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Abstract We initiate a new line of investigation into online property-preserving data
reconstruction. Consider a dataset which is assumed to satisfy various (known) struc-
tural properties; e.g., it may consist of sorted numbers, or points on a manifold, or
vectors in a polyhedral cone, or codewords from an error-correcting code. Because
of noise and errors, however, an (unknown) fraction of the data is deemed unsound,
i.e., in violation with the expected structural properties. Can one still query into the
dataset in an online fashion and be provided data that is always sound? In other words,
can one design a filter which, when given a query to any item I in the dataset, returns
a sound item J that, although not necessarily in the dataset, differs from I as in-
frequently as possible. No preprocessing should be allowed and queries should be
answered online.

We consider the case of a monotone function. Specifically, the dataset encodes a
function f : {1, . . . , n} �→ R that is at (unknown) distance ε from monotone, meaning
that f can—and must—be modified at εn places to become monotone.

Our main result is a randomized filter that can answer any query in O(log2 n log
logn) time while modifying the function f at only O(εn) places. The amortized
time over n function evaluations is O(logn). The filter works as stated with proba-
bility arbitrarily close to 1. We provide an alternative filter with O(logn) worst case
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query time and O(εn logn) function modifications. For reconstructing d-dimensional
monotone functions of the form f : {1, . . . , n}d �→ R, we present a filter that takes
(2O(d)(logn)4d−2 log logn) time per query and modifies at most O(εnd) function
values (for constant d).

Keywords Sublinear algorithms · Monotonicity testing

1 Introduction

It is a fact of (computing) life that massive datasets often come laden with varying
degrees of reliability. Errors might be inherent to the data acquisition itself (faulty
sensors, white/bursty noise, aliasing), or to data processing (roundoff errors, numeri-
cal instability, coding bugs), or even to intrinsic uncertainty (think of surveys and poll
data). Classical error correction postulates the existence of exact data and uses redun-
dancy to provide recovery mechanisms in the presence of errors. Mesh generation in
computer graphics, on the other hand, will often deal with reconstruction mostly on
the basis of esthetic criteria, while signal processing might filter out noise by relying
on frequency domain models.

In the case of geometric datasets, reconstruction must sometimes seek to enforce
structural properties. Early work on geometric robustness [7, 13] pointed out the
importance of topological consistency. For example, one might want to ensure that
the output of an imprecise, error-prone computation of a Voronoi diagram is still
a Voronoi diagram (albeit that of a slightly perturbed set of points). Geometric al-
gorithm design is notoriously sensitive to structure: dimensionality, convexity, and
monotonicity are features that often impact the design and complexity of geometric
algorithms. Consider a computation that requires that the input be a set of points in
convex position. If the input is noisy, convexity might be violated and the algorithm
might crash. Is there a filter that can be inserted between the algorithm (the client) and
the dataset so that: (i) the client is always provided with a point set in convex position;
and (ii) the “filtered” data differs as little as possible from the original (noisy) data? In
an offline setting, the filter can always go over the entire dataset, compute the “near-
est” convex-position point set, and store it as its filtered dataset. This is unrealistic in
the presence of massive input size, however, and only online solutions requiring no
preprocessing at all can be considered viable. We call this online property-preserving
data reconstruction. Besides convexity, other properties we might wish to preserve
include low dimensionality and angular constraints:

• Consider a dataset consisting of points on a low-dim manifold embedded in very
high dimensional space. Obviously, the slightest noise is enough to make the point
set full-dimensional. How to “pull back” points to the (unknown) manifold online
can be highly nonobvious.

• Angle constraints are of paramount importance in industrial/architectural design.
Opposite walls of a building have a habit of being parallel, and no amount of
noise and error should violate that property. Again, the design of a suitable filter to
enforce such angular constraints online is an interesting open problem.
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Fig. 1 The property-preserving
reconstruction filter: g is sound
and differs from f in few places

In this paper we consider one of the simplest possible instances of online property-
preserving reconstruction: monotone functions. Sorted lists of numbers are a require-
ment for all sorts of operations. A binary search, for example, will easily err if the
list is not perfectly sorted. In this case of property-preserving data reconstruction, the
filter must be able to return a value that is consistent with a sorted list and differs
from the original as little as possible. (An immediate application of such a filter is to
provide robustness for binary searching in near-sorted lists.)

We formalize the problem. Let f : {1, . . . , n} �→ R be a function at an unknown
distance ε from monotonicity, which means that f can (and must) be modified at εn

places to become monotone. Figure 1 illustrates the filter in action. To avoid confu-
sion, we use the term “query” to denote interaction between the client and the filter,
and “lookup” to denote interaction between the filter and the dataset. Given a query
x, the filter generates lookups a, b, c, . . . to the dataset, from which it receives the val-
ues f (a), f (b), f (c), . . . , and then computes a value g(x) such that the function g is
monotone and differs from f in at most kεn places, for some k (typically constant,
but not necessarily so). We note two things.

1. Once the filter outputs g(x) for some query x, it commits to this value and must
output the same value upon future queries.

2. The filter may choose to follow a multi-round protocol and adaptively generate
lookups to the dataset depending on previous results. The function g(x) is defined
on the fly, and it can depend on both the queries and on random bits. Therefore,
after the first few queries, g might only be defined on a small fraction of the
domain. At any point in time, if k distinct xi ’s have been queried so far, then
querying the remaining xi ’s (whether the client does it or not) while honoring past
commitments leads to a monotone function close enough to f .

It is natural to measure the performance of the filter with respect to two functions.
A (p(n, ε), q(n))-filter performs O(p(n, ε)) lookups per query, and returns a func-
tion g that is at a distance of at most q(n)ε from monotonicity, with high probability.
The lookup-per-query guarantee can be either amortized or in worst case (the running
times are deterministic). Ideally, we would like p(n, ε) to depend only on n, and q(n)

to be constant. There is a natural tradeoff between p and q: we expect q to decrease
as p increases. We will see an example of this in this work.

Theorem 1.1 For any fixed δ > 0 there exists a randomized (log2 n log logn,2 + δ)-
filter with a worst case lookups-per-query guarantee. The amortized lookups-per-
query over n function evaluations is O(logn). The filter behaves as stated with prob-
ability arbitrarily close to 1.

When the filter fails, the failure is in the distance guarantee—the filter returns a
monotone function which is much farther than what is guaranteed.
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We also provide an alternative filter with a better lookups-per-query guarantee and
a worse distance guarantee.

Theorem 1.2 There exists a (logn,O(logn))-filter with a worst case lookups-per-
query guarantee.

It is important to note that, in this work, we think of the client as adversarial. That
is, the filter’s guarantees must hold for all sequences of client queries. However, in
some cases it might be useful to assume the client’s queries are drawn from some
known probability distribution. We will see that the filter can take advantage of this.

Theorem 1.3 Assuming the client draws the queries independently, uniformly at ran-
dom, a (1,O(logn))-filter can be devised.

