, the bin contains a set of empty spaces (or
holes) Ho, Hy, -+, which can be viewed as polygons with
horizontal and vertical edges. There is always one such hole
Hog present in the bin, i.e., the unbounded area lying above all
the rectangles placed so far (Fig. 2).

To place the next rectangle R; = (/, k), the algorithm pro-
ceeds by examining each hole H; in turn and finding whether
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Fig. 1.

An orthogonal bin packing.
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Fig. 2. The general configuration.

R; fits into it. To visualize the process, we can view the rec-
tangle R; as a mechanical device consisting of two horizontal
bars of length /, held together by a spring pushing outwards
(Fig. 3). As a resuit, the height of the rectangles is as big as
possible under the constraint that it must fit within the upper
and lower edges of the hole which it is being tested against. As
illustrated in Fig. 3, the searching scheme consists of sliding
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the device from left to right, observing the variation in height
and waiting for it to exceed 4. Whenever this happens, we can
report the current location of the rectangle as a feasible can-
didate.

It appears that the main problems to solve are as follows.

1) Which data structure should be chosen to represent the
holes?

2) How to slide the bars inside the holes?

3) How to update the data structure once a choice for
placing R; has been made?

4) What is the size of the data structure?

A. The Data Structure .

We essentially wish to represent each hole with a description
of its boundary, so as to allow for left-to-right traversals. Since
we are more concerned with simplicity and clarity than with
constant factor optimization, we prefer to choose a slight re-
dundant representation. Each hole is represented by a dou-
bly-linked list of its vertices, in the order in which they appear
in a traversal of the boundary of the hole. In addition, we must
distinguish certain vertices and edges which play a special
role.

Definition: An edge of a hole is said to be leftmost if both
of its adjacent edges are horizontal and lie to its right, and
neither of the angles they form with the edge is reflex. On the
contrary, a hotch is an edge which displays a reflex angle at
cach of its endpoints. It is said to be a left (respectively right,
upper, lower) notch if its two adjacent edges lie to its left
(respectively right, above, below). Finally, a vertex with a re-
flex angle, adjacent to a vertical edge above it and a horizontal
edge to the right, is called a falling corner.

The definitions above precisely identify the only items which
create difficulties in sliding our mechanical device. For this
reason, we introduce the concept of a nice hole, defined as a
hole with no left, right, or upper notch, and with at most one
falling corner. Although holes tend not to be nice, in general,
we will show that any hole can be partitioned into a collection
of nice subholes, arranged in a tree fashion.

Lemma ]: A hole cannot have right-notches or upper-
notches, and it has at most one falling corner.

Proof: The first part of the lemma is trivial, since the
heuristic must preserve BL-stability. Suppose now that a hole
contains two falling corners. Let ayasas - -+ b be the part
of the boundary connecting up the two falling corners a, and
b, given in clockwise order (Fig. 5). We can always assume that
aq and b are the only falling corners on the polygonal line a;
-+ b. Since there is no upper-notch, a; lies below a,. Also, to
prevent the presence of a right-notch, a; and a3 must be the
vertices with minimum X-coordinate among a;, a3, * -, b. This
implies that a3 is a falling corner; hence a3 = b. We conclude
by observing that either the rectangle with the edge a4, or the
rectangle with the edge a,b must be instable, that is, cannot
be in such a position using a heuristic preserving BL-stability.

a

With this result in hand, we can best explain the partitioning
of each hole by completing the description of the data structure
associated with each hole. Call Ly, L,, - - - the leftmost edges
of the hole and @y, 0», - - - the top endpoints of the left notches.
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Fig. 5. The proof of Lemma 1.

Besides being doubly linked with its adjacent vertices in the
hole, each vertex Q; will have “special” double links with (Fig.
6)
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Setting special links in a hole.

1) QN;, the point on the boundary which lies immediately
above Q; on a vertical line.

2) QW;, the point on the boundary which lies immediately
to the right of ¢; on a horizontal line.

So, to summarize, every vertex on the boundary of each hole
has exactly two double links, except for the special vertices
ON;, QW;, and Q; which have respectively 3, 3, and 4 such
links. The reason for singling out these vertices will now be-
come apparent.