We also extend these techniques to construct filters for higher-dimensional
monotonicity.

Theorem 1.4 There exists a (2O(d)(logn)4d−2 log logn, (2d + dδ))-filter1 for any
fixed δ > 0 for d-dimensional monotonicity.

We are not aware of any previous work on this specific problem. There are many
differences between this work and self-correction [3, 12]. Reconstruction deals with
data, not just functions. Also, reconstruction is completely error-free but allows the
data to be modified upto a constant factor of the distance. Halevy and Kushilevitz [8]
define the notion of property self-correction (also implicitly used in [12]) which is
similar except that their definition requires the existence of a unique closest function
g which is a reconstruction of f . Their definition was useful in a different context
and is not flexible enough to allow the lookups-per-query vs. distance tradeoff used
in the definition of a filter.

One of the important features of this model is the importance of early deci-
sions. Every time a query is handled, a new constraint is imposed on further query
responses—every answer has to be consistent with previous answers.

In related areas, property testing is by now a well studied area [6, 12], with
many nontrivial results regarding combinatorial, algebraic, and geometric problems
[4, 5, 11]. Most notably, linearity testing and low-degree polynomial testing (and cor-
recting) have been vastly studied in the context of error-correcting codes, program
checking and PCPs. Note that these algebraic problems deal with objects of succinct
description (coefficients of polynomials). Early wrong decisions of a filter in this
case would result in an object g of very large distance from f . Therefore, a “smooth”
lookups-per-query vs. distance tradeoff is not possible here. The properties we are
interested in (e.g. monotonicity, convexity of functions) allow a smooth penalty for
early wrong decisions as a function of the amount of risk (lookups-per-query) as-
sumed by the filter.

1For this filter, we actually prove a bound on the running time per query, which happens to be the same as
the lookup complexity.
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More recent work [1, 9] has provided sublinear algorithms for estimating the dis-
tance of a function to monotone. We use ideas from [1] in this work.

2 The (log2 n log logn,2 + δ)-filter

We use the following notation in what follows. The distance between two functions
f1 and f2 over the domain {1, . . . , n} is defined as the fractional size of domain points
on which they disagree. The function f and the domain size n which are the input
to the problem (the dataset in Fig. 1) are fixed. We use ε to denote the distance of
f from monotonicity, and f̂ to denote the monotone function closest to f . So the
distance between f and f̂ is ε, and f̂ minimizes the distance between f and any
monotone function. We use g to denote the function output by the filter.

2.1 Preliminaries

Proving Theorem 1.1 requires a few preliminaries, beginning with these definitions:

• δ-bad and δ-good: Given 0 < δ < 1/2, the integer i is called δ-bad if there exists
j > i such that

∣
∣
{

i ≤ k ≤ j | f (k) < f (i)
}∣
∣ ≥ (1/2 − δ)(j − i + 1)

or, similarly, j < i such that
∣
∣
{

j ≤ k ≤ i | f (k) > f (i)
}∣
∣ ≥ (1/2 − δ)(i − j + 1).

Otherwise the integer i is called δ-good.
• a-light and a-heavy: Let D be the joint distribution of m independent 0/1 random

variables x1, . . . , xm, which can be sampled independently. If E[xi] ≤ a for all i,
then D is called a-light; else it is a-heavy.

Roughly speaking, if an integer i belongs to an interval containing many (a con-
stant fraction) violations with i, then i is bad. These bad integers appear to the places
where the function f needs to be modified.

Lemma 2.1 (Ailon et al. [1]) Given any fixed a < b, if D is either a-light or b-heavy,
then with probability 2/3 we can tell which is the case in O(m) time. If D is neither,
the algorithm outputs an arbitrary answer.

For the sake of completeness, the algorithm of Lemma 2.1 is given in Fig. 2. The
test is run by calling light-test(D, a, b, c′) with c′ = �(b/(b − a)2) (see [1]). Note
that in each recursive call of light-test, the number of random variables in D decreases
by a factor of 2—therefore, the running time bound in Lemma 2.1 is deterministic.
In the following we use the algorithm of Lemma 2.1 to test, with high probability of
success, whether a given integer i is δ-bad or 2δ-good, for any fixed δ > 0. Given
an interval [u,v], we define two 0/1 random variables α[u,v] and β[u,v]: given
a random integer j ∈ [u,v], α[u,v] = 1 (resp. β[u,v] = 1) iff f (u) > f (j) (resp.
f (j) > f (v)). The algorithm bad-good-test (Fig. 3) tests if a given integer i is δ-bad
or 2δ-good.
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Fig. 2 Light-test

Fig. 3 Testing if an integer i is δ-bad or 2δ-good

Lemma 2.2 Given any fixed δ > 0 and a parameter k, if i is either δ-bad or 2δ-
good, then bad-good-test will tell which is the case in time O(logn logk) and with
probability at least 1 − 1/k.

Proof If integer i is 2δ-good then the expectation of every x
(i)
2j−1 or x

(i)
2j defined in

bad-good-test is at most 1/2−2δ, and so the distribution D is (1/2−2δ)-light. On the
other hand, if i is δ-bad, then there exists some x

(i)
2j−1 or x

(i)
2j with expectation at least

(1/2 − δ)/(1 + δ) ≥ 1/2 − 3δ/2, and so D is (1/2 − 3δ/2)-heavy. The algorithm
from Lemma 2.1 distinguishes between (1/2 − 2δ)-light and (1/2 − 3δ/2)-heavy
with probability 2/3 in O(logn) time. Since we repeat it c logk times and take a
majority vote, a standard Chernoff bound argument shows that bad-good-test fails
with probability at most 1/k. �

Lemma 2.3 Let δ > 0 be fixed, and ε be the distance of f from monotonicity. There
are at most (2 + O(δ))εn δ-bad integers (Ailon et al. [1]). Moreover, the monotone
function f̂ which is closest to f can be assumed to agree with f on δ-good integers.

Finally, we let δ > 0 denote an arbitrarily small positive real. Choosing a small
enough δ will satisfy the distance guarantee of Theorem 1.1.
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Fig. 4 Finding a good value in an interval

2.2 The Algorithm

We now describe the algorithm monotonize. Our goal, as described above, is: given
a fixed δ > 0, compute a function g online such that: (1) g is monotone; (2) g is
((2 +O(δ))ε)-close to f . Specifically, on query i, monotonize computes g(i) in time
O(log2 n log logn). Whenever monotonize outputs a value g(i), this value must be
recorded to ensure consistency. The procedure will therefore hold an internal data
structure that will record past commitments. The data structure can be designed to
allow efficient retrievals, but we omit the details because we are mainly interested in
the number of f -lookups it performs, and not the cost of other operations.

Given a query i, monotonize first checks whether i was committed to in the past,
and outputs that commitment in that case. If not, more work should be done. In virtue
of Lemma 2.3, monotonize tries to keep the f values at δ-good integers and change
the values for other queries. We will use bad-good-test to decide whether i is bad or
good.

Suppose now that we decide that i is δ-bad and hence g(i) needs a value that might
be different from f (i). Ideally, we would like to find the closest δ-good integers l (to
the left of i) and r (to the right of i) and assign g(i) to some value between f (l)

and f (r). Because of the sublinear time constraint, we slightly relax this condition.
Instead, the idea is to find an interval I0 around i such that the fraction of 2δ-good
integers in I0 is at least �(δ), but their fraction in a slightly smaller interval is O(δ).
This ensures that such an interval can be detected through random sampling and that
there are not many 2δ-good integers between i and any 2δ-good integer in this interval
(a relaxation of the closest condition).

We will search for a good interval within the interval determined by the closest
committed values on the left and right of i. Denote this interval by [l, r]. Once such a
good interval I0 is found, we try to find a value x that is sandwiched between values of
f evaluated at two δ-good points in I0. Finding x is done in find-good-value (Fig. 4).
We commit to the value x on g restricted to I0. If no good intervals are found, we
spread the value of g(l) on g in the interval [l + 1, r − 1].

Lemma 2.4 Assume that I contains at least a fraction of δ 2δ-good integers. Then,
the procedure find-good-value outputs, with probability 1 − 1/n4, a value y that is
sandwiched between f (i1) and f (i2), where i1, i2 ∈ I are δ-good. The running time
of find-good-value is O(log2 n), for fixed δ.
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Fig. 5 Computing a monotone function online

Proof The expected number X of δ-bad samples for which bad-good-test outputs
“2δ-good” is at most cδ(1 − δ) logn, by Lemma 2.2. The expected total number Y

of samples for which bad-good-test outputs “2δ-good” is at least c(1 − δ2) logn. The
probability that X exceeds Y/2 is at most 1/n4 if c is chosen large enough, using
Chernoff bounds. Therefore, with probability at least 1 − 1/n4, more than half the
values that are appended to the list L are (“good values”). By taking the median of
values in L, in such a case, we are guaranteed to get a value sandwiched between two
good values. The time bound follows from Lemma 2.2. �

To find a good interval, we do a binary search among all the intervals of length
(1 + δ)j (j = 0,1, . . .) starting or ending at i, that is, [i, i + (1 + δ)j ] and [i − (1 +
δ)j , i]. There are O(logn) such intervals, and thus the running time is O(log logn)

times the time spent for each interval. The overall algorithm monotonize is shown
in Fig. 5. The following claim together with a suitable rescaling of δ concludes the
proof of the first part of Theorem 1.1.
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Claim 2.5 Given any 0 < δ < 1
2 , with probability 1 − 1/n, monotonize computes a

monotone function g that is within distance (2 + δ)ε to f . Given a query i, g(i) is
computed online in time O(log2 n log logn), when δ is assumed to be fixed.

Proof First we analyze the running time. The bad-good-test in line 3 takes O(log2 n)

time. If the algorithm determines that i is δ-bad, then the while-loops run O(log logn)

times. In one iteration of the while-loop, the algorithm calls bad-good-test O(logn)

times. Each call takes O(logn) time by Lemma 2.2. Therefore, the time complexity
of the while-loop is O(log2 n log logn). By Lemma 2.4, the running time of the call
to find-good-value is O(log2 n). The time complexity of the algorithm is therefore
O(log2 n log logn).

Let us first look at the while-loop. If I has more than 2δ-fraction of 2δ-good
integers, then the number of “2δ-good” outputs is < 3

2c logn with inverse polynomial
probability. This can be shown through Chernoff bounds. On the other hand, if I has
less than δ-fraction of 2δ-good integers, then the number of “2δ-good” outputs is
> 3

2c logn with inverse polynomial probability. Consider the events

• The intervals Il and Ir have at least a δ-fraction of 2δ-good integers and the call to
find-good-value succeeds.

• The interval Imin = [i − (1 + δ)jmin , i] has at most 2δ-fraction of 2δ-good integers.

Both these events hold with probability >1 − 1/n4. The intervals Il, Ir , and Imin

are constructed at most O(n2) times (over all queries). Now consider the event that
the call to bad-good-test (in line 3) correctly distinguishes between δ-bad and 2δ-
good integers. As shown in Lemma 2.2, this happens with probability >1 − 1/n3.
This is totally called at most n times. By a union-bound, all of the above events
occur (for every query) with probability >1 − 1/nd , for some positive constant d .
Therefore, we henceforth assume that these events always occur (in other words, the
probability of something “bad” happening is polynomially small).

To show that the function g is monotone, we first note that if bad-good-test outputs
“2δ-good” for i (leading to g(i) being set to f (i)), then (by our assumption made
above) i is not δ-bad. If i is δ-bad, then vall lies between the value at two δ-good
points in Il . If vall is assigned as the g-value of all points in Il , then g would be
monotone with respect to all the values at the δ-good points already committed to.
Similarly, valr can be assigned as the g-value of all points in Ir without disturbing
monotonicity. Therefore, since the algorithm assigns some value between vall and
valr to Il ∪ {i} ∪ Ir , g remains monotone.

Finally we show that g is within distance (2 + δ)ε to f . We can assume that for
Imin = [i − (1 + δ)jmin , i], the fraction of 2δ-good integers in Imin is at most 2δ.
Since by the end of the algorithm jmax ≤ jmin + 1, the fraction of 2δ-good integers in
Ir = [i, i + (1+ δ)jmax ] (or Il = [i − (1+ δ)jmax , i]) is at most 4δ. In other words, each
time we make a total of |Il ∪ {i} ∪ Ir | corrections to f at least a (1 − 4δ)-fraction of
these changes are made on 2δ-bad integers. By Lemma 2.4 in [1], the total number of
2δ-bad integers is at most (2 + 10δ)εn. So the total number of changes we made on
f is at most (2 + 10δ)εn/(1 − 4δ) ≤ (2 + cδ)εn for some constant c. This concludes
the proof. �
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2.3 Achieving Logarithmic Amortized Query Time

In this section we show how to modify the algorithm to achieve better amortized
query time. The worst case query time for a single query remains the same. We need
a technical lemma first.

Lemma 2.6 For any 1/2 > δ > 0, let i be a δ-bad integer. Let l, r be two δ-good
integers such that l < i < r . Then there is a witness to i’s badness in the interval
[l, r].

Proof If f (i) < f (l), then we claim that l is a witness to i’s badness. In fact, since
f (l) and f (i) is a violating pair, it is immediate that at least one of them is 0-bad
with respect to the interval [l, i]. Since l is δ-good, i must be 0-bad (and hence δ-
bad) with respect to [l, i]. In this case, l is a witness to i’s badness. Similarly, r will
be a witness if f (i) > f (r). In the following we assume that f (l) < f (i) < f (r).