Consider the boundary of the hole along with the segments
of the kind Q;QN;. These segments partition the hole into a
certain number of subholes, all of which are nice. This is a

direct consequence of Lemma 1 and of the fact that the par-
titioning consists essentially in “removing” all left-notches in
the hole. It is now apparent that each subhole can be identified
as the node of a tree which realizes a partition of the hole into
nice subholes. Let us now look at some properties of the data
structure in order to motivate the introduction of all the links
present in it. From the absence of left- or right-notches, it
follows that each subhole has exactly one leftmost (respectively
rightmost!) edge which is also the vertical edge in the subhole
with minimum (respectively maximum) X-coordinate. Putting
the previous results together, we conclude that each subhole
can be swept across from left to right by a vertical line, starting
at its leftmost edge L;, so that the intersection with the line will
always be exactly one segment. Moreover, since there is no
upper-notch and at most one falling corner, the top endpoint
of the segment can only move upwards as the line moves to the
right, except possibly at the only falling corner existing. See
Fig. 7 for an illustration of the two kinds of subholes.

With the links Q; <> QNV; set above, moving the vertical line
from left to right, keeping track of the endpoints of the inter-
secting segment, is a trivial matter. Partitioning the hole into
subholes permits us to carry out this procedure for the entire
hole, by iterating on this process for each of its subholes, and
without duplicating any work. Now that the setting of the links
Q; < ON; has been motivated, we can next informally explain
the reason for introducing the vertices QW; by observing that,
instead of sweeping a vertical line, we really need to sweep our
spring device of width /. Thus, it is important to know which
obstacles the right part of the device can encounter when this

U A rightmost edge is defined symmetrically like a leftmost edge with re-
spect to the right.
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Fig. 7. The two kinds of subholes.

part starts leaving the subhole and the device is still partially
inside it. Since both upper- and right-notches are ruled out,
ON;, as defined, is the first and only possible obstacle which
will stop the motion of the device.

In conclusion, we have defined a data structure F to repre-
sent each hole in the bin as a collection of subholes, each as-
sociated in a one-to-one correspondence with a leftmost edge
L;. More precisely, to each L; is associated two doubly-linked
lists FT(L;) and FB(L;), containing the vertical upper and
lower endpoints, respectively, of the vertical segment sweeping
the sub-hole from left to right (Fig. 8). Thus, we have

F=\{FT(L;), FB(L;)|
All leftmost edges L; in each hole of the bin.}

The purpose of partitioning each hole is to allow us to search
a hole for packing locations without duplicating any work.

B. Computing All Possible Positions for a New Rectangle

The most difficult task is to slide the lower bar b5 of the
spring device along the edges of the list FB(L;). Indeed, the
possible presence of lower-notches among them may cause the
bar b,b; to slide upwards as well as downwards. As long as
b b, slides upwards, it is easy to keep looking at a distance /
ahead of b; in order to determine the next obstacle forcing b5,
into an upward motion. It follows that sliding the lower bar of
the device upwards can be done in linear time. When there is
no obstacle causing the bar to slide up, however, we must de-
termine which horizontal edge of FB(L;) the segment b, will
next fall upon—see position (2) in Fig. 3. To do so, we use a
priority queue Q to make this edge readily available at all
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Fig. 8. The data structure F.

times. When this edge becomes a supporting edge for b, b,, it
must be deleted from Q. Note also that Q must be updated
when b b, slides to the right. Later on, we will show how these
updates can be done in linear time. To slide the upper bar ¢,¢,
is similar, yet much simpler since the bar can only move up-
wards, except for one possible encounter with a falling corner.
In the case of the unbounded hole, we can assume the presence
of a straight horizontal line located at a distance 2h over the
highest rectangle in the bin. This assumption is made in order
to reset the original conditions and thus ensure uniform
treatment. Before proceeding with the algorithm, we introduce
some notation.

The X- (respectively Y-) coordinate of a point M is denoted
x(M) (respectively y(M)), so that the point can be referred
to as the pair (x(M), y(M)). Two sets of points S, S’ satisfy
the relation S <, S if x(M) < x(M’) for any point M (re-
spectively M”) in S (respectively S”). Similarly we define the
relation <. If d is a number, M +, d stands for the point
(x(M) + d, y(M)). Similarly, M + ,d stands for the point
(x(M), y(M) + d). Line (S) is the infinite line passing through
the segment S.