Let w be a witness to i’s badness. Without loss of generality, assume that w < i. If
w ≥ l then we are done, so let w < l. Since i is δ-bad and l is δ-good, we know that:
number of violations in [w, l] with respect to l is <(1/2 − δ)(l − w + 1); number of
violations in [w, i] with respect to i is ≥(1/2 − δ)(i − w + 1). We also know that
each violation in [w, l] with respect to i is also a violation with respect to l, so the
number of violations with respect to i in [l + 1, i] is more than (1/2 − δ)(i − l) =
(1/2−δ)(i − (l+1)+1). This shows that i has a witness to its badness in [l+1, i]. �

The improvement on amortized query time comes from the following strategy:
each time the algorithm answers a client query, it also generates a new query by itself
and answers that query. This self query is completely independent of all the client
queries, and we call it an oblivious query.

The oblivious queries are generated based on the balanced binary tree on [1, n].
The root of this tree is 	n/2
. The left subtree of the root corresponds to the interval
[1, 	n/2
− 1], and similarly the right subtree corresponds to [	n/2
+ 1, n]. The two
subtrees are then defined recursively. This tree is denoted by T .

The oblivious queries are generated according to the following order. We start
from the root of T and scan its elements one by one by going down level by level.
Within each level we scan from left to right. This defines an ordering of all integers in
[1, n] which is the order to make oblivious queries. This ordering ensures that, after
the (2k − 1)th oblivious query, [1, n] is divided by all the oblivious queries into a set
of disjoint intervals of length at most n/2k . Each oblivious query is either a δ-good
integer itself in which case monotonize returns at the line marked by →, or it causes
two δ-good integers being outputted (vall and valr in monotonize). These two δ-good
integers lie on the left and right side of the oblivious query, respectively. This shows
that after the (2k − 1)th oblivious query, [1, n] is divided by some 2δ-good integers
into a set of smaller intervals each of length at most n/2k .

Based on Lemma 2.6, whenever we call bad-good-test (in find-good-value or
monotonize) to test the badness of an integer i, we only need to search for a wit-
ness within a smaller interval [l, r] such that l (resp. r) is the closest δ-good integer
on the left (resp. right) of i. As explained above, these δ-good integers come as by-
products of oblivious queries. This will reduce the running time of bad-good-test to
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O(logni log k) (to achieve success probability at least 1−1/k), where ni = r − l +1.
Accordingly, the time spent on binary searching intervals in monotonize is reduced to
O(log logni). By the distribution of oblivious queries, for the j th client query where
2k−1 ≤ j < 2k , the running time of monotonize is now O(logn log n

2k log log n
2k ). The

same is true for the j th oblivious query.
To bound the amortized running time, it suffices to focus on the smallest m such

that all n distinct queries appear in the first m queries (including both client and
oblivious queries). We can also ignore repetition queries (those that have appeared
before) since each one only takes O(logn) time standard data structure techniques.
Therefore, without loss of generality, we assume that the first n client queries are
distinct. The total query time for these n queries is:

logn
∑

k=1

O

(

2k−1 logn log
n

2k
log log

n

2k

)

.

It is simple to verify that this sum is O(n logn). The following claim concludes the
proof of the second part of Theorem 1.1.

Claim 2.7 With probability 1 − 1/n, monotonize computes a monotone function g

that is within distance (2 + O(δ))ε to f . Each single evaluation of g(i) is computed
online in time O(log2 n log logn). In addition, monotonize can be modified slightly to
ensure that the amortized query time over the first m ≥ n client queries is O(logn).

3 The (logn,O(logn))-filter

We prove Theorem 1.2. To do this, we define a function g by a random process.
The function is determined after some coin flipping done by the algorithm (before
handling the client queries). Although the function g is defined after the coin flips,
the algorithm doesn’t explicitly know it. In order to explicitly calculate g at a point,
the algorithm will have to do some f -lookups. Our construction and analysis will
upper bound E[dist(f, g)] and the amount of work required for explicitly calculating
g at a point.

As before, let f̂ be a monotone function such that dist(f, f̂ ) = ε. Let B ⊆ [n] be
the set of points {x|f (x) �= f̂ (x)}. So |B| = εn. For simplicity of notation, assume
the formal values of −∞ (resp. +∞) of any function on [n] evaluated at 0 (resp.
n + 1).
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We build a randomized binary tree T = build-tree(1, n) with nodes labeled
1, . . . , n, where build-tree(a, b) is defined as follows—after constructing the random-
ized tree T , the function g at point i is defined as follows. If i is the root of the tree,
then g(i) = f (i). Otherwise, Let p1, . . . , pj , i denote the labels of the nodes on the
path from the root to node i, where p1 is the root of the tree and pj is the parent of i.
Assume that g was already defined on p1, . . . , pj . Let l = max({0} ∪ {pk|pk < i})
and r = min({n + 1} ∪ {pk|pk > i}). If g(l) ≤ f (i) ≤ g(r), then define g(i) = f (i),
otherwise define g(i) as an arbitrary value in [g(l), g(r)]. The function g is clearly
monotone. The number of f -lookups required for computing g(i) is the length of the
path from the root to i. A proof of the following well-known fact can be found in,
e.g., [10].

Fact 3.1 The expected height of T is O(logn).

We show that E[dist(f, g)] = O(ε logn). We first observe that for any i, if
{p1, . . . , pj , i}⋂

B = ∅, then it is guaranteed that g(i) = f (i). Therefore, any i for
which f (i) �= g(i) can be charged to some b ∈ B on the path from the root to i. The
amount of charge on any b ∈ B is at most the size of the subtree b in T .

Lemma 3.2 The expected size of the subtree rooted at node i in T is O(logn) for
any i ∈ [n].

Proof For each j ∈ [n] such that j > i, it is clear that j will be in the subtree rooted
by i if and only if i is inserted into the tree before all of i + 1, i + 2, . . . , j . This
happens with probability exactly 1/(j − i + 1). Similarly, j < i is in the subtree
rooted by i with probability exactly 1/(i − j + 1). We conclude that the expected
number of elements in the subtree rooted by i is at most 2

∑n
k=1 1/k = O(logn), as

required. �

Therefore, the expected total amount of charge is at most O(|B| logn) =
O(nε logn). By Markov’s inequality, the total amount of charge is at most O(nε logn)

with high probability. The total amount of charge is an upper bound on the distance
between f and g. This proves Theorem 1.2, except for the fact that the lookups-
per-query guarantee is only on expectation, and not worse case (due to Fact 3.1).
However, there is an alternative way to construct T so that we get a worse-case guar-
antee. We describe the construction and sketch the elementary proof. Assume for ease
of notation that f (i) is defined as −∞ for i < 1 and as ∞ for i > n. Choose the label
p of the root uniformly at random in [n]. Then set the labels of its left and right chil-
dren as 	p − n/2
 and 	p + n/2
, respectively. Set the labels of the next level (from
left to right) as 	p − 3n/4
, 	p − n/4
, 	p + n/4
 and 	p + 3n/4
, pruning labels
that had already been used. Continue until all integers in [n] are a label in the tree.
Clearly the height of the tree is O(logn). The expected size of a subtree rooted at a
node of a fixed label is O(logn) (it is easy to see that this expectation is proportional
to the largest divisor of the form 2t of a random number in [n]). This gives a worst
case (instead of expected) guarantee of O(logn) on the length of the path from the
root to i (and hence on the number of f -lookups per client query). This concludes
the proof of Theorem 1.2.
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To prove Theorem 1.3, where the client queries are assumed to be uniformly and
independently chosen in [n], we observe that the choices the client makes can be
used to build T . More precisely, we can build T on the fly, as follows: The root r of
T is the first client query. The left child of r is the first client query in the interval
[1, r − 1], and the right child of r is the first client query in the interval [r + 1, n]. In
general, the root of any subtree in T is the first client query in the interval correspond-
ing to that subtree. Clearly, this results in a tree T drawn from the same probability
distribution as in build-tree(1, n). So we still have Lemma 3.2, guaranteeing the up-
per bound on the expected distance between g and f . But now we observe that for
any new client query i, the path from the root of T to i (excluding i) was already
queried, so we need only one more f -lookup, namely f (i). This concludes the proof
of Theorem 1.3.

4 Extension to Higher Dimensions

We extend the O(log2 n log logn,2 + δ) filter to higher dimensions. We study func-
tions of the form f : {1, . . . , n}d �→ R. An element I of the domain is referred to as
a point and described by a d-tuple I = 〈i1, . . . , id〉. The ordering on points is defined
by: I � J = 〈j1, . . . , jd〉 if i1 ≤ j1, . . . , id ≤ jd (I ≺ J if I � J and I �= J ). For
I �r J , the interval [I, J ] denotes the set {K : I � K � J }. A function f is said to
have distance εf from monotonicity, if εf nd values of f must be changed to make f

monotone.
For 1 ≤ r ≤ d , and for I, J ∈ {1, . . . , n}d , we say that I �r J if is = js for all

coordinates s �= r and ir ≤ jr . Similarly we define ≺r ,�r and �r . For I �r J ,
the set [I, J ] defined above can be written as {K : I �r K �r J }. For any point
I (note that I is always the point 〈i1, i2, . . . , id〉), 1 ≤ r ≤ d , and 1 ≤ k ≤ d , I

(k)
r

denotes the point obtained by changing the r th coordinate of I to k, i.e. I
(k)
r =

〈i1, . . . , ir−1, k, ir+1, . . . , in〉.

4.1 Preliminaries

Definition 4.1 Given δ > 0 (arbitrarily small), a point I is said to be right-δ-bad for
dimension 1 if there exists J �1 I such that

∣
∣
{

K ∈ [I, J ] | f (K) < f (I)
}∣
∣ ≥ (1/2 − δ)(j1 − i1 + 1).

Inductively define I to be right δ-bad for dimension r > 1 if there exists J �r I

such that
∣
∣
{

K ∈ [I, J ] | K is right δ-bad for dimension r ′ < r or f (K) < f (I)
}∣
∣

≥ (1/2 − δ)(jr − ir + 1).

Similarly, we define left-δ-bad by considering J �r I in the above definitions.
A point is δ-bad if it is either left δ-bad or right δ-bad for any dimension. Otherwise
it is δ-good.
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It is easy to see that if I is right δ-bad for any dimension r , then it is right δ-bad for
all dimensions r ′ > r (by taking J = I , satisfying J �r ′ I trivially). Therefore, we
can equivalently define I to be right δ-bad for dimension r > 1 if there exists J �r I

such that
∣
∣
{

K ∈ [I, J ] | K is right δ-bad for dimension r − 1 or f (K) < f (I)
}∣
∣

≥ (1/2 − δ)(jr − ir + 1).

We give a more intuitive picture to explain this definition. Let us focus on the
2-dimensional case, where the domain is a 2D-grid. Suppose we marked out a set of
points, say S, such that f restricted to the complement of S is monotone. Now, we go
through a row and mark every point that is contained in an (horizontal) interval that
contains a constant fraction of marked points. After doing this for all rows, we do this
for all columns. We now have a new set of marked points, which (we show later) is at
most a constant factor larger than the original set of marked points. An approximation
of the new set can be found in polylogarithmic time, as we later show.

We prove the following lemma (compare with Lemma 2.3):

Lemma 4.2 Let εf be the distance of f from monotonicity. Then

1. The function f is monotone on all the 0-good points (and therefore on all δ-good
points).

2. No more than (2 + 4δ/(1 − 2δ))dεf n points are δ-bad.

Proof First we prove the following statement: If I ≺ J and f (I) > f (J ), then either
I is right 0-bad or J is left 0-bad. This is proved by induction on the dimension d .
When d = 1, the proof trivially follows from the fact that < is transitive. Assume this
is true up to dimension d − 1. We will show that if I ≺ J violate monotonicity (that
is, f (I) > f (J )), then either I or J is 0-bad. If id = jd , then we can simply use the
inductive hypothesis.

Otherwise, consider the points I
(k)
d , J

(k)
d for k ranging in [Id, Jd ]. Clearly, I �

I
(k)
d � J

(k)
d � J . Suppose f (I) ≤ f (I

(k)
d ) and f (J

(k)
d ) ≤ f (J ). This implies the vio-

lation f (I
(k)
d ) > f (J

(k)
d ) (since f (I) > f (J )). By induction, either I

(k)
d is right 0-bad

or J
(k)
d is left 0-bad (for dimension d − 1). Therefore for every id ≤ k ≤ jd , either of

the following happen

• f (I
(k)
d ) < f (I) or I

(k)
d is right 0-bad (for dimension d − 1).

• f (J
(k)
d ) > f (J ) or J

(k)
d is left 0-bad (for dimension d − 1).

This implies that either I is right 0-bad or J is left 0-bad, completing the proof of the
first part of the lemma.

To prove the second part, we start by choosing some set B ⊆ [n]d of size εf nd

such that f is monotone on [n]d\B (such a set exists by definition of distance of f

from monotonicity). We partition this set into the set B� of lower, and the set Bu

of upper points—a point B ∈ B is lower if there exists a point C ≺ B , C ∈ [n]d\B,
such that f (C) > f (B). On the other hand, B is upper if there exists C � B , C ∈
[n]d\B, such that f (C) < f (B). Because of the definition of B, B� ∪ Bu = B. Also,
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B� ∩ Bu = φ. Suppose the contrary, i.e., there is a point I that belongs to both B�

and Bu. There exists a point C� /∈ B such that C� ≺ I and f (C�) > f (I). There also
must exist a point Cu /∈ B such that Cu � I and f (Cu) < f (I). Therefore, C� ≺ Cu

but f (C�) > f (Cu), which contradicts the fact that both C� and Cu are not in B. Our
aim is to bound the number of δ-bad points. We now define the L set and R set. The
L set contains all points in Bu and any point I /∈ B which is left δ-bad. The R set,
on the other hand, contains all points in B� and any point I /∈ B which is right δ-bad.
For a point I /∈ B that is both left and right δ-bad, we arbitrarily put it in one of the
sets. Note that any δ-bad point belongs to either of these sets.