Consider a subhole in the bin with its associated lists FB(L;)
and FT(L;). Assume that we conceptually remove the polyg-
onal line corresponding to FT(L;) so that the subhole becomes
an infinite vertical strip with a base delimited by FB(L;). As-
suming then, for the sake of illustration, that there is a force
of gravity acting vertically (downwards) on the bar b b, of
length /, we can define C as the locus of the endpoint b for all
possible locations of the bar b;b,. More precisely, C is the set
of points on the polygonal line defined by FB(L;) such that,
if by is placed at any point of C, the segment b b, fits entirely
inside the strip defined above (Fig. 9). Similarly, we define D
to be the locus of the endpoint ¢, of the upper bar t,¢,, when
the gravity now acts upwards and FB(L;) has been removed
so that the strip now stretches to infinity downwards. Note that
C and D may intersect.

The remainder of the exposition consists of two parts. First
we assume that the polygonal lines C and D are available for
each subhole in the bin, and we show how to use this infor-
mation to compute placements for the rectangle R to be
packed. Then only, we actually describe the algorithm for
computing C and D.
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1) Placing a New Rectangle in the Bin: Assuming that both
C and D are available as lists of vertices with increasing X-
coordinates, it is easy to determine all the BL-stable locations
of the rectangle to pack. To do so, we simply compare the
height of the polygonal lines C and D, and report the positions
where the height of #,7, exceeds that of b5, by at least 2. We
can assume that C and D are given by the list of their hori-
zontal edges from left to right (Fig. 10).

C= ’llwrl)7”" (lm’rm)}
D=0\, (rp)

We can always assume that r,, and r}, have the same X-
coordinate. Indeed, if this is not the case, the line over-ex-
tending to the right can always be trimmed. We first give the
algorithm PLACING for determining the set £ of possible
positions for b, the lower-left corner of the rectangle (/, k),
inside the subhole. Following that description, we analyze the
correctness and the complexity of the algorithm.

701

Fig. 10.

Reporting feasible positions.

The list £ computed by the function PLACING consists of
significant points on C, each assigned a label yes or no to in-
dicate whether they belong or not to the desired set of possible
positions for b,. This set consists, in general, of a number of
disjoint polygonal lines which can be easily obtained from £
by joining together points with pes labels. We omit the details
which are straightforward. The function PLACING returns
the vertices of the polygonal line £ in left-to-right order. To
best understand the algorithm, we should view it as a set of two
coroutines playing symmetrical roles. Thus we may concen-
trate only on the first while statement. In this case, the vertical
edge r}l}H lies above /;r;, therefore a new height difference
y(L341) ~ y(I;) must be tested against & (Fig. 10). It is clear
that the algorithm runs in time O(m + p).

In conclusion, we have described a method for determining
the feasible locations of b, for each subhole, which is linear in
the number of edges present in C and 0. We can iterate on this

procedure PLACING (h, C, D)

[y

if y(1) —y() 2 h
then E < {(/;, yes)}
else £ < {(/, no)}

whilei <m v j<p
begin

whiler; <.r; A j<p

begin
J=Jj+1

M <= (x(), y ()

if y([;) —y(li) 2 h
then £ ~— F U {(M, yes)]
else E~— F U {(M, no)}

end

while r; <. r; A i <m

begin
P—i+1

if y(1j) = y(li) 2 h
then E‘ i E U l(ri—ls }’es), (lf7 }’es)}

else £ < E U {(ri—, no), (I;, no)}

end

if y(r,) = y(rm) 2 h
then £ < E U {(ry,, yes)}
else £ <~ E u {(ry,, no)j
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Fig. 11.  Generating all feasible positions.

procedure for each subhole in every hole in the bin, and thus
report all the feasible locations of b; in the bin. It is easy to
tailor the function PLACING to the BL-heuristic. We simply
have to keep the lowest feasible position for b; only, and the
leftmost one in case of ties. If we disregard the updating of the
data structure due to the insertion of the new rectangle, it
appears that the time complexity of the entire algorithm is
proportional to the added number of edges in the lists C, D for
all the subholes. The motivation for partitioning each hole into
subholes is now evident, since it allows us to carry out the
previous procedure, starting at each leftmost edge of the hole,
without duplicating any computation. Thus, in order to have
a linear algorithm for inserting a rectangle, it remains to show
that

1) Cand D can be computed from FB(L;) and FT(L;) in
time proportional to the size of these lists.

2) Updating the data structure F, after packing a rectangle,
can be done in time linear in the size of F.

3) The size of F is, at any time, at most proportional to the
number of rectangles present in the bin.

2) Computing C and D: We begin with a description of the
method for C, from which the method for D can be easily de-
rived. As mentioned earlier, we will make use of a priority
queue ), implemented as a doubly ended queue [5], whose
elements are edges of FB(L;). TOP1(Q) (resp. TOP2((Q))
gives the value of its first (respectively last) element, while

POP1(Q) [respectively POP2(Q)] removes this element from
the queue. s U Q (respectively O u s) appends s to the top
(respectively bottom) of Q. For example, if QO = {s,, 52, 53},
TOPI(Q) = s,,5 u Q =s, 5, 52, 53}, and POP1(Q) produces
the assignment Q < {55, s3}. Whereas sliding 66, to the right
is straightforward as long as the only vertical motion is caused
by b, hitting an obstacle, the absence of such obstacles will
cause b1b, to fall upon another supporting edge, which makes
matters somewhat more complicated. Note that it is precisely
to keep track of these supporting edges that we introduce the
queue Q. Let B denote the list FB(L;) which, for convenience,
we assume to be given as a list of vertical edges ordered from
left to right {(hg, do) - - - (Mo, dp)}, with y(h;) = y(d;) for all
i;0 =i < m (Fig. 11). Note that we can also represent FB(L;)
by an ordered list of its horizontal edges {(/x, i)}, with the
correspondence ry = b+ [Fig. 11(c)]. If the subhole associ-
ated with L; has a QW; vertex, we assume that d,, is precisely
that vertex, with the understanding that once C has been
computed, all the points M such that Q; <, M should be re-
moved from C. Similarly, for simplicity, the computation of
C starts out with irrelevant vertices, which are to be removed
later on. C is computed by calling the function BOTTOM(B),
which we proceed to describe next. Note that the function
BOTTOM calls on three subroutines, SLIDE, SETUP, and
MERGE, which are described afterwards The variable sup-
port is global for all the functions.



CHAZELLE: BOTTOM-LEFT BIN-PACKING HEURISTIC

procedure BOTTOM (B)

(b1, by) < (do—x 1, do)
C‘_b]

Qg

support <— hd| n Line (bb3)
SLIDE (1)

Remove from C all points M; M <, dyor Q; <, M.

procedure SLIDE (start)

while start < m
begin

end

I < start

while h;d; <, support +, /

begin “slide on support™

if y(h;) > y(b2)
then  “hit h;d; [Fig. 11(b)]”

(b1, by) — (hi —x I, hy)
u<>by—, [y(h;) — y (support)]
C—Cu {u, b|}
0
support < h;11di+; n Line (bb2)
SLIDE (i + 1)

stop
elseif i = m
then stop
else “’keep sliding”
=i+ 1
end
“ready to fall [Fig. 11(c)]”
b, < support
by—b +.1
C~—Cuib
Q' < SETUP (start, /)
MERGE (0, Q')
a <— POPI(Q)

“Let I, (respectively r; ) be the left (respectively right) endpoint of the segment a.”

(b1, b2) <= (b1, b2) =, [¥(b1) — y()]
C—Cuib

start <

support < ry

procedure SETUP (start, end)

“By convention, if Q = &, then
TOPI(Q) <, M for any point M in the
structure. Q is here a local variable.”
Q—g

i<—end — 1|

while / > start

begin
if TOP1(Q) <, /ir;
then O < [;r;, L QO
end
return (Q)
procedure MERGE (Q, Q")
fO=grQ =g
then
s <—TOPIL(Q)
while TOP2(Q) <, s begin POP2(Q) end
Q—Qu
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We next review the algorithm in detail to show its correct-
ness and analyze its complexity. After a phase of initialization
[Fig. 11(a)], the function SLIDE is called upon. The variable
support is the rightmost point common to b;b, and B. Thus
b1b; can slide on this point over a distance at most /. The sec-
ond while statement checks whether any 4;d; in that range can
be an obstacle to the sliding of b1b,. If one is found, the if
statement is true and b, can be brought up to the position of
h; [Fig. 11(b)]; support is then updated to A;41. On the other
hand, if no obstacle is found, 5,65 can slide to the right by a
distance /, and must then move down to the level of the highest
edge below it [Fig. 11(¢)]. TOPI(Q) is precisely this edge.
Updating b6, and C is then trivial.