Let B1 consist of all points I such that there exists some JI �1 I such that for
at least |[JI , I ]|(1/2 − δ) points K ∈ [JI , I ], K ∈ Bu. Note that by definition all
the points in Bu belong to B1. We claim that B1 contains every point in L that is
left δ-bad for dimension 1. Let I be such a point. First, suppose I ∈ B. Then I ∈
Bu, and it trivially belongs to B1. Otherwise, for some JI �1 I there exist at least
|[JI , I ]|(1/2 − δ) points K ∈ [JI , I ] such that f (K) > f (I). It must be the case that
all such K’s are in Bu (since I /∈ B), implying I ∈ B1.

We now claim that |B1| ≤ (1/2 − δ)−1|Bu| = (2 + 4δ/(1 − 2δ))|Bu|. This claim
follows from a charging scheme similar to the one used in [1] (Lemma 2.3). The
following is taken directly from there—it is reproduced for completeness. Let us
take a line—a set of points that differ only in the first coordinate (such a set would
be represented by {〈k, i2, i3, . . . , in〉|1 ≤ k ≤ n}). We assign a charge of one unit of
credit to each point in Bu. Now, we move in increasing order in the line (from lower
first coordinate to higher) and for each point I /∈ Bu that belongs to B1, we “spread”
one unit of credit among all points K ∈ [JI , I ] such that f (K) > f (I). This is done
by adding one unit of credit so that at the end of spreading, all such points K end
up with the same amount of credit. We show that no point ever receives more than
(2 + 4δ/(1 − 2δ)) units of credit. Suppose for contradiction that this did happen. Let
I be the point in B1 that causes K to have more than (2+4δ/(1−2δ)) units of credit.
All points in B1 that are present in [JI , I ] must have more than (2 + 4δ/(1 − 2δ))

units of credit. The total amount of credit among these points is >(2 + 4δ/(1 −
2δ)) × (1/2 − δ)|[JI , I ]| = |[JI , I ]|. But, these points could not have received credit
from points smaller than JI and the total credit accumulated so far must be ≤[JI , I ]
(contradiction). This proves that (within a line) the total number of points in B1 is at
most (2 + 4δ/(1 − 2δ)) times the number of points in Bu. Applying this argument for
all lines, we prove that |B1| ≤ (2 + 4δ/(1 − 2δ))|Bu|.

To bound the number of left δ-bad points for dimension r > 1, we consider the
(inductively defined) set Br−1 and define Br to be the set of all points I ∈ [n]d such
that there exists some J �r I such that for at least |[J, I ]|(1/2− δ) points K ∈ [J, I ],
K ∈ Br−1. The set Br contains all points in L which are left δ-bad for dimension r .
To see this, consider I /∈ B which is left δ-bad for dimension r . There exists JI �r

I such that for at least (1/2 − δ)[JI , I ] points K ∈ [JI , I ], f (K) > f (I) or K is
left δ-bad for dimension (r − 1). Using induction and arguments given above, we
can show that I ∈ Br . By applying the charging argument used for B1, we can also
claim that |Br | ≤ (2 + 4δ/(1 − 2δ))|Br−1| (here, the charging argument will charge
along lines which contain points that differ only in the r th coordinate). By induction,
|Bd | ≤ (2 + 4δ/(1 − 2δ))d |Bu| and Bd contains all of L. Similarly we can bound the
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Fig. 6 Testing if a point I is right-δ-bad or right-2δ-good for dimension r

number of points in R in terms of |B�|. Taking the sum of these two bounds, we prove
that the total number of δ-bad points is as stated in the lemma. �

We now extend the procedure bad-good-test to higher dimensions (Fig. 6). For
simplicity of presentation, bad-good-test as described will only distinguish between
right-2δ-good and right-δ-bad. Extending this to check left-2δ-good vs left-δ-bad will
be obvious.

The procedure bad-good-test(f, I, δ, k, r) will output whether I is 2δ-good or
δ-bad for dimension r with error probability 1/k. The xj ’s represent 0/1 random
variables. To separate 2δ-good points from δ-bad ones, bad-good-test is called with
dimension d (last argument). This procedure is almost a direct extension of the one-
dimensional procedure. It goes through every dimension and checks for violations
along one-dimensional intervals. Of course, here “violation” can refer to a standard
violation or to a point that is bad for a lower dimension. The procedure is simply used
recursively for finding bad points for lower dimensions.

Lemma 4.3 Given any fixed δ > 0 and parameter 0 < k < n6d , if I is ei-
ther 2δ-good or δ-bad, then bad-good-test will tell which is the case in time
(2d)O(d)(logn)2d−1 log k and with probability 1 − 1/k.

Proof Correctness is proved by induction on the dimension. When r = 1, bad-good-
test(f, I, δ, k, r) gives the right output with error probability 1/k (Lemma 2.2).
Assume up to r . For r + 1, the probability that any of the calls to bad-good-
test(f, I ′, δ, n2k, r) errs is <(nk)−1. The value c can be chosen large enough to
ensure that the total probability of error is 1/k (note that this c is independent of
any parameter).
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We prove by induction on the dimension that bad-good-test(f, I, δ, k, r) runs
in time (Cd)r(logn)2r−1 log k (for some large constant C). The case r = 1 is
proven in Lemma 2.2. Assume up to r . For r + 1, each sampling of the ran-
dom variables xj requires a call to bad-good-test(f, I ′, δ, n2k, r), which takes
(Cd)r(logn)2r−1 log(n2k) ≤ (Cd)r+1(logn)2r time (since k < n6d ). To test if D is
(1/2 − 2δ)-light or (1/2 − 3δ/2)-heavy with probability 2/3 requires O(logn) sam-
ples of the xj ’s (Lemma 2 of [1]). Since this whole procedure is repeated O(log k)

times, the total running time is (Cd)r+1(logn)2r+1 logk. �

4.2 Reconstruction

In this section, we discuss how to correct f by assigning appropriate function values
to points that are δ-bad (wlog, we will assume that the initial function values of f are
all distinct). The aim of this section is to prove the following theorem.

Theorem 4.4 For any 0 < δ < 1/2, there exists a (2O(d)(logn)4d−2 log logn, (2d +
dδ))-filter for d-dimensional monotonicity.