We next turn to the two functions used to maintain Q:
SETUP and MERGE. When b b, leaves the edge TOPI(Q)
on which it is sitting, this edge must be deleted from @ and the
next highest edge must be made readily available. To do so,
we must consider all the horizontal edges of B lying below bb,.
Then we define Q as the subsequence of these edges with the
Y-coordinate increasing from right to left [Fig. 11(d)]. The
queue O, so defined, is clearly sufficient for our purposes. At
the beginning, the function SETUP (start, end) computes @
from scratch, knowing that b b, is enclosed between the ver-
ticals passing through A, and Aeng. The algorithm is fairly
straightforward and does not necessitate more explanation.
Since it is prohibitive to recompute @ from scratch every time
bib> moves down, we compute only the queue @’ corre-
sponding to the part of B newly scanned, and we merge Q" with
the former Q. Since the function SLIDE always keeps track of
the interval most recently scanned (i.e., [start, /]), @’ can be

v

The function TOP.

computed easily. To MERGE @ with @, we need only to look
at the edges of O which must be removed from the queue. Note
that the MERGE actually consists of removing elements from
Q, if necessary, then concatenating @ and ¢’. A doubly-linked
implementation of the deque is sufficient for performing these
operations in constant time, and since removed elements will
never reappear later on, the overall queue management takes
O(m) time. The final task of BOTTOM is to remove all the
points of C which lie on the left of hodg. From the remarks
above, it is clear that the function BOTTOM has an O(sm) ex-
ecution time.

Computing the locus D of the left endpoint ¢, of the upper
bar can be done in a similar manner. However, since the po-
lygonal line FT(L;) has a stair-like form, except possibly for
the unique falling corner of the hole, the algorithm TOP for
computing D can be made much simpler than its counterpart
BOTTOM. Let T be the list of vertical edges of FT(L;): T =
{(ho, do), -+, (hp.dp), s}. Thevariable sisa flagsetto 1 if T
contains a falling corner (d,,—) and 0 otherwise. The function
TOP is self-explanatory. The list D consists essentially of the
vertices of FT(L;), except possibly for the last vertices which
may not be reachable by the upper bar because of a falling
corner. There are two possible cases, as illustrated in Fig. 12,
and a specific treatment is required to handle them and com-
pute the last vertices of D. In a post-processing stage, the
function trims the list D by keeping only the points whose
X-coordinates lie between the minimum and maximum X-
coordinates of C. This is due to an idiosyncrasy of the function
TOP which, for the sake of simplicity, starts out with a line D
placed, on purpose, too far to the left.
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procedure TOP (T)

if s = 0 then “no falling corner”

D“{h()’dlahl"“ah[)}

stop
D~ ghO “x 1}
i<
while/ <p
begin

if d,,_l _<_y d,' A dp—l S_r di +x !

then “Fig. 12(a)”

u < (x(dp—1) — 1, y(d))
V < dp_| —x 1
D<Dutu,v, hy =}
stop

D<~—Dv {d,}
if d; S.y d,,._l Sy hi A d,,_l <.di+.1
then “Fig. 12(b)”

D <D v {d;, hj
[<i+1
end

Remove from D all points M; M <, Cor M =, C.

This completes the computation of C and D. We should
observe that the algorithm is valid regardless of the shape of
the new rectangle to be packed. If, however, we wish to use it
to implement the BL-packing heuristic with decreasing
widths,2 we may take advantage of this geometric feature, and
simplify the procedure SLIDE. Indeed, it is easy to see that with
the decreasing width requirement, before packing the rectangle
of width /, no lower-notch in the bin may have a width under
/, nor can the length of BC be smaller than /,if A, B, C, D are
consecutive vertices of a hole, given in clockwise order, with
AB, BC, and CD going respectively down, left, and down.
From this simple observation, it follows that when in SLIDE
the lower bar is ready to fall down, the lower boundary within
horizontal distance / of the point SUPPORT must have the
shape of a descending staircase, except possibly for a final
rising step (see the analogy with procedure TOP and falling
corners). Thus, it can be decided at once whether b, falls to 4
or to (x(A), y(C)), depending on the relative heights of AB
and CD (Fig. 13). As a result, SLIDE can proceed straight from
left to right, and does not need the deque Q.

C. Updating the Structure

The effect of packing a rectangle may be either simply to
reduce the sixe of one hole, or to subdivide a hole into smaller
holes. To translate this effect into the structure F, the first task
to accomplish is to determine whether the upper-right corner
of the rectangle is a vertex of the kind Q;, and if yes, compute
the points QN; and QW; associated with it. This procedure

2 Recall that, without the decreasing width requirement, the performance
of the heuristic can be arbitrarily bad compared to optimal [2].

u <~ (x(d;), y(dp-1))
D~Duld,uh,—~, 1
stop

requires time O(|F|), since it can simply proceed by testing
all the edges of F against the lines supported by the sides of the
rectangle. Next, for each subhole in turn, we traverse its
boundary in, say, clockwise order, testing every edge visited
against the edges of the rectangle. When an intersection is
encountered, we know that the current subhole must be sub-
divided and new holes or subholes must be created. To ensure
the appropriate updating, it suffices to continue traversing the
boundary of the new subholes, which can be ensured by the
simple policy of never crossing any edge in the structure, i.e.,
always keeping the interior of the subholes on the right.

To go from one new subhole to another new subhole, we
must cross an edge of the new rectangle, from where we can
repeat the procedure sketched above. The detection of the new
edges L; and of the new subholes will simply follow through,
as well as the updating of all the new special links. We omit
the details since the procedure involves only straightforward
graph manipulation which lies outside of our purpose here.
Indeed a complete description of all possible situations would
entail a simple, yet rather lengthy case analysis. The procedure
which we have just described requires time linear in the size
of F, so our next task must be to find an upper bound on that
size.

D. The Size of the Data Structure

As we have seen earlier, both of the procedures that operate
on F, i.e., compute the location of the next rectangle and
update the data structure, run in time proportional to the size
of F. Therefore, to achieve an overall performance of G(NV)
time per rectangle-insertion, we must show that the size of £
is at most proportional to the number of rectangles packed in
the bin.
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Fig. 13.

Introducing the decreasing width requirement into the

algorithm.

Lemma 2: At any step of the packing heuristic, the size of
F is O(p), where p is the number of rectangles in the bin at this
step.
Proof: Since any vertex Q; has only two “special” links,
i.e., O, <> ON; and Q; < QW;, it suffices to show that the total
number of edges for all the holes is O(p). We can easily show
that this number never exceeds 4p. To see that, we simply
observe that a rectangle which is being placed can contribute
to the total number of edges in two ways. it may add edges of
its own or it can split existing edges. An edge of F, already
present in the structure before the insertion of the rectangle,
may be split into two or three parts by an edge of the rectangle.
In the first case, one part will be deleted, so the edge count will
not change. In the second situation, one more edge will be in-
troduced as a result, but to achievc this configuration, the
rectangle must sacrifice one of its edges, the effect of which
1s to restore the edge count to its former value, set initially to
4 + its value before insertion. Similarly, we observe that if an
edge of the rectangle is split into k parts, at most [ £ /2] of them
arc visible, hence part of F. Also between any pair of con-
secutive visible edges must lie an edge present in F before in-
sertion and bound to disappear afterwards. As a result, the
increase of one in the edge count related to the edge of the
rectangle is sufficient to account for this situation. It follows
that, in all cases, the total increase in the edge count is certainly
bounded by 4. This crude analysis could actually be improved
to lower the factor, but this is not necessary for our purposes.
a
Combining this result with the fact that computing the lists
C and D for each subhole, determining the feasible locations
for a new rectangle to pack, and updating the data structure
can all be done in time linear in the size of F, we conclude that
it is possible to determine all the BL-stable positions for the
pthrectangle to pack in the bin in time O(p). This proves our
main result:
Theorem 3: It is possible to pack N rectangles in a bin with
the bottom-left heuristic, in time O(/N?), using O(/V) space.