We will now refer to 2δ-good points as good, and δ-bad points as bad. Let the
number of bad points be γ nd (by Lemma 4.2, γ = (2d + O(dδ))εf ). We assume
that all committed points (with their function values) are stored in a data structure C
that can support range search queries. Namely, given a point I , the data structure can
determine the values max{f (J ) | J ≺ I, J ∈ C} and min{f (J ) | J � I, J ∈ C}. Note
that these ranges are orthogonal. There are data structures [2] that take O((logn)d+2)

for queries and updates.
The reconstruction procedure becomes much more complicated in higher dimen-

sions. The essential difference is that the domain we are now focusing on is a partial
order, not a complete order as in the one dimensional case. In one dimension, finding
a safe replacement value for a bad point I can be done by finding the f value of
the largest good point less than I . A sublinear procedure finds a point that is close
enough. Adding a dimension complicates matters considerably. Indeed, there could
be a large (possibly linear) set of good points all less than I which are mutually
incomparable. Instead of just a single point, now a set of points defines the replace-
ment value. Consider the two-dimensional domain given in Fig. 7. All points below
the slanted line are good, and all those above are bad. A safe replacement value for
I would have to be larger than the f values of all (or, at the very least, most) the
points on the slanted line to prevent destruction of good points. Note how the issue
of early decisions becomes very crucial here. A choice of the replacement value for
I would somehow have to consider all these f values. The main challenge is do this
in sublinear time.

The procedure monotonize for higher dimensions is quite similar to the one-
dimensional case. A small difference is that commitment is done pointwise, and not in
intervals as was done for one dimension. First, monotonize checks the input point for
goodness. It also checks whether the value f (I) is consistent with previously com-
mitted values. If either of these fails (and the value has to be changed), a recursive
procedure get-value determines a replacement for f (I). This procedure highlights
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Fig. 7 Issues in higher
dimensions

the main difference for the higher dimensional case. The base case for this procedure
is get-value1(f, I, δ)—this refers to a procedure that, with probability 1 − 1/n6d and
in time O(d log2 n log logn), outputs a value in [f (I ′), f (I ′′)] where I ′, I ′′ are good,
I ′ �1 I ′′ �1 I , and such that

|{J ∈ [I ′, I ] | J good}| ≤ δ|[I ′, I ]|.
Note that this is just finding a “close” good value along a one-dimensional line

containing I , and therefore has essentially been discussed in Sect. 2 (more specifi-
cally, it is the code between (*) and (**) in Fig. 5). We will assume that such a value
always exists (this can be ensured by padding with dummy values). As a result, get-
value always outputs a value sandwiched between the f -values of two good points
less than I . To show the correctness of monotonize, we need to prove that not too
many good points are destroyed by the values output by get-value.

Before we give a detailed description of how this procedure works, we first pro-
vide some intuition. Again let us focus on the 2-dimensional case and think of the first
dimension as horizontal and the second as vertical. For the sake of simplicity, let us
assume that given a point I , we can find the largest good point J such that J �1 I—
in other words, the closest good point in the same row as I and less than it. This point
is referred to as frontier(I )—we later define this in an approximate manner which
allows us to find frontiers in sublinear time. A possible polynomial time reconstruc-
tion procedure would be to go to every point K �2 I (we are looking at points in the
same column as I ). For each K , we find frontier(K). In Fig. 8, the points K1,K2,K3
have the same first coordinate as I . For each such Ki , Ji is its frontier. We end up
with a collection of �(n) points (consisting of all frontier points), and we take the
maximum f value among these points and use this as the replacement value. Note
that in the example of Fig. 7, this procedure would look at the function value of every
point on the slanted line.

We now intuitively explain how this process is approximated by a sublinear pro-
cedure in a sense that will be made precise later. Let us take all linear intervals along
the second dimension (vertical intervals) having I as their right endpoint and have a
length of a power of 2—the set of exponentially increasing intervals. In each such an
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Fig. 8 Reconstruction

interval, we choose a small random sample of points. Let K be such a point. We then
find J = frontier(K). This leaves us with a polylogarithmic sized set of points J ,
which we use to reconstruct the value at I . Naturally, this is insufficient to capture all
points less than I and this replacement value for I can violate some good points less
than I . The maximum function value of all these points is (roughly speaking) denoted
by bound(I ).2 This value tells us that for any good I ′ ≺ I , if f (I ′) ≤ bound(I ), then
this sublinear reconstruction procedure will not create violation with I . These points
are safe. The point I ′ might create a violation if I ′ is unsafe (if f (I ′) > bound(I )).
In this case, we will be forced to change the value at I ′, even though it is good. We
show that the number of such unsafe points is very small.

This idea is used recursively for reconstruction in higher dimensions. Suppose we
are now in a three-dimensional domain. Again, we take all exponentially increasing
linear intervals along the third dimension, and choose a small random sample within
each set. For each such point K , we cannot uniquely assign the closest good point.
Instead, we run the two-dimensional procedure described above on K . This will look
at the two-dimensional plane of points having the same third coordinate as K and
return a polylogarithmic set of points. We collect all points obtained after running
the two-dimensional reconstruction procedure for all such K , and use these points to
reconstruct the value at I .

We now describe the above intuition precisely.

Definition 4.5 Define frontier(I ) to be the smallest I ′ such that I ′ ≺1 I , I ′ is good,
and

|{J ∈ [I ′, I ] | J good}| ≤ δ|[I ′, I ]|.
The value f (frontier(I )) is denoted by bound1(I ). If I is good and for some J ,

I ∈ (frontier(J ), J ], then I is called 1-unsafe.

2Of course, this process is randomized, so such a value cannot be determined purely by I . We give an
exact definition later which does not have this problem, but the essence is still the same.
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The value output by get-value(f, I,1, δ) is (with high probability) greater than or
equal to bound1(I ).

Definition 4.6 For 1 < r ≤ d , boundr (I ) is defined recursively. Take any interval of
the form [I ′, I ], where I ′ ≺r I . Consider the set S = {boundr−1(J ) | J ∈ [I ′, I ]}. The
smallest value greater than or equal to (1− δ)|S| elements of S is denoted boundr (I ).

I is r-unsafe if I is good and there exists a J = 〈j1, . . . , jr , ir+1, . . . , id〉 � I

(called the witness) such that boundr (J ) < f (I).

Points which are good and not r-unsafe (for all 1 ≤ r ≤ d) are referred to as safe
points. First, we will bound the number of unsafe points in terms of γ nd . Then, we
will show (with high probability) that monotonize does not change f values at safe
points.

Lemma 4.7 For any 1 ≤ r ≤ d , the number of r-unsafe points is bounded by 5δγ nd .

Proof The proof is done by induction on r . First, we prove the base case. Consider
a 1-unsafe point I . It lies in the interval [frontier(J ), J ] for some J = 〈j, i2, . . . , in〉.
Among the intervals [frontier(J ), I ] and [I, J ], one of them must have ≤2δ fraction
of good points. If the former occurs, call I downward, otherwise call it upward (if
both happen, we assign any name).