E. Optimality Considerations

Using a simple output argument, we can show that the
method described above is optimal for any scheme requiring
an explicit enumeration of all the possible BL-stable positions
for the next rectangle. It suffices to prove that with any packing
heuristic preserving BL-stability, once p rectangles have been
placed in the bin, the set of possible positions for the next

rectangle may involve Q(p) vertices. We define the list L of
N rectangles as a list of squares with the following charac-
teristics:

L =3(w/2, w/2), (W4, w/d), -, (w/2N, w/2N)].

We will show that when the first p rectangles have been
placed, the unbounded hole (which is unique) has 2(p) edges,
all of which are part of E. Recall that £ is the list of all feasible
locations of the lower-left corner of the rectangle. It is easy to
prove by induction that before the (p + 1)st rectangle is in-
serted, no pair of parallel edges in the bin can be found at a
distance strictly less than w/27 from each other. As a result,
the next rectangle cannot cover an exposed edge entirely, so
it cannot decrease the total number of edges already exposed,
and it itself will have exactly two of its edges exposed. This
implies that before inserting this rectangle, £ contains at least
2p edges, which completes our proof.

111. CONCLUSIONS

We have now achieved our main goal, which was to present
an O(N?)-time, O(V)-space bottom-left packing algorithm.
The quadratic term corresponds to the worst-case performance
of the algorithm, so we can expect the inclusion of simple
heuristics to better the average time performance significantly.
For example, instead of performing the search procedure on
each subhole separately, we may perform partial searches on
each of them in order to ensure a Y-coordinate progression.
As a result, the first feasible location found is guaranteed to
be the lowest as well, and all subsequent searches will thus be
avoided. 1t is also conceivable to keep a small number of pa-
rameters for each subhole, in order to avoid searching them
when the rectangle to insert is blatantly non-candidate. For
instance, a pair (WidthMax, Height Max) can be associated
with each subhole to signify the maximum width and height
of any rectangle which can fit into the subhole.

We feel that beyond its practical interest and its relevance
to bin-packing, the method described in this paper gives new
techniques for computational geometry. In particular, we
define a tree-representation of a rectilinear polygon, and we
use it to facilitate a type of searching strongly reminiscent of
pattern matching. Similar techniques may also be applied to
other problems in pattern recognition, where typically a geo-
metric figure is to be tested for containment against a more
complex rectangular subdivision of the plane.
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Reduction of Connections for Multibus
Organization

TOMAS LANG, MATEO VALERO, AND MIGUEL A. FIOL

Abstract—The multibus interconnection network is an attractive
solution for connecting processors and memory modules in a multip-
rocessor with shared memory. It provides a throughput which is in-
termediate between the single bus and the crossbar, with a corre-
sponding intermediate cost.

The standard connection scheme for the multibus connects all
processors and all memory modules to all buses. This connection
scheme is redundant and expensive for a relatively large number of
buses.

Reduced connection schemes that produce the same throughput as
the standard connection are presented. The schemes are optimal with
respect to the number of connections, are easy to arbitrate, reliable
when a bus fails, and expandable. The reduction is specially significant
when the number of buses is relatively large, being of 25 percent when
this number is half the number of memory modules.

Index Terms—Arbitration, connection reduction, interconnection
network, multiple buses, multiprocessors.
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I. INTRODUCTION

NE of the many important aspects to consider in the
design of multiprocessor systems is the structure of the
network connecting the processors to the shared memory
modules. Many parameters have a bearing on this choice.
Among them: reliability, cost, modularity, bandwidth, number
of processors, and expandability.

Several interconnection networks have been proposed, such
as the crossbar [1], single bus [2], multibus [3], [4], and other
special interconnection networks [5]. There are several analytic
models to assess the performance of the various topologies
under different processor demand patterns [3], [6], [7].

The multibus interconnection is an attractive solution for
connecting processors and memory modules in a multipro-
cessor with shared memory. It provides a throughput which
is intermediate between the single bus and the crossbar, with
a corresponding intermediate cost. Moreover, if the processor
requests are independent and uniformly distributed among the
memory modules, the amount of memory conflicts makes the
throughput obtained with the crossbar roughly the same as that
obtained with the multibus with a number of buses slightly
larger than half the number of processors [4].
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