Choose all points of the form 〈k, i2, . . . , id〉, 1 ≤ k ≤ n. We will use a charging
argument over this set of points to show that the number of upward points is at most
a 2δ/(1 − 2δ) fraction of bad points. We go in reverse order 〈n, i2, . . . , in〉, . . . , 〈1, i2,

. . . , in〉, and for each unsafe point I , one unit of charge is spread onto the bad points in
the interval [I, J ]. At some stage, suppose some bad point K get a charge >2δ/(1 −
2δ) while some I is being processed. Because we spread charge uniformly, every
bad point in [I, J ] has charge >2δ/(1 − 2δ). Since the number of bad points in this
interval is ≥(1 − 2δ) fraction of the whole interval, the total charge is >2δ(j −
i1 + 1). This charge could only have come from all the good points in [I, J ] (since
unsafe points are always good), which are ≤2δ(j − i1 + 1) in number. That leads to
a contradiction.

Similarly, we bound the number of downward points, by traversing the column
in the order 〈1, i2, . . . , in〉, . . . , 〈n, i2, . . . , in〉. Therefore, the total number of unsafe
points is bounded by (4δ/(1 − 2δ))γ nd < 5δγ nd .

Now for the induction step—assume that the statement is true for all r ′ < r . For
any point I , let RI denote the set {I (l)

r |1 ≤ l ≤ n}. A charging argument (as above)
will be applied to each such set of points. First, we mark all bad and (r − 1)-unsafe
points in RI . Then going in reverse order I (n), . . . , I (1) (for clarity, the subscripts
have been dropped), we process each r-unsafe point I (k) ∈ RI . Let its witness be
J = 〈j1, . . . , jr , ir+1, . . . , in〉 � I (k). We begin by proving the following claim.

Claim 4.8 The interval [I (k), I (jr )] can have at most a δ-fraction of unmarked points.

Every unmarked point I (l) in the interval is good, and therefore f (I (k)) ≤ f (I (l)).
Since I (l) is not (r − 1)-unsafe, f (I (l)) ≤ boundr−1(J

(l)), showing that for any un-
marked point I (l) ∈ [I (k), I (jr )], f (I (k)) ≤ boundr−1(J

(l)). Since J is a witness,



180 Algorithmica (2008) 51: 160–182

Fig. 9 Finding an appropriate
value for f (I)

f (I (k)) > boundr(J ). This means that f (I (k)) is greater than a (1 − δ)-fraction of
values in the set {boundr−1(J

(l))|k ≤ l ≤ jr}, proving the claim.
For processing I (k), we take one unit of charge and spread it over all marked points

in the interval [I (k), I (jr )]. Using an argument similar to the one used above, we can
show that each marked point ends up with a charge of at most δ/(1 − δ). The total
number of marked points is ≤(1 + 5δ)γ nd . Therefore, the number of r-unsafe points
is at most 2δγ nd < 5δnd . �

Lemma 4.9 With probability >1 − n−5d and in time 2O(d)(logn)4d−2 log logn, get-
value(f, I, d, δ) outputs a value which is consistent with all safe points i.e. for all
safe J , if J � I , f (J ) ≥ I and if J ≺ I , f (J ) ≤ I .

Proof First we prove the following statement: With probability >1−n−5d , the output
of get-value(f, I, d, δ) is larger than boundd(I ).

We show by induction over r that, with probability of error <(logn)crn−6d for
some sufficiently large constant c, the output of get-value(f, I, r, δ) is ≥boundr (I ).

Let us denote by I
j
r the point I

(ir−(1+δ)j )
r (just to reduce clutter). For r = 1, we

know that get-value1 outputs a value larger than bound1(I ) with error probability
<1/n6d , proving the base case. Assume inductively upto r . We now prove for r + 1.
For every 1 ≤ j ≤ (2/δ) lnn (refer to Fig. 9), consider the interval [I j

r+1, I ]. Let
L be the list as defined in Fig. 9. Note that the maximum of L is the output of
get-value(f, I, r + 1, δ). By the induction hypothesis and a union bound (over the
O(logn) values of k in Fig. 9), the probability that any call to get-value(f, I

(l)
r , r, δ)

errors is O((logn)cr+1n−6d). This fact, combined with a standard Chernoff bound
argument, tells us that L contains a value larger than a (1 − δ/2)-fraction of values
from the set {boundr (I

′) | I ′ ∈ [I j

r+1, I ]} with probability of error <(logn)cr+2n−6d .
Taking a union bound over all j , we prove that the maximum of L is larger than
boundr+1(I ) with probability of error <(logn)c(r+1)n−6d . This completes the proof
of the statement.

Let us denote the output of get-value(f, I, d, δ) by v. Note that v is between the
values of two good points both smaller than I . Therefore, for any safe point S � I ,
f (S) ≥ v. Suppose S ≺ I . By definition, f (S) ≤ boundd(I ) ≤ v, and the values are
consistent.
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Fig. 10 The filter

For the running time, note that get-value recurses on the dimension parameter—
we can inductively show that the running time of get-value(f, I, r, δ) is 2O(d)·
(logn)2(d+r−1) log logn, proving the stated bound. �

Finally, to prove Theorem 4.4, we prove the following:

Lemma 4.10 Given 0 < δ < 1/2, monotonize computes a monotone function ĝ such
that dist(f, ĝ) < (2d + O(dδ))εf with probability >1 − n−2d . The running time of
monotonize is 2O(d)(logn)4d−2 log logn per query.

Proof The call to bad-good-test takes (2d)O(d)(logn)2d−1 time. The running time for
the call to get-value is 2O(d)(logn)4d−2 log logn, which is more expensive (assuming
of course, that n is sufficiently large). Henceforth, a sound value for a point that is
one that when assigned to it will be consistent (with regard to monotonicity) with
f -values at safe points. If, after some queries, the output is sound, we mean that no
violations with f -values at safe points are present.

It is easy to see that monotonize always outputs a monotone function. Since we
know that each call to bad-good-test and get-value errs with probability <n−5d (Lem-
mas 4.3, 4.9), the probability that any such call errs is certainly <n−2d . Assuming
now that these calls will not error, we will prove that monotonize will always output
values that keep it sound. Let us prove this by induction on the number of queries
processed by monotonize. For the base case, any good point will be committed to
its f -value. Note than the f -value at any good point is sound. For a bad point, by
Lemma 4.9, we will commit to a value that is sound.

Assume up to t queries. (In the following, the variables l, r, val are as defined in
Fig. 10.) For the (t + 1)th query, if the point I is good and f (I) ∈ [l, r], soundness
will be maintained. Otherwise, we will have to run get-value. If val ∈ [l, r], we are
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done (again by Lemma 4.9). Suppose val > r . Consider the committed point J � I

such that ĝ(J ) = r . We know by induction that f (K) ≤ r for all safe K ≺ I ≺ J . For
any safe K � I , f (K) ≥ val > r . Therefore, r is a sound value for I . The case where
val < l is handled similarly.

This shows that f is modified only at points that are unsafe. The number of those
(by Lemmas 4.2, 4.7) is (2d + O(dδ))εf nd . Rescaling δ gives us the result. �
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